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SUMMARY

Maximum tolerated dose (MTD) finding is an important problem in Phase I &

II clinical trials. Based on the continual reassessment method (CRM) that is

used to find MTD, a new dose-escalation strategy is presented. The suggested

strategy relies on a probit model. By introducing latent variables, Markov

chain Monte Carlo (MCMC) methods are employed to estimate the model

parameters. Compared with the widely used CRM in simulation studies, the

new dose-escalation strategy is superior to or at least as good as the orig-

inal dose-escalation strategy used in CRM for most of the considered scenarios.
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1 Introduction

The primary goal of a phase I clinical trial is to determine the dose of a candidate drug for

use in the subsequent phase II trial. This is traditionally achieved by exposing patients to

dose levels that adaptively selected based on cumulative toxicity measurements. The most

widely used approaches in phase I clinical trial, such as ”3+3” design and CRM, classify

safety events into two categories: dose-limiting toxicity (DLT) and non-DLT, with the aim

of finding the dose with probability of DLT closed to a target probability, usually 25 to 30

percent. More precisely, the goal is to find the maximum tolerated dose (MTD), defined as

the dose for which the probability of DLT is equal to a specified value θ:

Pr{DLT|Dose = MTD} = θ, (1)

where θ is set relatively high when DLT is a non-fatal condition, and low when it is life

threatening.

There are two different philosophies in MTD definition. The first treats the risk of

toxicity as a sample statistic identified by the doses studied, and hence defines the MTD as

a statistic computed from the data. In this situation, the MTD is identified, rather than

estimated. The second treats the risk of toxicity as a parameter of a dose-response model

and hence defines the MTD as a parameter or a function of the parameter(s) of a monotonic

dose-response curve, and thus it is estimated. Implementing the different definitions of

MTD, phase I trial designs can be divided into two divergent categories: rule-based design

and model-based design, which result in different dose escalating strategies.

From rule-based design to model-based design, various designs for phase I clinical trials

have been discussed in the literature. In practice, the rule-based designs, which only need a

dose-escalation rule with no complicated statistical modeling, still dominate in phase I trials

since they are simple to understand, easy to implement, and the decision rule is intuitive

and does not involve complicated calculations. However, the poor operating characteristics

of the traditional design has been criticized recently (see [2, 3, 5, 7, 8, 9, 11, 13]). The

major criticism of the standard design is that it has no intrinsic property producing accurate

estimates of a target quantile and many patients are treated at low, possibly ineffective dose

levels when the initial dose level falls far below the true MTD.

Despite the wide use of rule-based schemes in applications, model-based clinical trial
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designs have drawn much attention from the biostatistical community since 1990 when

O’Quigley et al. [9] proposed the Continual Reassessment Method (CRM), which is most

prominent among all model-based approaches. Denoted by Y the toxic response for a patient

at dose level x, then Y is a binary random variable, taking value 1 when DLT is observed, 0

otherwise. O’Quigley et al. [9] proposed a simple dose-response function, ψ(x, a), such that

Pr{DLT|Dose = x} = E(Y = 1|x, a) = ψ(x, a),

where a is(are) the parameter(s) which will be modified sequentially according to the accrued

data under the Bayesian framework and ψ(x, a) is monotone in both x and a. They also

assume that the model is rich enough so that for any dose, say x̃, and the target probability

of DLT, say θ̃, there exists a unique parameter, say ã, such that ψ(x̃, ã) = θ̃. Suppose that

the parameter a has a prior π(a). One can find the posterior of a, π(a|Data), according to

the accumulated information on the first j− 1 patients. Next, O’Quigley gave two estimates

of the probability of toxic response at dose level x, denoted by θxj where

θxj = Eπ(a|Data)[ψ(x, a)], or θ′xj = ψ(x, â),

where â = Eπ(a|Data)(a). Finally, let ∆(v, w) denote a measure of distance between v and w,

for example ∆(v, w) = (v − w)2. Then for the j th entered patient in the trial, one chooses

dose level x∗j such that ∆(θxj, θ), ∆(θ′xj, θ) or ∆(x, ψ−1
a=â(θ)) is minimized. After n patients,

the estimate of the MTD is taken to be x∗n+1. It has been shown that x∗n+1 converges to the

unknown MTD.

