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ABSTRACT 
 
 

We examine the informational efficiency of size-based U.S. Exchange Traded Funds (ETFs) and 
comparable CRSP portfolios using weekly and daily returns.  Compared to the CRSP portfolios, 
ETFs are better suited for market efficiency tests. ETFs avoid the problems created by 
asynchronous pricing of underlying securities. Further, their negligible bid-ask spreads greatly 
diminish noise due to the bid-ask bounce. Variance ratio analysis demonstrates that return 
autocorrelations have diminished significantly over the past decade.  Granger causality tests 
reject the presence of lead-lag effects among size-based ETFs. Volatility spills over from large 
firm ETFs to those of smaller firms, and correlations increase during periods of market volatility.  
We confirm these spillovers by examining implied volatilities derived from ETF option prices. 
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I. Introduction 
 

Exchange Traded Funds (ETFs) have become extremely popular instruments for asset allocation 

and liquidity trading, and concerns have been raised that ETF trading and related arbitrage 

activity may contribute to overall market volatility.  The joint reports of the CFTC-SEC (2010a 

and 2010b) on the May 6, 2010 “flash crash” and ongoing academic research highlight these 

concerns.1 We conduct tests of informational efficiency of ETF prices data for size-based 

Exchange-Traded Funds (ETFs); the ETFs we consider are the S&P 500 Index ETF (SPY), the 

S&P 400 Mid Cap Index (MDY), and the Russell 2000 Small Cap Index (IWM). We compare 

the results for these ETFs with those of size-based portfolios constructed using the Center for 

Research in Security Prices (CRSP) database.  The characteristics of ETF trading allow for better 

tests of market efficiency compared to tests that rely on CRSP portfolios.  

While the informational efficiency of financial market prices has been analyzed for some 

time, it remains a contentious issue among financial economists and market practitioners.  Fama 

(1970) and Jensen (1978) note the substantial research that has not been able to reject the random 

walk hypothesis.  However, subsequent studies such as Lo and MacKinlay (1988, 1990) find 

some predictability in stock returns.2  Previous research has avoided examining daily returns of 

CRSP portfolios due to problems created by asynchronous prices and large bid-ask spreads for 

the underlying stocks. Aggregation of asynchronous prices/returns across the underlying 

securities for CRSP portfolios can induce spurious positive autocorrelation in returns, while the 

bid-ask bounce can induce spurious negative autocorrelations with the severity of the problem 

increasing with the magnitude of the bid-ask spread. These concerns are greatly reduced, if not 

                                                 
1 See, for example, Ben-David, Franzoni, Moussawi (2012), Bradley and Litan (2010), Chordia, Sarkar, and 
Subrahmanyam (2011), and Easley, de Prado, and O'Hara. (2011). 
2 See also Cochrane (2008), Conrad and Kaul (1988), Fama and French (1988), and Keim and Stambaugh (1986), 
among others. 
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eliminated, for ETFs. ETFs avoid the problem of asynchronous prices for underlying stocks, 

since the observed ETF price closely reflects the value of the underlying securities at that point 

in time.  Further, given their extremely high trading volumes, ETF bid-ask spreads are 

negligible.3  The size-based ETF data enable us to compare time-series results regarding returns 

and volatility with the more frequently studied size-based portfolios obtained from CRSP.  

Using data over the 2000-2012 period, we calculate the Lo and MacKinlay (1988) 

variance ratios for ETFs to test for violations of the random walk hypothesis.  As a baseline, we 

examine the relevant results for weekly returns on size-based CRSP stock portfolios using data 

from 1962 to 2012.  First, we replicate the results reported by Lo and MacKinlay (1988) for the 

period 1962-1985, finding qualitatively identical results. Over the subsequent years, however, 

variance ratios have become much smaller and less significantly different from one, especially 

over the last decade.  In fact, the results are insignificant for all but the portfolio of the smallest 

firms under study. Additionally, weekly and daily variance ratios for size-based ETFs 

conclusively demonstrate a lack of positive autocorrelation.  Thus, a primary finding of the study 

is that market efficiency in U.S. equity prices has increased markedly over the past twenty-five 

years.   

 We also conduct Granger causality tests to examine the information flow among the 

returns of “big” and “small” firms, since lead-lag relationships among firms of differing sizes 

documented by prior research imply additional market inefficiencies (e.g. Lo and MacKinlay 

(1990), Badrinath, Kale, and Noe (1995), and Hou (2007)).  Over the past decade, at the daily 

level, there is little evidence that the returns of the largest ETF (S&P 500 Index - SPY) lead 

                                                 
3The grand average of yearly closing bid-ask spreads for the ETFs considered in this study is 0.073 percent, but only 
0.021 percent since 2003, and even smaller in recent years. 
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those of two smaller-firm ETFs.  Further, we do not find significant Granger causality for the 

CRSP size-based portfolio returns in recent data.   

We also examine volatility spillovers in order to determine whether volatility is 

transmitted among the ETFs and CRSP size-based portfolios by estimating a modified version of 

the multivariate DCC-GARCH(1,1) model of Engle (2002).  Our modifications include 

parameters for asymmetric volatility in the specification of the conditional variance, as suggested 

by Glosten, Jagannathan, and Runkle (1993).  We also relax the assumption of normality in 

returns and utilize a Student-t distribution for the purposes of statistical inference.  We find that, 

over the most recent decade, volatility spillovers persist from large to small firm ETFs and for 

one CRSP portfolio pair.  The results are consistent with, Conrad, Gultekin, and Kaul (1991) and 

Henry and Sharma (1999), who find volatility shocks flow primarily from large firms to smaller 

ones.  Additionally, we find that asymmetric volatility and rising correlation during periods of 

market volatility remain important features of the return-generating process for ETFs as well as 

the size-based portfolios.  These volatility spillovers are confirmed by additional tests that utilize 

option implied volatilities derived from ETF option prices. 

Our contributions to the literature are threefold.  First, we conduct extensive tests of 

market efficiency: analysis of variance ratios, tests of lead-lag relationship among different firm-

size portfolios, and examination of volatility spillovers. Second, we conduct these tests using 

sized-based ETFs, which have not been examined in this context previously. Finally, by 

analyzing an extended sample period from 1962-2012, we are able to provide a perspective on 

the increases in the efficiency of U.S. stock markets over the last five decades. 
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II. Relevant Literature 
 

Fama (1970) surveys the earliest studies of autocorrelation-based tests of the random walk 

hypothesis and notes very few that reject it. Jensen (1978) notes the overwhelming evidence that 

supports the efficient markets hypothesis. However, later research indicates that some portion of 

stock returns may be predictable, especially in the case of stocks with lower market 

capitalizations.  Fama and French (1988) find negative autocorrelation in returns over 3-5 year 

periods that is indicative of a mean reverting process that is stronger for small firms than for 

large firms.  Lo and MacKinlay (1988, 1990) examine predictability using the variance ratio 

methodology and find evidence of short-term return predictability.  They also demonstrate that 

equity prices of small firms may be significantly less efficient than those for large firms.  The 

key insight of their analysis is that the variance in stock returns ought to be linear in time.  That 

is, the variance of monthly returns should be approximately four times weekly returns, and so on.  

Violations of this relationship (variance ratios significantly different from one) imply positive 

serial correlation in returns that may be utilized to predict future returns and contradict the 

random walk hypothesis. 

Following Lo and MacKinlay (1988, 1990), numerous studies utilize variance ratios to 

evaluate the random walk hypothesis for a wide variety of markets and securities.4  We note a 

few recent studies that continue to rely on the variance ratio approach to assess market 

efficiency. Hoque, Kim, and Pyun (2007) find that stock prices do not follow random walks in 

Asian emerging markets using traditional and alternative variance ratio tests.  Charles and Darné 

(2009) survey the extensive literature surrounding extensions of the Lo and MacKinlay (1988) 

variance ratio test statistics, noting potential deficiencies of the original method and subsequent 
                                                 
4 An online search for studies that reference Lo and Mackinlay (1988) results in 2,260 citations, 277 of which 
occurred since 2010, so their findings and methodology remain as relevant as ever.   