In the mid-1990s, several variants of the CRM (see [3, 5, 7]) were proposed, addressing

some of the safety concerns raised regarding O’Quigley et al.’s [9] original design. Although

the dose escalation strategies are different from each other, all these modified CRMs are based

on the dose-response function, ψ(x, a), including the original CRM. The most frequently used

one-parameter ψ(x, a) are:

ψ(x, a) = {(tanh(x) + 1)/2}a; (2)

ψ(x, a) = pax , where 0 < px < 1 and increasing in x; (3)

ψ(x, a) = exp{c+ ax}/(1 + exp{c+ ax}), where c is a constant. (4)

Dose-response function (2) used in the original CRM is a special case of (3), which is com-
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monly called power model [10].

One-parameter dose-response model performs, in general, remarkably well and there has

been no hesitation in recommending its use. However O’Quigley et al. [9] still warned that

its lack of flexibility has proven to be something of a handicap in trying to find a good fit

to data. Two-parameter logistic models are introduced and well discussed for dose-finding

in Phase I clinical trials recently (see [4, 14, 15]). Shu and O’Quigley [12] argued that, for

two-parameter model, the parameter estimates are inconsistent and no statistical properties

appear to have been studied. Despite the argument, two-parameter model, stemming from

its greater flexibility, is welcomed in practice since it provides a good fit to data for the large

sample size.

But in phase I clinical trial, the sample size n is relatively small. Usually, n takes value

from 20 to 40. The accuracy of the parameters estimation for the two-parameter model

is questionable for small sample size. From a non-Bayesian viewpoints, Griffiths et al. [6]

pointed out that the MLE of the parameter has significant bias for small samples. From a

Bayesian approach, Zellner et al. [16] also commented on the inaccuracy of the approximation

for small n. Hence, stemming from its greater flexibility, using two-parameter model in dose-

finding clinical trials is criticized for having been the greater rapidity with which it changes

dose levels early in the experiment.

Albert and Chib [1] propose a Bayesian computational method which allows one to

perform exact inference for binary regression models and is preferable to ML methods for

small samples. The general approach can be summarized as follows. The probit regression

model for binary outcomes is seen to have an underlying normal regression structure on

latent continuous data. Values of the latent data can be simulated from suitable truncated

normal distributions. If the latent data are known, then the posterior distribution of the

parameters can be computed using standard results for normal linear models. Draws from

this posterior are used to sample new latent data, and the process is iterated with Gibbs

sampling.

In this research, we propose a two-parameter probit model with latent variables to ex-

tend the CRM for the cases of dichotomous toxicity responses. In next section, we introduce

the probit model with latent variables and the full conditional distributions are given. The

dose allocation rule will be discussed in Section 3. In Section 4, a simulation study exploring

operating characteristics of this escalation strategy is presented. Finally, in Section 5, a brief
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discussion is provided and we also draw some conclusions.

2 Probit Model with Latent Variables

In this section, Albert and Chib’s method [1] will be modified since there is a positive con-

straint on the slope parameter which will lead to the probability of toxic response increasing

monotonically in dosage x. In Section 2.1, the probit model with latent variable is introduced

and the MTD is obtained analytically. In Section 2.2, The full conditional distributions of

the parameters and the latent variables are given, which will serve as the base in the Gibbs

sampling method (See Gelfand & Smith, 1990).

2.1 The Model

Denoted by Y = 1 a severe toxic response (or dose limiting toxicity, DLT) at dosage x and by

Y = 0 a nontoxic response at dosage x. Assume that, at dosage x, there exists an underlying

normal latent variable

Z|x ∼ N(β0 + β1x, σ
2), (5)

where β1 > 0, such that,

Y =

1 if Z > 0,

0 if Z ≤ 0.
(6)

Then,

P (Y = 1|x) = P (Z > 0|x) = Φ

(
β0 + β1x

σ

)
= Φ(β∗

0 + β∗
1x), (7)

where Φ(t) is the cumulative density function of the standard normal random variable,

β∗
0 = β0/σ and β∗

1 = β1/σ. Define Z∗ = Z/σ, then Z∗|x ∼ N(β∗
0 + β∗

1x, 1). Since Z > 0

if and only if Z∗ > 0, one can simply assume that Z|x ∼ N(β0 + β1x, 1) without loss of

generality and hence

P (Y = 1|x) = Φ(β0 + β1x), (8)
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which is a probit model. Essentially, by introducing the normal latent variable, we assume

that the dose-response follows a probit model. According to the MTD definition (1) and the

dose-response model (8), the MTD can be determined, analytically, as

MTD =
β0 − Φ−1(θ)

β1
. (9)

2.2 The Full Conditional Distributions

Denote by Fj = {(x1, y1), . . . , (xj, yj)} the history of the first j dose assignments and toxicity

responses, where yl is the observed toxicity response taking value either 0 for non-DLT

or 1 for DLT and xl ∈ X (the set of all doses for the drug under investigation, usually,

X = {d1, . . . , dK}), l = 1, . . . , j. Since the sample size is relatively small in phase I clinical

trials, we fit the probit model (8) by introducing the normal latent variables. Assume that

Z1, Z2, . . . , Zj are j independent latent variables, where Zl ∼ N(β0 + β1xl, 1), such that,

Yl =

1 if Zl > 0,

0 if Zl ≤ 0,
for l = 1, . . . , j,

where xl is the dose level at which the lth patient is assigned (that is xl ∈ {d1, . . . , dK}).
Then, the toxicity probability at dose level xl is

P (Yl = 1|xl) = P (Zl > 0|xl) = Φ(β0 + β1xl),

where β1 > 0 is a constraint since the toxicity probability is increasing as the dose level

increases.

Accruing data up to Fj = {(x1, y1), . . . , (xj, yj)}, the joint posterior density of the

parameters (β0, β1) and unobserved latent variables Z = (Z1, Z2, . . . , Zj) is given by

π(β0, β1,Z|Fj)

∝ π(β0, β1)

j∏
l=1

[I(Zl > 0)I(yl = 1) + I(Zl ≤ 0)I(yl = 0)]ϕ(Zl; β0 + β1xl, 1), (10)

where ϕ(t;µ, σ2) is the probability density function of N(µ, σ2) and I(A) is the indicator

function, taking value 1 if A is true and 0 otherwise.
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Note that this joint posterior distribution is intractable in the sense that it is difficult to

normalize and to sample from directly. However, the computation of the marginal posterior

distribution of (β0, β1) using the Gibbs sampling algorithm requires only the posterior distri-

bution of β0 conditional on (β1,Z), the posterior distribution of β1 conditional on (β0,Z) and

the posterior distribution of Z conditional on (β0, β1), and these full conditional posterior

distributions are easy to obtained and easy to sample from as shown follows.

Based on (10), the full conditional posterior distributions can be calculated and are

given by the following formulas.

• π(β0|β1,Z,Fj)

Denoted by π(β0) the prior density of β0. Regardless of the proportion constant, the posterior

density of β0 is given as

π(β0|β1,Z,Fj) ∝ π(β0)

j∏
l=1

ϕ(Zl; β0 + β1xl, 1) ∝ π(β0) exp{−
j∑

l=1

(Zl − β0 − β1xl)
2/2}

∝ π(β0) exp

−1

2

(
β0 −

∑j
l=1(zl − β1xl)/j

)2
1/j

 .

If a flat prior π(β0) ∝ 1 is assigned, then,

π(β0|β1,Z,Fj) ∝ exp

−1

2

(
β0 −

∑j
l=1(zl − β1xl)/j

)2
1/j

 ,

which implies that

β0|β1,Z,Fj ∼ N

(∑j
l=1(zl − β1xl)

j
,
1

j

)
. (11)

If a proper conjugate prior N(β̄0, σ̄
2
0) is assigned, then,

β0|β1,Z,Fj ∼ N

(
σ̄2
0

∑j
l=1(zl − β1xl) + β̄0

1 + σ̄2
0j

,
σ̄2
0

1 + σ̄2
0j

)
. (12)

• π(β1|β0,Z,Fj)
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Denoted by π(β1) the prior density of β1. Regardless of the proportion constant, the posterior

density of β1 is given as

π(β1|β0,Z,Fj) ∝ π(β1)

j∏
l=1

ϕ(Zl; β0 + β1xl, 1) ∝ π(β1) exp{−
j∑

l=1

(Zl − β0 − β1xl)
2/2}

∝ π(β1) exp

−1

2

(
β1 −

∑j
l=1(zl − β0)xl/

∑j
l=1 x

2
l

)2
1/
∑j

l=1 x
2
l

 .