5 
 

improved statistical properties of alternative individual and multiple variance ratios.  Their own 

empirical study of the daily returns of Latin American stock indices from 1993 to 2007 rejects 

the random walk hypothesis, and the result is robust to several variance ratio tests.  Thus, in 

addition to the Lo and Mackinlay (2008) variance ratios, we employ the Wright (2000) tests 

based on ranks and rank scores.  Griffin et. al. (2010) measure variance ratios for size-based 

portfolios in developed countries, finding them to be significantly greater than one, especially for 

small firms on a weekly basis.  They also report that the variance ratios for developed markets 

are not significantly different from those of emerging markets.  O’Hara and Ye (2011) employ 

variance ratio tests to show that markets have not become inefficient due to market 

fragmentation in the U.S.  Saffi and Sigurdsson (2011) examine monthly and weekly stock 

returns to show that “hard to borrow” stocks in the U.S. experience higher variance ratios (hence 

more deviations from the random walk) than those that can easily be sold short.  Further 

research, while not explicitly using the variance ratio approach, also examines the 

autocorrelation for large and small firm portfolios.  Conrad and Kaul (1988) find that small firm 

portfolio returns are autocorrelated at higher orders to a much greater extent than are large firm 

portfolio returns, and their results are robust to nonsynchronous trading.  They also find a 

negative relation between portfolio firm size and the percent of realized price variation due to the 

variance of “expected” returns, which are estimated using an ARMA(1,1) process.  Keim and 

Stambaugh (1986) demonstrate that small-firm stock returns experience increased serial 

correlation during certain periods (especially in January) and do not follow random walks.   

Mech (1990) investigates five different potential causes of the autocorrelation of stock 

portfolios and argues that it is linked to transaction costs because price adjustment occurs more 

slowly in the presence of large bid/ask spreads.  He notes that markets may not be perfectly 
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efficient, but investors are not irrational since it is costly to exploit these opportunities.  Llorente, 

Michaely, Saar, and Wang (2002) provide an explanation for autocorrelations in returns based on 

a theoretical model of informed trading, where speculative traders provide a continuation of 

returns, while hedging activity results in price reversals.  The minimal bid-ask spreads of ETFs 

based on major market indices attract both speculators and hedgers.  We therefore investigate the 

autocorrelation characteristics of these securities. 

Badrinath, Kale, Noe (1995) present evidence that “the prices of large-firm stocks convey 

information regarding the prospects of smaller-firm stocks,” since some firms are “institutionally 

favored,” while others are not.  Similarly, Hou (2007) provides evidence that smaller firms 

(especially in smaller, less favored industries) experience greater lead-lag effects in returns as 

compared to larger firms due to sluggish reactions to negative news.  Recently, Chordia, Sarkar, 

and Subrahmanyam (2011) present a theoretical model where lagged large stock returns transmit 

information to small stocks.  They provide empirical analysis of size-based CRSP deciles that 

supports this hypothesis. 

Boudoukh, Richardson, and Whitelaw (1994) argue that prior research (including Lo and 

MacKinlay, 1988 and 1990) may have underestimated the extent of autocorrelation in returns 

induced by nontrading.  They estimate “implied” cross-serial correlations that are computed as 

the product of two portfolios’ correlations and the first-order autocorrelation of each of the 

portfolios.  These “implied” cross-serial correlations track actual estimates very closely, leading 

to the conclusion that “even in a world in which large-firm returns have no information beyond 

that contained in small firms, there can be large amounts of lagged cross-predictability.”  They 

provide empirical support for this assertion in a study of futures contracts on small and large 

stock indices, finding no evidence of serial correlation in weekly futures returns. 
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Conrad, Gultekin, and Kaul (1991) analyze transmission of volatility across size-based 

portfolios and that volatility shocks flow primarily from large firms to small ones.  Henry and 

Sharma (1999) study Australian stock returns to reach similar conclusions. We are interested in 

examining whether volatility spillovers across the sized-based ETFs conform to this pattern. 

 

III. Data Description 

The data for this study includes daily and weekly total returns for three ETFs from Bloomberg 

Professional ®.  We collect daily returns (including dividends) based on the 4:00PM ET closing 

print for funds that track the Russell 2000 Small Cap Index (IWM), the S&P 400 Mid Cap Index 

(MDY), and the S&P 500 Index ETF (SPY).  The ETF sample includes return data from the 

inception of trading in IWM (May 26, 2000) to September 26, 2012.  The daily return data for 

the ETFs is converted to weekly returns, as in Lo and MacKinlay (1988) and consistent with 

prior research, on a Wednesday to Wednesday basis.  Weekly summary statistics for the ETFs 

are presented in Panel A of Table 1.  We also obtain return data for the three CRSP portfolio 

Quintiles (Q1, Q3, and Q5) sorted on market capitalization from the website of Dr. Kenneth 

French  (the portfolios are rebalanced annually in June of each year).  The correlation matrix in 

Panel B includes correlations with the three ETFs and their “corresponding” CRSP portfolios.  

Based on these correlations, the ETFs generally represent reasonable proxies for the size-based 

portfolios.5  As above, the daily CRSP data is converted to weekly observations, beginning on 

September 6, 1962 and ending on September 26, 2012 for a total of 2,612 weekly observations.  

The average number of stocks in each weekly observation is 5,744, while the median is 6,291, 

and ranges from a low of 2,037 in November 1963 to a high of 9,149 during the internet bubble 
                                                 
5 Although the small cap Russell ETF (IWC) is correlated with the smallest CRSP portfolio at a slightly higher level 
than IWM (0.95 vs 0.93), data for this ETF is available only since its inception in August 2005. We use IWM rather 
than IWC since it has a longer time-series available. IWC is highly correlated with IWM and yields similar results. 
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in November of 1997.  The final weekly sample contains 5,643 firms. 

The earliest portion of this sample (from September 6, 1962 to December 12, 1972) is 

virtually identical to that of Lo and MacKinlay (1988).  Lo and MacKinlay utilize only data from 

NYSE/AMEX firms, reporting the number of stocks in their sample between 2,036 and 2,720.  

Our sample contains NASDAQ firms beginning in December 1972.  Remarkably, despite a 

doubling of the number of firms due to the inclusion of NASDAQ stocks, the variance ratio tests 

below confirm that the sample is qualitatively very similar to that of Lo and MacKinlay in terms 

of autocorrelation.   Summary statistics for the weekly CRSP portfolio returns are provided in 

Panel A of Table 2, while correlation matrices are contained in Panel B.  The portfolio mean 

returns decline monotonically with size for the whole sample, although standard deviations do 

not.  This observation of a potentially negative relation between risk and return has been noted 

previously, but it is not the focus of the current study.6  There are also substantial deviations in 

portfolio returns among the sub-periods.  The correlation matrices in Panel B demonstrate the 

increasing correlations among portfolios across time, as noted by Wurgler (2010). The 

correlations for May 2000 to September 2012 are uniformly higher than those of the entire 

sample, which may be the result of the continuing trend towards “passive” index investing and 

the“benchmarking” of portfolio managers.   

In order to examine the volatility dynamics and arbitrage relationships among the ETFs 

and related derivative instruments, we also analyze daily options implied volatility data.  We 

obtain average call and put implied volatility estimates (for “at the money” options) for constant 

thirty day maturity options for each of the ETFs from Bloomberg Professional®. The data is 

                                                 
6 For evidence of this phenomenon, see Goyal and Santa-Clara (2003), Haugen (2010), and Hibbert, Daigler, and 
Duoiyet (2008). 
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available from January 10, 2005 to September 26, 2012. We truncate the at the one percent level 

at each extreme to remove the effects of outliers.    

 

IV. Variance Ratio Tests 

Weekly Variance Ratios 

Following Lo and MacKinlay (1988), we estimate weekly variance ratios in the presence 

of heteroskedasticity.  Table 3 presents the results for the ETF sample and contains variance 

ratios for the three ETFs under study: the Russell 2000 Index (IWM), the S&P 400 MidCap 

Index (MDY), and the S&P 500 Index (SPY).  During the period from 2000 to 2012, the random 

walk hypothesis cannot be rejected for these securities since there is no evidence of positive 

autocorrelation for any of the ETFs over any (q) weekly timeframe. Although Lo and MacKinlay 

(1988, 1990) posit that their results are robust to the non-synchronous trading problem, 

Boudoukh, Richardson, and Whitelaw (1994) question this assertion by examining the 

theoretical model of non-trading that is used.  They demonstrate that, when accounting for 

heterogeneity in portfolios, spurious autocorrelations may be present that are “two to three times 

higher than previously believed.”  They also show that returns on highly liquid futures contracts 

are not autocorrelated.  Similarly, our finding that the variance ratios of ETFs are not 

significantly different from one provides evidence that even if this problem was underestimated 

in prior studies, it is no longer present.  This supposition is supported by the fact that all of the 

ETFs currently trade hundreds of millions of shares per day, and bid-ask spreads consistently 

amount to a penny or less in recent years. 