If a flat prior π(β1) ∝ I(β1 > 0) is assigned, then,

β1|β0,Z,Fj ∼ N

(∑j
l=1(zl − β0)xl∑j

l=1 x
2
l

,
1∑j

l=1 x
2
l

)
I(β1 > 0), (13)

which is a left truncated normal random variable.

If a proper conjugate truncated normal prior N(β̄1, σ̄
2
1)I(β1 > 0) is assigned, then,

β1|β0,Z,Fj ∼ N

(
σ̄2
1

∑j
l=1(zl − β0)xl + β̄1

1 + σ̄2
1

∑j
l=1 x

2
l

,
σ̄2
1

1 + σ̄2
1

∑j
l=1 x

2
l

)
I(β1 > 0), (14)

which is also a left truncated normal random variable.

If a proper, but non-conjugate exponential prior exp{−β1}I(β1 > 0) is assigned, then,

π(β1|β0,Z,Fj) ∝ exp{−β1} exp

−1

2

(
β1 −

∑j
l=1(zl − β0)xl/

∑j
l=1 x

2
l

)2
1/
∑j

l=1 x
2
l

 I(β1 > 0)

∝ exp

−1

2

(
β1 −

[∑j
l=1(zl − β0)xl − 1

]
/
∑j

l=1 x
2
l

)2
1/
∑j

l=1 x
2
l

 I(β1 > 0),

which implies that β1|β0,Z,Fj is left truncated normal distributed, i.e.,

β1|β0,Z,Fj ∼ N

(∑j
l=1(zl − β0)xl − 1∑j

l=1 x
2
l

,
1∑j

l=1 x
2
l

)
I(β1 > 0). (15)

• π(Zl|β0, β1,Fj), l = 1, . . . , j
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Refer to the posterior distribution of Z conditional on β = (β0, β1), based on (10), we find

that the random variables Z1, Z2, . . . , Zj are independent with

Zl|β0, β1,Fj ∼

N(β0 + β1xl, 1)I(Zl > 0) if yl = 1,

N(β0 + β1xl, 1)I(Zl ≤ 0) if yl = 0,
for l = 1, . . . , j (16)

Based on the Gibbs samplers, estimates of β0, β1 and Z can be produced from those full

conditional posterior distributions.

3 Dose Allocation Rules

After drawing the samples from the joint marginal posterior distribution

π(β|Fj) = π(β0, β1|Fj),

one can find the dose xj+1 ∈ {d1, . . . , dK} such that the corresponding probability of DLT

is “closest” to the target probability of DLT θ, i.e. one of the following criteria (which are

similar as those in the original CRM [9]) is minimized:

Criterion 1 l1(ψ(x,β), θ) = ∆(ψ(x,Eπ(β|Fj)β), θ), (17)

Criterion 2 l2(ψ(x,β), θ) = ∆(Eπ(β|Fj)ψ(x,β), θ), (18)

where ∆(v, w) = (v−w)2. The estimates of the expectations in (17) and (18) can be obtained

based on the simulation by using the Monte Carlo method. Suppose one has generated N

pairs of β = (β0, β1), denoted by β(i) = (β
(i)
0 , β

(i)
1 ), i = 1, 2, . . . , N , then,

Êπ(β|Fj)β =
1

N

N∑
i=1

β(i), and

Êπ(β|Fj)ψ(x,β) =
1

N

N∑
i=1

ψ(x,β(i)).

Table 1 is an example of the simulated trial based on criterion 1. In this example,

six levels {d1, . . . , d6} are chosen for experimentation. We recruit 30 patients in 10 cohorts
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with 3 patients per cohort. At stage j, 3 toxicity responses is simulated independently from

Bernoulli distribution with success probability P (Y = 1|xj) = [(1 + tanhxj)/2]
2.2, where

xj ∈ {d1, . . . , d6}. The data is fitted using two-parameter probit model, i.e. P (Y = 1|x) =
Φ(β0 + β1x). Assume that the true toxicity probability at each dose level is as follows

Dose Level d1 d2 d3 d4 d5 d6

Probability 0.03 0.11 0.30 0.49 0.87 0.93

In addition, we start from the lowest dose level x1 and for any dose escalation more

than one does level is not allowed.

Table 1: Simulated trial: True model is P (Y = 1|x) = [(1 + tanhx)/2]2.2; Total 10 cohorts
with 3 patients per cohort.

Response l1(ψ(x,β), θ)

Cohort xi 1 2 3 x1 x2 x3 x4 x5 x6

1 x1 0 1 0 0.01 0.02 0.08 0.16 0.38 0.42
2 x1 0 0 0 0.03 0.00 0.01 0.04 0.28 0.35
3 x2 0 0 0 0.05 0.03 0.01 0.00 0.07 0.11
4 x3 0 0 0 0.06 0.05 0.04 0.03 0.01 0.00
5 x4 1 0 0 0.05 0.04 0.02 0.01 0.00 0.02
6 x5 1 1 1 0.06 0.03 0.01 0.00 0.26 0.34
7 x4 1 1 0 0.06 0.02 0.00 0.02 0.30 0.38
8 x3 0 1 0 0.05 0.02 0.00 0.03 0.31 0.39
9 x3 0 0 0 0.06 0.03 0.00 0.02 0.30 0.38
10 x3 1 0 0 0.06 0.03 0.00 0.01 0.26 0.35

11 x3

To check the feasibility of the proposed method, simulation scenarios and results are

presented in the following section.
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4 Simulation Studies

In order to assess the operating characteristics of the dose escalation strategy based on

criteria (17) and (18) and to compare the performance of one-parameter power model with

two-parameter probit model, a simulation study is performed.

In this simulation study, we consider a variety of situations. We suppose there are six

ordered dose levels, x1, . . . , x6, and that the probability of toxic response at each level is

generated in one of the following four ways:

(1) Power Model ψ(x; a) = [(tanh(x) + 1)/2]a,

(2) Probit Model ψ(x; β0, β1) = Φ(β0 + β1x),

(3) Logistic Model ψ(x; a, b) = exp(a+ bx)/(1 + exp(a+ bx)),

(4) General Situation p(xi) ≤ p(xj), i < j, where p(x) is the toxicity probability at x.

For the working model, we always use prior π(a) = exp(−a), a > 0, as in O’Quigley et

al. [9], on power model and π(β0, β1) ∝ exp(−β1), β1 > 0 on probit model. We start the first

cohort of patients at the lowest of the preselected dose levels and the next cohort is required

to be treated no more than one dose level higher than the previous cohort.

In each duplication, we recruit 30 patients in 10 cohorts with 3 patients per cohort.

Recruiting 3 patients, instead of 1 patient (which is the case of the original CRM. See [9]),

per cohort is similar as in the standard “3+3”design in phase I clinical trial, which will

increase the accuracy of estimation for the unknown parameter(s), especially during the

early period of the clinical trial. For each of the total 30 stages in each duplication, we

simulated 1000 samples after burn-in the first 1000 samples and thinning every 10 samples.

The parameters used in the simulation are shown in Table 2.

Each of the Tables 3 through 6 is based on estimates from 200 duplications as in the

original paper of O’Quigley et al. [9]. The first row in each of the Tables 3 through 6 gives

the true probabilities generating the data. There are 8 entries in each table. The first 4 and

the last 4 entries are the simulation results based on two different true models. For both the

first 4 and the last 4 entries, the first 2 entries of them are the simulation results of Criterion

1 and Criterion 2, respectively, under the power model and the the second 2 entries are the

simulation results of Criterion 1 and Criterion 2, respectively, under the probit model. Each

of the 8 entries have 2 rows. The first row gives the frequency at which that dose level was the
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Table 2: Setting of simulation study for the dichotomized response model.