We also examine variance ratios for three size-based CRSP quintiles over the years from 

1962 to 2012, and the results are contained in Table 4.  Panel A contains the results for the early 
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sample of Lo and Mackinlay (1962 to 1985).  In spite of the doubling of the database to include 

the NASDAQ firms, the variance ratios and z*(q) (heteroskedasticity consistent) test statistics 

contained there are almost identical to those obtained in Table 2 of Lo and MacKinlay (1988, p. 

54).  As in their study, there is significant evidence of positive autocorrelation in returns 

(variance ratios greater than one) for all three of the portfolios.  The minor differences are likely 

due to the expansion of the sample to include NASDAQ firms.  For example, the variance ratio 

of 1.38 in the first line of Table 3 implies that the first-order autocorrelation in weekly returns is 

38 percent (the corresponding figure was 1.42 in Panel A of Table 2 of Lo and MacKinlay 

(1988)).  It is clear that the variance ratios are inversely related to firm size and that the 

magnitude of the variance ratios increases with the number of (q) weekly base observations that 

are aggregated to form the variance ratios.  These results imply positive autocorrelations in 

weekly portfolio returns, which differ from those of Fama and French (1987), who find negative 

serial correlation over 3 to 5 year timeframes from 1926 to 1985.   

 However, the results change dramatically for the portfolios over the more recent period 

from 1986 to 2000 in Panel B.  For each of the larger portfolios (Q3 and Q5), both the variance 

ratios and test statistics decline demonstrably.  The q(2) variance ratio of the largest portfolio 

declines from 1.09 to 0.99,  and the ratio of the central portfolio declines from 1.25 to 1.13.  The 

variance ratios for the smallest portfolio do not change significantly, but the z-statistics are all 

significantly lower.  These declines represents a continuation of the trend noted by Lo and 

MacKinlay (1988), as their results are weaker for the second half of their sample period than for 

the first half.  For instance, the variance ratios for the two week base observation periods in Lo 

and MacKinlay (1988) decline for the largest (central) portfolios from 1.21 to 1.09 (1.30 to 1.27), 

a trend that continues in our results.  
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This phenomenon continues to exhibit itself in the results for the most recent period 

(2000-2012) that are contained in Panel C of Table 4.  Positive autocorrelations among portfolios 

are even smaller in recent years, although they are still significant for the smallest portfolio.  This 

result reflects the continued downward trend of variance ratios (and increased market efficiency) 

over time.  The significant z*(q) statistics for Quintile 1 (Q1) indicate that information continues 

to be impounded into smaller stock prices over extended timeframes, but the magnitudes of the 

variance ratios are smaller than those in earlier periods.  The ratio for the largest (central) 

portfolio over the two week base observation period declines from 0.99 to 0.94 (1.17 to 1.05) in 

the 1986 – 2000 period, and the variance ratio for the smallest portfolio declines from 1.38 to 

1.17. 

Griffin, Kelly, and Nardari (2010) find that variance ratios in developed markets have not 

changed substantially over the years spanning 1994 to 2005, and that these ratios do not differ 

significantly from those in emerging markets.  Hoque, Kim, and Pyun (2007) find similar results 

for Asian emerging markets using traditional and alternative variance ratio tests for weekly stock 

prices from 1990 to 2004.  The present study, however, utilizes data solely from the U.S., where 

the evidence confirms greater market efficiency.  The reason our results differ from these studies 

is most likely because of the generally lower market capitalizations in both other developed 

markets and those in emerging markets (variance ratios are inversely related to firm size).  Also, 

our results using highly liquid ETF data strongly indicate market efficiency.  These data are 

immune to any potential problems form non-synchronous trading and/or the “bid/ask bounce,” as 

spreads in these securities are minimal. 

Lo and MacKinlay (1988) also conduct their analysis using value-weighted portfolios, 

and note that the results are generally weaker.  This result reinforces the importance of firm size 
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in measurements of serial correlation.  In unreported results, we have conducted the same tests 

over their sample period to confirm that result and then extend the sample to 2012.  As in their 

study, the results are uniformly weaker for the value-weighted portfolios than those for equal-

weighted portfolios. 

 

Daily Variance Ratios 

In light of the evidence of increased in market efficiency demonstrated in the prior section, we 

examine autocorrelation in stock returns using daily data for the most recent time period under 

study (2000 – 2012).  Previous research has examined variance ratios using weekly returns rather 

than daily returns because of the potential positive serial correlation induced by asynchronous 

prices for individual securities in a portfolio. However, since ETFs are directly traded as a single 

instrument in contrast to CRSP portfolios, the observed ETF prices closely reflect the value of 

each of the underlying securities at that point in time. Another reason for using weekly rather 

than daily returns is to minimize the effect of the bid-ask bounce which can create spurious 

negative serial correlation of returns. ETFs are highly liquid instruments with negligible bid-ask 

spreads. Hence, the bid-ask bounce should be of minimal concern for these securities. In the 

recent decade, bid-ask concerns are potentially considerably reduced even for individual stocks 

given the sharp reductions in bid-ask spreads following price decimalization. For instance, 

Chung and Zhang (2013) report a mean (median) effective bid-ask spread of 0.85 (0.35) percent 

in 2007 for NASDAQ firms compared to a mean (median) of 3.19 (2.20) percent in 1999. Given 

this substantial reduction in bid-ask spreads7, it is useful to compare the variance ratios for the 

size-based ETFs and CRSP portfolios using daily returns during the recent time period. 

                                                 
7 The figures are even lower for NYSE/AMEX firms. The  mean (median) effective bid-ask spread for these stocks 
is 0.76 (0..34) percent in 2007 for these firms compared to a mean (median) of 1.64 (0.94) percent in 1999 
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In addition to the Lo and MacKinlay (1988) variance ratio tests, we implement the 

Wright (2000) variance ratios based on ranks and signs.  Wright (2000) demonstrates that these 

tests do not rely on the assumption of asymptotic normality when calculating probabilities.  Thus 

they may be more powerful that standard variance ratios in the presence of nonnormal data.  We 

utilize base observation periods of two, five, ten, and twenty days, and the results of this analysis 

are contained in Table 5.   

 For the smallest CRSP portfolio (the results in the right half of Table 5), the daily 

variance ratio tests confirm the weekly results of positive autocorrelation for all three of the tests 

over this timeframe.  The variance ratio levels are generally similar for all of the tests, although 

the test statistics are significantly higher for the Wright (2000) tests, a potentially more powerful 

result.  The positive autocorrelations for the smallest CRSP portfolio may be due to 

asynchronous trading, however.  For the largest portfolio, there is some evidence of significant 

negative serial correlation over the 10-day observation period.  The Variance Ratio for Q5 is 

0.87 for the Lo and MacKinlay (1988) variance ratio and 0.86 for the Wright (2000) Rank Scores 

test, and both are significant at the five percent level.  The negative z-statistics are even more 

prominent in the results for the ETFs, where the Lo and MacKinlay variance ratios are 

significantly less than one SPY in three out of four cases.  The results for the Wright (2000) rank 

and rank scores tests show significant negative serial correlation for MDY as well, and the 

results for IWM indicate the same result in all but one of the variance ratio tests.  The negative 

serial correlation observed in Table 5 is consistent with the short-term reversal effect of 

Jegadeesh and Titman (1995), who find short-term return reversals over three- to ten-day 

periods.  These results are also consistent with inventory-based market microstructure models, as 

it may take several days for market makers to adjust their holdings following liquidity shocks.  
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Additionally, the presence of high levels of arbitrage activity in these securities may contribute 

to the return reversal process (see Ben-David, Franzoni, and Moussawi (2012)).  The returns of 

SPY, for instance, are linked to trading in e-Mini futures, options on SPY and the S&P 500 cash 

index, as well as to futures options.  A liquidity shock to any of these markets will eventually 

flow through to all of the related instruments, and this process may evolve over a longer than 

intra-day timeframe.   