Number of cohorts in one trial 10
Number of patients in each cohort 3
Number of patients in one trial 30

Number of duplications 200
Number of dose levels 6

Target response probability 0.3

True toxic response x1 x2 x3 x4 x5 x6
Power model H1: 0.16 0.30 0.52 0.68 0.93 0.96

H2: 0.03 0.11 0.30 0.49 0.87 0.92
Probit model N1: 0.05 0.10 0.20 0.30 0.65 0.75

N2: 0.00 0.001 0.01 0.03 0.30 0.46
Logistic model L1: 0.06 0.08 0.14 0.30 0.53 0.84

L2: 0.06 0.11 0.30 0.75 0.95 0.99
General Situation G1: 0.05 0.10 0.15 0.30 0.45 0.60

G2: 0.30 0.90 0.90 0.90 0.90 0.90

Working Model
Power model

ψ(x; a) = [(tanh(x) + 1)/2]a

π(a) = e−a, a > 0
Probit model

ψ(x; β0, β1) = Φ(β0 + β1x)
π(β0, β1) ∝ e−β1 , β1 > 0

11



one finally recommended as the MTD, the second the frequency at which experimentation

was performed at that level. In each table, the last 3 columns give the average, maximum

and minimum number of toxic responses over the 200 duplications.

The true model for Table 3 is the power model. Table 3 shows both working model,

power model or probit model, provide the similar simulation results under the true toxicity

probability setting H1. All the criteria provide about 70 percent correct recommendations.

For scenario H2, the probit model is slightly better than the power model under criterion 2.

The power model recommends the MTD correctly with about 73 percent chances and the

probit model with about 80 percent.

The true model for Table 4 is the probit model. Under both true toxicity probability

settings, N1 and N2, it is shown that the power model underestimate the MTD. Under N1,

it is more than 50 percent chances that the power model recommends the dose level having

0.2 toxic response probability which is one level below the true MTD. Under N2, the power

model even recommended the dose level having 0.03 toxic response probability with more

than 95 percent chances. However, under both N1 and N2, the probit model has more chance

to recommend the MTD correctly then to recommend the other doses. Under N1, the probit

model has more than 70 percent chances to recommend the MTD and more than 60 percent

under N2.

Table 5 uses the logistic model as the true model. Under the toxicity probability setting

L1, the probit model is superior to the power model. By using criterion 1, it is about 50

percent chances for the power model to recommend the MTD and about 60 percent for

probit model. By using criterion 2, the MTD is underestimated by the power model. Under

L2, the power model is slightly better than the probit model. The recommendation rate for

power model is close to 90 percent and for probit model is above 85 percent.

The true model for Table 6 under the general situation. Under the toxicity probability

setting G1, the probit model is superior to the power model for all there criteria. Under G2,

the true toxicity probabilities are set to look at what happens when all toxic probabilities are

extremely high (90%) apart from the very lowest one which is at the appropriate level. Under

this toxicity probability setting, not surprisingly, both the power model and the probit model

recommend the lowest dose level over 95% of the time. And what is rather more encouraging

is that only about 10% of the patients are ever tried at a level other than the lowest.

The simulation results summarized in all the tables show that the probit model is

12



Table 3: Result of simulation study under scenario H1 and H2. The true model is power
model, ψ(x; a) = [(tanh(x) + 1)/2]a. MTD is at does level 2 for scenario H1 and dose level
3 for H2.