The finding of negative serial correlation might suggest the presence of a bid/ask bounce. 

However, as noted earlier, the bid/ask spreads for the ETFs are quite small.  As a robustness 

check, we calculate ETF variance ratios using the midpoint of closing bid and ask quotes, and 

find qualitatively similar results as shown in Table 6.  Thus, we conclude that the negative serial 

correlation in the ETF data is not induced by the bid-ask bounce.   

We also compute variance ratios using value-weighted rather than equal-weighted CRSP 

portfolios and report these results in the right half of Table 6.  The Lo and Mackinlay (1988) 

variance ratios indicating positive autocorrelation for the smallest CRSP portfolio (Q1) are no 

longer significantly different from one, indicating that the prior results may have been driven by 

non-synchronous trading in smaller firms.  However, the potentially more powerful Wright 

(2000) ranks test still yields significant z-statistics. For the largest CRSP quintile, there is 

evidence of negative serial correlation for all of the variance ratio tests, as observed in the ETF 

data.   

 

V.  Granger Causality Tests 

The results of the previous section demonstrate that positive autocorrelations in weekly returns 

among size-based portfolios have declined significantly over the past twenty-five years, 



15 
 

especially for larger firms.  Lo and MacKinlay (1990) analyze lead-lag return predictability 

between size-based portfolios of large and small firms.  They find that cross-autocorrelations 

from lags of large firm returns to contemporaneous small firm returns are large, but those in the 

reverse direction are comparatively small.  Table 7 presents a parallel analysis for our data set, 

and the general pattern found by Lo and MacKinlay (1990) remains intact.  Panel A presents the 

results for the ETFs and is consistent with the significant but small negative serial correlation 

documented in the previous section.  For the CRSP quintiles, the magnitudes of the cross-

autocorrelations (in Panels B, C, and D) are slightly higher than those in Lo and MacKinlay 

(1990), most likely due to the inclusion of NASDAQ firms in our sample and either an increase 

in market efficiency or a decrease in non-synchronous trading issues.  The figures below the 

diagonal are generally larger than those above, demonstrating that information from lagged 

returns flows in general from larger to smaller firms.  In the periods subsequent to the Lo and 

Mackinlay (1988, 1990) studies (results in Panels B and C), the cross-autocorrelations continue 

to decline monotonically; they are smallest (and even negative for two of the portfolios) in the 

most recent sample.  Fargher and Weigand (1998) also observe a similar decrease in the cross-

autocorrelations.   

In order to further examine the lead-lag relationship between large and small firm ETFs 

and portfolios, we model each portfolio’s returns as a function of both own- and cross- lagged 

returns.  We estimate the daily Granger-causality relationship in returns among the ETFs and the 

three portfolio quintiles through a vector autoregressive (VAR) model using five lags (to capture 

one week of return information), specified as follows: 

ܧܴ ௜ܶ,௧ ൌ ܽ௜ ൅ ෍ 	
௝ୀଵ,ଷ,ହ

෍ܾ௜,௝,௦ܴܧ ௝ܶ	,௧ି௦ ൅

ହ

௦ୀଵ

݅				,	௜,௧ߝ ൌ 1,3,5																																																																	ሺ1ሻ 
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where the five return lags (s) represent prior one through five day returns.  The coefficients ܾ௜,௝,௦ 

represent the lagged own- and cross- return relationships for each of the three portfolios (i,j = 1, 

3, and 5) and exchange traded funds (i,j = 1 for IWM, 3 for MDY, 5 for SPY).  The VAR model 

is estimated using ordinary least squares with heteroskedasticity and autocorrelation consistent 

(Newey-West) standard errors.  In order to test the significance of the lead-lag relationships, two 

restriction tests are employed on the coefficients, bi,j,s  for each possible pair of i and j as follows: 

 
Ho,1 : bi,j,s  = 0 for all s = 1 to 5, and 
 
Ho,2 : Σbi,j,s = 0. 
 
 
The first null hypothesis tests that all of the coefficients on lagged returns are jointly equal to 

zero. The second null hypothesis tests that the sum of all the coefficients on lagged returns is 

equal to zero.  We will refer to these tests as the “joint” and “sum” tests, respectively.  The size 

of the sum of the coefficients in the sum test provides some indication of the economic 

significance of the Granger causality. 

We estimate the daily Granger causality relationships among the three size-based ETFs, 

and the results of these estimations are contained in Panel A of Table 8.  We are able to analyze 

daily data since the potential for asynchronous trading problems is much lower in the era of 

decimalization and vastly increased trading volume.  The results indicate a clear absence of lead-

lag relationships in these highly liquid securities.  None of the coefficient restriction tests can be 

rejected at any of the traditional levels of statistical significance.  These results, which are 

immune to potential non-synchronous trading issues and the bid/ask bounce, strongly indicate 

that the random walk hypothesis cannot be rejected.   
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Parallel results for the CRSP portfolios are presented in Panel B, and once again there is 

no evidence of a lead-lag relationship among big and small firms.  In contrast, Chordia, Sarkar, 

and Subrahmanyam (2011) document significant “big to small” lagged return transmission from 

1986 to 2007, at least for the biggest and smallest CRSP deciles.  But our results are obtained 

using only post-2000 data, so the results are not inconsistent.  In unreported results, we do find 

evidence of “big to small” Granger causality for CRSP portfolios from 1985 to 2000.  In sum, 

these results provide a parallel analysis to that of the variance ratios conducted in Section IV.  

While there may have been statistically and economically observable market inefficiencies 

regarding size-based portfolio in prior decades, these potential profit opportunities have all but 

disappeared.  The results once again suggest that the cross-autocorrelations documented by Lo 

and MacKinlay (1990) have attenuated over time.   

 

VI. Volatility Spillover Analysis 

The Multivariate DCC-GARCH(1,1) Model  

In addition to our examination of the market efficiency of returns, we are also interested in the 

relationships among size-based portfolio and ETF return volatilities given the concerns that 

trading in ETFs may induce market volatility.  Conrad, Gutelkin, and Kaul (1991) find that 

innovations to the volatilities of large firms predict future return own- volatility and that of 

smaller firms, while volatility does not “spill over” in the opposite direction.  In order to examine 

these relationships in more recent time periods, we estimate a modified version of the 

multivariate DCC-GARCH(1,1) model of Engle (2002) for the three ETFs as well as the equal-

weighted CRSP portfolios representing the first, third, and fifth quintiles of market 

capitalization.  The analysis is conducted for the most recent sample, from 2000 to 2012, when 
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the ETF data is available.  The mean equations are based on the vector autoregressions estimated 

in Equation (1), using daily data with five lags (to account for one week of return information).   

 The multivariate conditional variance system of these estimations is represented as 

follows: 

࢚ࢿ ൌ ൭
ଵ,௧ߝ
ଷ,௧ߝ
ହ,௧ߝ

൱ |ષ௧ିଵ~ܵݐ݊݁݀ݑݐ െ ,࢚ࡴ,ሺ0ݐ ࢚ࡴ						,ሻߥ ൌ ,	࢚ࡰ࢚ࡾ࢚ࡰ	   ሺ2ሻ																																																												݁ݎ݄݁ݓ

 is a three-by-three diagonal matrix of time-varying standard deviations from univariate ࢚ࡰ

GARCH models, ࢚ࡾ is the three-by-three time-varying correlation matrix, and ષ௧ିଵ represents 

the information set available at time t – 1. The conditional variance matrices are calculated using 

the following equations: 

࢚,࢐࢏ࡴ ൌ ࢚,࢐࢏ࡽ
ඥ࢐࢐ࡴ࢚.࢏࢏ࡴ,࢚

ඥ࢐࢐ࡽ࢚,࢏࢏ࡽ,࢚
൘  ሺ3ሻ																																																																																																														݁ݎ݄݁ݓ							,

࢚,࢏࢏ࡴ ൌ ܿ௜௜ ൅෍ܽ௜௝ݑ௝,௧ିଵ
ଶ

ଷ

௝ୀଵ

൅ ܾ௜࢏࢏ࡴ,࢚ି૚ ൅ ݀௜ݑ௜,௧ିଵ
ଶ  ሺ4ሻ																																																										ܽ݊݀			௜,௧ିଵ൯,ݑழ଴൫࢏࢛ࡵ

࢚ࡽ ൌ ሺ1 െ ௜ߙ െ ૙ࡽ௜ሻߚ ൅ ௜,௧ିଵݑ௜,௧ିଵݑ௜ߙ
ᇱ ൅  ሺ5ሻ																																																																																				ܽ݊݀			,	૚ି࢚ࡽ௜ߚ

 ૙ is the unconditional correlation matrix.  The conditional variance Equation (4) contains aࡽ

constant term  ܿ௜, a volatility spillover term ܽ௜௝  , a GARCH term ܾ௜, as well as a dummy variable 

term ሺ݀௜ሻ for asymmetric volatility as suggested by Glosten, Jagannathan, and Runkle (1993, 

hereafter GJR).  The evolution of conditional correlation is described by the dynamic conditional 

correlation (DCC) Equation (5), which contains parameters ߙ௜  and ߚ௜ that represent the 

relationship between conditional correlation and lagged volatility and a decay factor, 

respectively.  The main purpose of this equation is to provide the correlation matrices necessary 

for Equation (3).  As long as the sum of ߙ௜  and ߚ௜  is less than one, conditional correlation will 

evolve as a mean-reverting process since the sum of these terms reflect the persistence of high 
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conditional correlation.   

We estimate the parameters of Equations (3) through (5) simultaneously using the log-

likelihood function for the Student-t distribution, that is derived by Orskaug (2009): 

ln൫ܮሺߠሻ൯ ൌ෍ቆ݈݊ ൤Γ ൬
ߥ ൅ ݊
2

൰൨ െ ݈݊ ቂΓ ቀ
ߥ
2
ቁቃ െ

݊
2
݈݊ሾߨሺߥ െ 2ሻሿ െ

1
2
݈݊ሾ|࢚ࡰ࢚ࡾ࢚ࡰ|ሿ

்

௧ୀଵ

െ
ݒ ൅ ݊
2

݈݊ ቈ1 ൅
࢚ࡰࢀ࢚ࢇ

ି૚ି࢚ࡾ૚࢚ࡰ
ି૚࢚ࢇ

ݒ െ 2
቉ቇ , ࢚ࢇ	݁ݎ݄݁ݓ ൌ ࢚ࡴ

૚/૛ݑ௧																											ሺ6ሻ 

The parameter vector ߠ in this case is composed of two groups of coefficients, one for the 

univariate GARCH models and another for the parameters estimated in the dynamic conditional 

correlation Equation (5).  The Student-t parameter for shape (ߥ) and the number of assets (݊) are 

also included in the function.  One significant advantage of this estimation procedure is that 

coefficients representing asymmetric volatility (݀௜) are modeled explicitly, so that we can 

examine the effects of negative returns on volatility.  In the GJR framework, positive coefficients 

for ݀௜ reflect higher volatility in the presence of negative returns.  Additionally, we can examine 

the volatility transmission process across portfolios and ETF securities by testing the significance 

of the volatility spillover coefficients ܽ௜௝.  The coefficients ܽ௜௝  (where i <  j) are of particular 

interest since they indicate volatility spillover from the portfolio of larger firms (ETFs) j to the 

portfolio of smaller firms (ETFs) i.  While the other parameters are informative in their own 

right, their main purpose is to obtain better estimates of the spillover coefficients. 

The results for the ETFs are presented on the left side of Table 9.  Volatility spillovers are 

positive and significant for SPY to MDY (ܽଷହ 	ൌ 	0.044, 	ݐ ൌ 	3.831).  Similarly, the spillover 

from MDY to IWM (ܽଵଷ ൌ 0.061, ݐ ൌ 2.266ሻ is also significant, and both of these results are 

consistent with the “large to small” volatility spillover effect.  Own-volatility spillovers are 

positive and statistically significant for SPY.  All of the GARCH terms (ܾ௜) are large (> 0.90) 
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and highly significant, and the asymmetric volatility terms (݀௜) are positive, significant, and 

increase monotonically with portfolio size.  Thus larger firm portfolios are subject to stronger 

spikes in volatility given negative returns (the asymmetric volatility effect).  The parameter α is 

positive and significant, indicating that correlations increase when volatility is higher, while the 

sum of α and β is less than one, which is evidence that conditional correlation is mean-reverting.  

One anomalous result of this estimation is the negative and significant volatility spillover 

coefficient from IWM to SPY.  Although the coefficient is relatively small (-0.024), negative 

volatility spillovers are not theoretically possible given the usual assumption that all model 

parameters are non-negative in the DCC-GARCH specification.  However, Conrad and 

Karanasos (2010) show that “the positive definiteness of the conditional covariance matrix can 

be guaranteed even if some of the parameters are negative” for time-varying conditional 

correlation models.  We cannot provide an economic rationale for the negative coefficient, but 

instead view it as a statistical artifact. 

The results of the estimations for the size-based CRSP portfolios are contained in the 

right side of Table 9.  The coefficient for volatility spillover from portfolio five to portfolio three 

is positive and significant (ܽଷହ 	ൌ 	0.060, 	ݐ ൌ 	2.016), indicating the transmission of volatility 

information from the larger portfolio to the smaller one.  The coefficients for asymmetric 

volatility (݀௜) once again increase with the market capitalizations of the stocks included in the 

portfolios, and the values of the α and β coefficients are similar to those for the ETFs.  There are 

no significant spillovers from either of the larger stock portfolios (Q3 and Q5) to the smallest 

stock portfolio (Q1).  The weaker spillover results may reflect the fact that informed investors 

may choose to impound their information regarding macroeconomic events or stock market 

movements by taking positions in the highly liquid ETFs.  In addition to their popularity and 
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liquidity, these securities are not subject to the “uptick” rule, providing an additional reason they 

may be utilized as instruments for informed and/or liquidity traders.  The results of prior sections 

of this paper point to increased efficiency in the return generating process.  But even though 

information regarding returns has become more efficiently impounded into stock prices over the 

past twenty-five years, volatility spillovers remain persistent and are impounded at longer than 

intraday horizons.  ETFs are easily traded on multiple trading venues in one transaction, as 

opposed to the multiple and significant number of transactions necessary to replicate trading in 

the CRSP portfolios.  Market-wide common information (or informed trading) may be more 

readily reflected in in these highly liquid single transaction securities, and there is theoretical and 

empirical evidence that trading activity itself may induce stock volatility.8  The issue of potential 

market volatility induced by ETF trading remains a potentially serious concern, as noted by 

Bradley and Litan (2010) Chordia, Sarkar, and Subrahmanyam (2011), and the CFTC-SEC Joint 

Reports (2010a, 2010b). 

 

Implied Volatility Spillovers 

In order to further explore the volatility dynamics and arbitrage relationships among the ETFs 

and related derivative instruments, we analyze daily options implied volatility data.  As noted in 

Section III, we obtain at the money implied volatility estimates for constant thirty day maturity 

options for each of the ETFs from Bloomberg Professional®.  .  The data are truncated at the one 

percent level at each extreme to remove the effects of outliers (n = 1,932).  Sample statistics for 

this data are provided in Table 10.  We seek to determine whether there are spillovers of implied 

volatility among the ETFs, so we conduct Granger causality tests as in Equation (1), but 

                                                 
8 See, for example, Avramov, Chordia, and Goyal (2006), French and Roll (1986), Haugen (2010), and Malinova 
and Park (2011). 
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substitute estimates of implied variance in place of the return data.  Implied variance is obtained 

simply by squaring our estimates of implied volatility (that are expressed in annual standard 

deviations). 