# of toxic reponses
True toxicity prob. H1: 0.16 0.30 0.52 0.68 0.93 0.96 Mean Max Min

Power model
Criterion 1 Rec. 19.5 70.5 10.0

Exp. 31.2 58.1 10.7 0.1 8.9 14 4
Criterion 2 Rec. 22.0 71.0 7.0

Exp. 36.0 54.3 9.6 0.1 8.5 14 4

Probit model
Criterion 1 Rec. 16.0 71.0 12.0 1.0

Exp. 28.5 48.7 19.4 3.3 0.1 9.8 15 5
Criterion 2 Rec. 19.0 71.0 9.5 0.5

Exp. 31.2 48.6 17.4 2.7 0.1 9.4 14 5

True toxicity prob. H2: 0.00 0.02 0.13 0.30 0.80 0.88

Power model
Criterion 1 Rec. 18.5 81.5

Exp. 10.1 11.2 36.4 40.1 2.2 6.0 11 2
Criterion 2 Rec. 26.3 73.5

Exp. 10.2 11.5 40.2 35.9 2.2 5.7 11 2

Probit model
Criterion 1 Rec. 14.0 84.5 1.5

Exp. 10.0 10.4 21.2 51.9 6.3 0.2 7.6 12 4
Criterion 2 Rec. 18.5 80.5 1.5

Exp. 10.1 10.8 22.5 50.4 6.1 0.1 7.4 12 4
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Table 4: Result of simulation study under scenario N1 and N2. The true model is probit
model, ψ(x; β0, β1) = Φ(β0 + β1x). MTD is at does level 4 for scenario N1 and dose level 5
for N2.

# of toxic reponses
True toxicity prob. N1: 0.05 0.10 0.20 0.30 0.65 0.75 Mean Max Min

Power model
Criterion 1 Rec. 5.0 54.0 41.0

Exp. 11.9 21.5 41.4 23.9 1.2 10.1 6.1 11 2
Criterion 2 Rec. 7.0 59.0 34.0

Exp. 12.6 25.7 40.6 19.8 1.2 0.1 5.8 11 2

Probit model
Criterion 1 Rec. 1.5 22.0 72.5 4.0

Exp. 13.1 13.3 22.9 42.7 7.5 0.5 7.8 13 4
Criterion 2 Rec. 3.0 24.5 70.5 2.0

Exp. 13.6 15.2 23.1 40.6 7.0 0.5 7.5 13 4

True toxicity prob. N2: 0.00 0.001 0.01 0.03 0.30 0.46

Power model
Criterion 1 Rec. 98.5 1.5

Exp. 10.0 10.1 11.1 53.4 11.8 3.6 2.3 6 1
Criterion 2 Rec. 99.0 1.0

Exp. 10.0 10.1 11.6 53.0 11.7 3.6 2.2 6 1

Probit model
Criterion 1 Rec. 3.0 68.5 28.5

Exp. 10.0 10.0 10.1 12.7 36.2 21.0 6.8 11 3
Criterion 2 Rec. 4.5 72.5 23.0

Exp. 10.0 10.0 10.1 13.9 37.6 18.4 6.5 11 3
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Table 5: Result of simulation study under scenario L1 and L2. The true model is logistic
model, ψ(x; a, b) = exp(a + bx)/(1 + exp(a + bx)). MTD is at dose level 4 for scenario L1
and dose level 3 for L2.

# of toxic reponses
True toxicity prob. L1: 0.06 0.08 0.14 0.30 0.53 0.84 Mean Max Min

Power model
Criterion 1 Rec. 47.5 51.5 1.0

Exp. 10.2 11.7 45.1 30.5 2.3 0.2 5.8 11 2
Criterion 2 Rec. 1.0 53.5 45.5

Exp. 12.7 12.2 45.5 27.4 2.0 0.2 5.5 11 2

Probit model
Criterion 1 Rec. 0.5 26.0 60.0 13.0 0.5

Exp. 12.4 13.4 29.4 33.9 10.4 0.5 6.8 12 3
Criterion 2 Rec. 0.5 27.5 61.5 10.0 0.5

Exp. 12.5 14.0 31.2 32.9 8.9 0.5 6.6 12 3

True toxicity prob. L2: 0.06 0.11 0.30 0.75 0.95 0.99

Power model
Criterion 1 Rec. 9.5 90.0 0.5

Exp. 10.3 18.3 65.9 5.5 8.6 13 4
Criterion 2 Rec. 11.5 88.5

Exp. 13.1 19.1 63.4 4.4 8.2 13 4

Probit model
Criterion 1 Rec. 9.5 88.5 2.0

Exp. 13.1 20.0 60.0 6.8 0.1 8.2 14 4
Criterion 2 Rec. 12.5 86.0 1.5

Exp. 13.3 23.0 57.0 6.5 0.2 7.9 13 4
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Table 6: Result of simulation study under scenario G1 and G2. The true model is under a
general situation p(xi) ≤ p(xj), i < j, where p(x) is the toxicity probability at x. MTD is at
dose level 4 for scenario G1 and dose level 1 for G2.