The results of these tests are contained in Table 11, and are quite similar to the results 

obtained using the DCC-GARCH(1,1) estimation.  Own-spillovers (the coefficients bi,j,s where i 

= j) are strong and significant for all of the joint and sum tests, reflecting the persistence of 

implied volatility over short periods of time.  There are also positive and significant spillovers 

from SPY to both IWM and MDY for the joint test.  The results are economically significant 

when comparing the levels of the sums of the coefficients.  The sum of the spillover coefficients 

from SPY to IWM is 0.22, which is 28 percent of the sum of own-spillovers (0.78), and this sum 

is statistically significant at the five percent level.  Moreover, the sum of spillovers from SPY to 

MDY (0.27) reflects 35 percent of MDY own-spillovers (0.78), and this result is statistically 

significant at the five percent level.  According to the sum test, there is no significant spillover 

from either IWM or MDY to SPY.  The volatility of SPY is essentially described by its own past 

values. 

 Overall, these results support the earlier finding of positive volatility spillovers from 

large stock ETFs to smaller ones, and highlight the interrelated nature of these derivative 

securities.  There is active and significant arbitrage activity among the ETFs and their related 

derivative securities, and volatility spillover information is transmitted not just through ETFs 

themselves, but also in the options market.  

 

VII.  Conclusion 

We examine the market efficiency of ETFs and size-based portfolios and find that U.S. equity 

markets have become significantly more efficient over the past fifty years, especially in the last 
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decade.  We confirm the early results of Lo and MacKinlay (1988, 1990) regarding return 

autocorrelation of large vs. small firm returns, but demonstrate through similar and additional 

methodologies that these anomalies are currently much less pronounced, if they exist at all.  For 

three high volume, extremely liquid ETFs, there is no positive serial correlation in returns on a 

daily basis as measured by variance ratios.  In fact, there is evidence of negative serial 

correlation, consistent with the short-term reversal effect of Jegadeesh and Titman (1995).  

Positive cross- and own-autocorrelation in size-based portfolio returns has been greatly reduced 

over the past twenty-five years, and prior evidence of this phenomenon may have been induced 

by asynchronous trading in small stocks.  Lead-lag effects between large and small firm 

portfolios have all but disappeared.  We observe negative serial correlation in ETF daily returns 

during the most recent sample period. However, this phenomenon cannot be attributed to a bid-

ask bounce, since we obtain similar results using the midpoint of closing bid and ask quotes.  

Volatility continues to “spill over” from large firm portfolios to smaller ones over the 

past decade, and the volatility spillovers are even more pronounced for size-based ETFs.  The 

observation that negative return shocks lead to higher volatility than do positive return shocks 

(asymmetric volatility) remains valid, both for portfolios and ETFs of all sizes, and correlations 

continue to increase during periods of higher volatility.  Additionally, volatility spillovers are 

significant in ETF options markets since implied volatility information is transmitted from SPY 

to each of the smaller ETFs on a lead-lag basis.  The implications of these results are relevant to 

market practitioners, regulators, and policy makers.  Increased market efficiency may be related 

to the highly efficient institutional structure of U.S. equity markets, although the possibility of 

potentially destabilizing effects surrounding ETF trading warrants further consideration and 

study. 
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Table 1.  Summary Statistics and Correlation Matrix for Weekly ETF Returns. 
 

Jun 1, 2000 – Sep 26, 2012, n = 638 
 

Panel A:  Sample Statistics . 
ETF Mean Std Dev Skew. Kurt. 
IWM 0.111 1.298 -0.809 4.260 
MDY 0.131 1.188 -0.974 5.399 
SPY 0.036 1.025 -0.803 5.395 

 
 
 

                 Panel B:  Correlation Matrix for ETFs and CRSP Quintiles. 
  IWM MDY SPY Q1 Q3 Q5 

IWM 1.000 
MDY 0.963 1.000
SPY 0.917 0.951 1.000
Q1 0.871 0.825 0.799 1.000
Q3 0.959 0.954 0.928 0.919 1.000 
Q5 0.910 0.947 0.971 0.904 0.984 1.000 

 
Panel A contains sample statistics for weekly returns for three size-based ETFs 
that track the Russell 2000 Small Cap Index (IWM), the S&P 400 MidCap 
Index (MDY), and the S&P 500 Index (SPY), obtained from Bloomberg 
Professional®.  Daily data for the 4:00PM ET closing price is converted to 
weekly returns on a Wednesday to Wednesday basis.  Panel B contains 
correlation coefficients for the returns of the ETFs and three size-based CRSP 
portfolios, computed in the identical manner.  The CRSP portfolio data is 
obtained from the website of Dr. Kenneth French. 
 

 
 
 

  



29 
 

Table 2.  Summary Statistics and Correlation Matrices for Weekly Returns of CRSP portfolio Size 
Quintiles. 
 
Panel A:  Sample Statistics Panel B:  Correlation Matrices 

Sep 6, 1962 -Sep 26, 2012, n = 2,612 Sep 6, 1962 -Sep 26, 2012, n = 2,612 
Quintile Mean Std Dev Skew. Kurt. Quintile Q1 Q3 Q5
Q1 0.443 2.280 -0.676 9.524 Q1 1.000 
Q3 0.242 2.626 -0.762 9.756 Q3 0.911 1.000
Q5 0.231 2.543 -0.746 9.350 Q5 0.870 0.979 1.000

Sep 6, 1962 - Dec 26, 1985, n = 1,216 Sep 6, 1962 - Dec 26, 1985, n = 1,216 
Quintile Mean Std Dev Skew. Kurt. Quintile Q1 Q3 Q5
Q1 0.365 2.220 -0.026 5.618 Q1 1.000 
Q3 0.281 2.230 -0.145 4.458 Q3 0.937 1.000
Q5 0.254 2.114 -0.154 4.239 Q5 0.896 0.980 1.000

Jan 1, 1986 – May 31, 2000 n = 753 Jan 1, 1986 – May 31, 2000 n = 753 

Quintile Mean Std Dev Skew. Kurt. Quintile Q1 Q3 Q5
Q1 0.635 2.053 -1.513 17.423 Q1 1.000 
Q3 0.239 2.483 -1.378 14.244 Q3 0.889 1.000
Q5 0.242 2.566 -1.198 12.284 Q5 0.824 0.973 1.000

Jun 1, 2000 – Sep 26, 2012, n = 638 Jun 1, 2000 – Sep 26, 2012, n = 638 
Quintile Mean Std Dev Skew. Kurt. Quintile Q1 Q3 Q5
Q1 0.344 2.653 -0.851 8.924 Q1 1.000 
Q3 0.164 3.444 -0.671 7.682 Q3 0.919 1.000
Q5 0.166 3.231 -0.674 7.600 Q5 0.904 0.984 1.000

 
This table contains descriptive statistics for weekly percentage returns on three size-based CRSP 
portfolios, obtained from the website of Dr. Kenneth French.  The quintiles are constructed using market 
capitalization as of June each year using NYSE breakpoints.  Daily return data for 
NYSE/AMEX/NASDAQ firms is converted to weekly returns on a Wednesday to Wednesday basis. 
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Table 3.  Weekly Variance Ratios and Tests Statistics of Exchange 
Traded Funds. 
 
Jun 1, 2000 – Sep 26, 2012, n = 638 
q        VR           z-stat                VR        z-stat                VR         z-stat 
2 0.94 (-1.05) 0.94 (-0.86) 0.94 (-0.95) 
4 0.95 (-0.52) 0.94 (-0.51) 0.90 (-0.88) 
8 0.97 (-0.21) 0.98 (-0.10) 0.95 (-0.31) 

16 0.95 (-0.22)   1.00 (-0.02)   0.98 (-0.09)   

 
This table contains variance ratios and heteroskedasticity robust test 
statistics (in parentheses) for the three ETFs under study.  Variance 
ratios (VR) greater than one imply serial correlation and hence 
predictability. Numbers in parentheses are heteroskedasticity-
consistent z-statistics for tests examining whether the variance ratios 
equal one.  q is the number of weekly observations aggregated to form 
the variance ratios.  ***Significant at the 1% level, **Significant at 
the 5% level. 
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Table 4.  Weekly Variance Ratios and Test Statistics of CRSP 
Portfolios. 
 
Panel A:  Sep 6, 1962 - Dec 26, 1985, n = 1,216 
  Q1 Q3 Q5   
q VR z-stat   VR z-stat   VR z-stat   
2 1.38 (8.85) *** 1.25 (6.65) *** 1.09 (2.57) *** 
4 1.87 (11.26) *** 1.52 (7.55) *** 1.18 (2.66) *** 
8 2.38 (11.82) *** 1.74 (6.98) *** 1.24 (2.25) ** 

16 2.68 (10.24) *** 1.82 (5.37) *** 1.22 (1.36)   

Panel B:  Jan 1, 1986 – May 31, 2000 n = 753 
2 1.38 (3.21) *** 1.13 (1.24) 0.99 (-0.11) 
4 1.82 (4.30) *** 1.17 (1.02) 0.97 (-0.28) 
8 2.42 (5.89) *** 1.27 (1.22) 0.94 (-0.37) 

16 2.76 (5.93) *** 1.26 (0.95)   0.89 (-0.51)   

Panel C:  Jun 1, 2000 – Sep 26, 2012, n = 638 
2 1.17 (2.74) *** 0.99 (-0.13) 0.94 (-0.89) 
4 1.41 (3.70) *** 1.05 (0.45) 0.92 (-0.69) 
8 1.61 (3.57) *** 1.07 (0.43) 0.95 (-0.25) 

16 1.78 (3.17) *** 0.98 (-0.08)   0.93 (-0.25)   
 

This table contains variance ratios and heteroskedasticity robust test 
statistics for three size based CRSP Portfolios for three separate time 
periods. Variance ratios (VR) greater than one imply serial correlation 
and hence predictability. The numbers in parentheses are 
heteroskedasticity-consistent z-statistics for tests examining whether 
the variance ratios equal one.  q is the number of weekly observations 
aggregated to form the variance ratios.  ***Significant at the 1% 
level, **Significant at the 5% level. 
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Table 5.  Daily Variance Ratio Tests, 2000 – 2012. 

Lo and MacKinlay (1988) Variance Ratios 
  IWM MDY SPY    Q1 Q3 Q5   
q VR z-stat   VR z-stat   VR z-stat    q VR z-stat   VR z-stat  VR z-stat   
2 0.93 (-2.54) ** 0.96 (-1.27) 0.93 (-2.31) ** 2 1.11 (3.43) *** 1.00 (0.13) 0.96 (-1.34)
5 0.86 (-2.14) ** 0.88 (-1.62) 0.82 (-2.35) ** 5 1.40 (5.43) *** 0.99 (-0.15) 0.88 (-1.56)

10 0.78 (-2.13) ** 0.78 (-1.78) 0.74 (-2.11) ** 10 1.62 (5.44) *** 0.95 (-0.43) 0.81 (-1.57)
20 0.79 (-1.43)   0.79 (-1.19)   0.73 (-1.50)    20 1.93 (5.66) *** 1.01 (0.04)  0.81 (-1.09)   

Wright (2000) Ranks Test 
2 0.96 (-1.96) ** 1.00 (0.11) 0.95 (-2.51) ** 2 1.15 (8.28) *** 1.03 (1.89) 0.99 (-0.66)
5 0.91 (-2.35) ** 0.95 (-1.34) 0.88 (-2.97) *** 5 1.49 (12.35) *** 1.05 (1.30) 0.94 (-1.44)

10 0.83 (-2.85) *** 0.84 (-2.60) ** 0.79 (-3.40) *** 10 1.79 (13.06) *** 1.03 (0.47) 0.87 (-2.06) **
20 0.83 (-1.88) ** 0.82 (-1.99) ** 0.75 (-2.77) ***  20 2.20 (13.40) *** 1.10 (1.14)  0.87 (-1.45)   

Wright (2000) Rank Scores Test 
2 0.95 (-3.02) *** 0.98 (-0.90) 0.95 (-3.04) *** 2 1.14 (7.57) *** 1.02 (1.28) 0.98 (-1.07)
5 0.88 (-3.07) *** 0.92 (-2.02) ** 0.87 (-3.33) *** 5 1.46 (11.64) *** 1.03 (0.79) 0.94 (-1.65)

10 0.79 (-3.47) *** 0.81 (-3.07) *** 0.78 (-3.56) *** 10 1.72 (11.94) *** 0.99 (-0.08) 0.86 (-2.31) **
20 0.78 (-2.44) ** 0.80 (-2.28) ** 0.75 (-2.79) ***  20 2.08 (12.07) *** 1.05 (0.51)  0.85 (-1.72)   

This table contains daily variance ratios and z(*)q test statistics for the ETFs and three size based CRSP portfolios. Variance ratios 
greater than one imply serial correlation and hence predictability. The numbers in parentheses are heteroskedasticity-consistent z-
statistics for tests examining whether the variance ratios equal one. The Wright (2000) statistics test the same hypothesis using 
ranks and rank scores of the data in the Lo and Mackinlay (1988) specification.  ***Significant at the 1% level, **Significant at the 
5% level. 
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Table 6.  Daily Variance Ratio Tests, 2000 – 2012.  Data are closing bid/ask midpoints for the ETFs and value-weighted returns for the 
CRSP Quintiles. 
 

Lo and MacKinlay (1988) Variance Ratios 
  IWM MDY SPY    Q1 Q3 Q5   
q VR z-stat   VR z-stat   VR z-stat    q VR z-stat   VR z-stat  VR z-stat   
2 0.92 (-2.58) *** 0.92 (-1.95) 0.92 (-2.48) ** 2 0.96 (-1.38) 0.99 (-0.46) 0.91 (-2.85) ***
5 0.84 (-2.32) ** 0.77 (-2.55) ** 0.81 (-2.45) ** 5 0.98 (-0.23) 0.94 (-0.92) 0.81 (-2.55) ** 

10 0.76 (-2.33) ** 0.68 (-2.35) ** 0.73 (-2.25) ** 10 0.99 (-0.14) 0.86 (-1.39) 0.73 (-2.38) ** 
20 0.71 (-1.90) ** 0.67 (-1.62)   0.71 (-1.65)    20 1.06 (0.40)   0.87 (-0.90)  0.70 (-1.75) ** 

Wright (2000) Ranks Test 
2 0.96 (-2.15) ** 1.00 (-0.07) 0.95 (-2.63) *** 2 1.02 (1.12) 1.02 (1.16) 0.93 (-3.70) ***
5 0.91 (-2.28) ** 0.94 (-1.42) 0.88 (-3.09) *** 5 1.10 (2.63) *** 1.00 (0.05) 0.86 (-3.53) ***

10 0.83 (-2.81) *** 0.86 (-2.34) ** 0.79 (-3.43) *** 10 1.15 (2.47) *** 0.94 (-0.95) 0.79 (-3.54) ***
20 0.81 (-2.08) ** 0.84 (-1.79)   0.74 (-2.91) ***  20 1.28 (3.19) *** 0.97 (-0.39)  0.77 (-2.59) ***

Wright (2000) Rank Scores Test 
2 0.95 (-3.02) *** 0.98 (-0.94) -0.94 (-3.24) *** 2 0.99 (-0.33) 1.01 (0.36) 0.93 (-4.02) ***
5 0.88 (-2.98) *** 0.90 (-2.43) ** -0.86 (-3.44) *** 5 1.05 (1.23) 0.98 (-0.60) 0.85 (-3.70) ***

10 0.79 (-3.39) *** 0.81 (-3.08) *** -0.78 (-3.64) *** 10 1.06 (1.07) 0.90 (-1.68) 0.77 (-3.77) ***
20 0.76 (-2.73) *** 0.80 (-2.20) ** -0.74 (-2.91) ***  20 1.16 (1.76)   0.90 (-1.12)  0.75 (-2.83) ***

 
This table contains daily variance ratios and z(*)q test statistics for the ETFs and three size based CRSP portfolios. In contrast to 
Table 5, the data for these ratios are closing bid/ask midpoints for the ETFs, and value-weighted returns for the CRSP Quintiles.  
Variance ratios greater than one imply serial correlation and hence predictability. The numbers in parentheses are 
heteroskedasticity-consistent z-statistics for tests examining whether the variance ratios equal one. The Wright (2000) statistics test 
the same hypothesis using ranks and rank scores of the data in the Lo and Mackinlay (1988) specification.  ***Significant at the 
1% level, **Significant at the 5% level. 
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Table 7.  Weekly Autocorrelation Matrix for ETFs and CRSP 
Portfolios 