# of toxic reponses
True toxicity prob. G1: 0.05 0.10 0.15 0.30 0.45 0.60 Mean Max Min

Power model
Criterion 1 Rec. 4.5 44.5 51.0

Exp. 12.2 19.6 37.5 29.1 1.5 0.1 5.7 11 2
Criterion 2 Rec. 6.5 48.0 45.5

Exp. 12.6 22.4 38.4 24.9 1.6 0.1 5.4 10 1

Probit model
Criterion 1 Rec. 0.5 18.0 62.5 16.5 2.5

Exp. 12.2 13.2 22.0 38.5 11.3 2.8 7.4 12 4
Criterion 2 Rec. 0.5 18.5 64.5 15.0 1.5

Exp. 12.3 14.5 23.2 36.8 10.8 2.3 7.2 12 4

True toxicity prob. G2: 0.30 0.90 0.90 0.90 0.90 0.90

Power model
Criterion 1 Rec. 99.5 0.5

Exp. 90.3 9.7 10.8 16 7
Criterion 2 Rec. 98.5 1.5

Exp. 92.2 7.8 10.5 15 7

Probit model
Criterion 1 Rec. 99.5 0.5

Exp. 91.2 8.6 0.2 10.6 17 6
Criterion 2 Rec. 99.5 0.5

Exp. 91.7 8.3 10.5 17 5
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superior to or at least as good as the power model in most cases. Meanwhile, the simulation

results also show that the Bayesian method to fit the probit model wokes well in the clinical

phase I trials even there is a relatively small samples.

5 Concluding Remarks

We have presented a two-parameter probit model with normal distributed latent variables

for dose-finding in Phase I clinical trials. Our simulation study shows that on average

the two-parameter probit model performs well and is superior to the one-parameter power

model under a wide variety of circumstances. We also compare the performance of two

dose allocation criteria, which are expressed in (17) and (18), under both two-parameter

and one-parameter models. The simulation study shows that the criterion 2 is slightly more

conservative than the criterion 1 in the sense of the total percentage of recommending the

MTD and one level below the MTD.

Introducing different latent variables, the method is much easier to generate in the case

of the two-parameter logistic model or in the case of a more general situation. The general

procedure is briefly presented as follows. Assume that, at dosage x, there exists a latent

variable Z with the probability density function fZ(z; x,β), such that,

Y =

1 if Z > z0,

0 if Z ≤ z0,
(19)

where Y is the toxicity response, β and z0 are unknown parameters. Under certain situations,

such as in the normally distributed latent variable case presented in Section 2, the unknown

parameter z0 can be absorbed in β and hence, in (19), z0 is set to be zero or a known

constant. Then, the dose-response model is given as

P (Y = 1|x) = P (Z > z0|x) =
∫ ∞

z0

fZ(z;x,β)dz

= 1− FZ(z0; x,β), for x in the dose range X, (20)

where FZ(z0; x,β) is the cumulative density function of the latent variable Z. As a special

case of (20), if the latent variable Z is logistic distributed, (20) is reduced to the logistic
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model. Furthermore, accruing data up to Fj = {(x1, y1), . . . , (xj, yj)}, the joint posterior

density of the parameters β, z0 and unobserved latent variables Z = (Z1, Z2, . . . , Zj) is given

by

π(β, z0,Z|Fj) ∝ π(β, z0)

j∏
l=1

[I(Zl > z0)I(yl = 1) + I(Zl ≤ z0)I(yl = 0)]fZ(Zl;x,β), (21)

where π(β, z0) is the prior on model parameters (β, z0). For sampling from (21), the Markov

chain Monte Carlo method can be applied.

General model (20) is very flexible and can be used to describe a wide variety of dose

response curves. Under the Bayesian framework, introducing the latent variables allow one

to perform exact inference for the model parameter(s) and is preferable to the ML method

for small samples which is the case in Phase I clinical trials. In addition, introducing the

latent variables makes it a nature generation of the dichotomous toxicity responses when

the ploychotomous toxicity responses is accounted. Introducing the latent variables, the

ploychotomous toxicity responses will be discussed in a separated paper.
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