 
Panel A:  ETFs, June 1, 2000 – Sep 26, 2012, n = 643 
  IWMt MDYt SPYt   

IWMt-1 -0.075 -0.036 -0.045 
MDYt-1 -0.066 -0.041 -0.040 
SPYt-1 -0.082 -0.055 -0.071   

Panel B:  CRSP Quintiles, June 1, 2000 – Sep 26, 2012, n = 643 
  Q1t Q3t Q5t   

Q1t-1 0.127 -0.052 -0.065 
Q3t-1 0.130 -0.040 -0.050 
Q5t-1 0.147 -0.018 -0.030   

Panel C: CRSP Quintiles,  Jan 1, 1986 – May 31, 2000 n = 753 
  Q1t Q3t Q5t   

Q1t-1 0.391 0.148 0.079 
Q3t-1 0.365 0.179 0.108 
Q5t-1 0.354 0.194 0.122   

Panel D: CRSP Quintiles,  Sep 6, 1962 - Dec 26, 1985, n = 1,216 
  Q1t Q3t Q5t   

Q1t-1 0.376 0.244 0.202 
Q3t-1 0.381 0.278 0.241 
Q5t-1 0.369 0.279 0.243   

 
 

This table presents autocorrelations among the weekly returns of 
the ETFs and size-based portfolios and one lag of those same 
returns.  The table is comparable to Table 4 of Lo and MacKinlay 
(1990).  The magnitudes of these autocorrelations are slightly 
higher than theirs for the earliest period, mostly due to the 
inclusion of NASDAQ firms in our sample.  The figures below the 
diagonal are generally larger than those above, demonstrating that 
information from lagged returns flows in general from larger to 
smaller firms. 
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Table 8.  Daily Granger Causality in ETFs and CRSP Portfolios. 
 
 

Panel A: ETFs Panel B: CRSP Quintiles 

Joint Test Dependent Variable, Chi Square (5) Statistics  Joint Test Dependent Variable, Chi Square (5) Statistics  
  IWM     MDY   SPY      Q1   Q3   Q5    

bi,1,s 3.57 1.87 3.93 bi,1,s 6.96 4.18 3.88
bi,3,s 6.98 5.12 8.98 bi,3,s 5.86 5.41 4.77
bi,5,s 4.81     4.31    7.66    bi,5,s 8.09    7.55    8.97    

Sum Test Sum of Lag Coefficients and t-statistics  Sum Test Sum of Lag Coefficients and t-statistics  
  IWM     MDY   SPY      Q1   Q3   Q5    
  Sum t   Sum t  Sum t    Sum t  Sum t  Sum t  

Σbi,1,s  -0.21 -0.92 0.15 0.64 0.04 0.18 Σbi,1,s 0.21 1.33 -0.13 -0.59 -0.02 -0.12
Σbi,3,s  0.12 0.32 -0.37 -1.00 0.04 0.13 Σbi,3,s 0.06 0.27 0.19 0.58 0.21 0.68
Σbi,5,s  -0.08 -0.33   0.04 0.15  -0.29 -1.25  Σbi,5,s -0.11 -0.44  -0.25 -0.75  -0.44 -1.35  

 
 

This table presents results for the weekly Granger-causality tests of returns of the three CRSP portfolios.  The coefficients bi,j,s 
represent five lags of each portfolio’s daily returns.  The null hypothesis for the Joint test is that all the coefficients are jointly equal 
to zero, while the null hypothesis for the Sum test is that the sum of the coefficients is zero.  ***Significant at the 1% level, 
**Significant at the 5% level. 
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Table 9.  Volatility Spillovers – Estimation Results of DCC MV-GARCH(1,1)-t 
Model for the CRSP Portfolios and ETFs, Jun 1, 2000 – Sep 26, 2012. 

 
                ETFs                           CRSP Quintiles 

 
Coefficient Value t-stat   Value t-stat   

c1 <0.001 6.289 *** <0.001 5.765 *** 
c2 <0.001 6.571 *** <0.001 5.140 *** 
c3 <0.001 7.065 *** <0.001 5.199 *** 
a11 -0.011 -0.541 0.008 5.980 *** 
a13 0.061 2.266 ** 0.010 -0.286 
a15 0.012 0.859   0.030 0.728   
a31 -0.015 -1.128   0.007 -0.548   
a33 0.022 0.762   -0.023 2.004 ** 
a35 0.044 3.831 ** 0.060 2.016 ** 
a51 -0.024 -2.800 *** -0.018 -1.799 
a53 0.012 1.319   0.000 0.964   
a55 0.035 2.746 ***  0.045 1.371 
b1 0.916 121.520 *** 0.910 128.178 *** 
b2 0.924 150.615 *** 0.916 146.497 *** 
b3 0.932 164.044 *** 0.918 156.614 *** 
d1 0.036 4.636 ***  0.061 2.226 ** 
d2 0.042 5.754 *** 0.063 5.092 *** 
d3 0.073 9.088 *** 0.087 9.115 *** 
α 0.031 9.836 *** 0.033 10.337 *** 
β 0.963 216.866 *** 0.956 183.050 *** 
ν 16.531 9.064 *** 13.392 10.554 *** 

Observations     3,103      3,103  
Quasi-Log 
Likelihood     35,636        34,665     

 
This table contains of the estimation of a DCC MV-GARCH(1,1)-t Model for the ETFs 
and the CRSP portfolios.  The coefficients ܽ௜௝  (where i <  j) are of particular interest 
since they indicate volatility spillover from the larger ETF or portfolio j to the smaller 
ETF or portfolio i.  The estimations contain a constant term  ܿ௜௜, a GARCH term ܾ௜, as 
well as a dummy variable coefficient ሺ݀௜ሻ for asymmetric volatility as suggested by 
Glosten, Jagannathan, and Runkle (1993).  The equation estimating conditional 
correlation contains the parameters ߙ௜  and ߚ௜ which represent the relationship between 
conditional correlation and lagged volatility, and a decay factor.  The Student-t 
parameter for shape (ߥ) is included in the maximum likelihood estimation.  
***Significant at the 1% level, **Significant at the 5% level. 
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Table 10.  Summary Statistics for Daily ETF 
Implied Volatility. 
 

Jan 10, 2005 – Sep 26, 2012, n = 1,932 
 

ETF Mean Std Dev Skew. Kurt. 
IWM 0.267 0.104 1.827 3.951 
MDY 0.230 0.104 1.900 4.380 
SPY 0.195 0.098 1.958 4.853 
 
This table contains sample statistics for daily implied volatility 
estimates for three size-based ETFs that track the Russell 2000 
Small Cap Index (IWM), the S&P 400 MidCap Index (MDY), 
and the S&P 500 Index (SPY).  The implied volatility 
estimates are for “at the money” options with constant thirty 
day maturities, obtained from Bloomberg®.  The data are 
truncated at the one percent level at each extreme to remove 
the effects of outliers (n = 1,932).   

 
Table 11.  Implied Volatility Spillovers. 

 

Joint Test Dependent Variable, Chi Square (5) Statistics   

  IWM   MDY   SPY     
bi,1,s 175.00 *** 9.64 11.61 ** 
bi,3,s 5.10 81.18 *** 3.31
bi,5,s 7.03 **   19.94 ***   271.41 ***   

Sum Test Sum of Lag Coefficients and t-statistics   

  IWM   MDY   SPY     
  Sum t-stat   Sum t-stat   Sum t-stat   

Σbi,1,s 0.78 11.40 *** -0.01 0.75 -0.10 -1.86 
Σbi,3,s 0.06 0.61 0.78 8.65 *** 0.00 0.01 
Σbi,5,s 0.22 2.02 ** 0.27 3.10 *** 1.12 12.21 *** 

 
This table contains the results of Granger causality tests as in Equation (2), but the raw data 
for the tests are implied volatility estimates obtained from Bloomberg® from January 10, 
2005 to September 26, 2012.  The data are truncated at the one percent level at each 
extreme to remove the effects of outliers (n = 1,932).  The implied volatility estimates are 
for “at-the-money” options with constant thirty day maturities for each of the ETFs in the 
study.  We square the implied volatility data to obtain estimates of implied variance, which 
is used in the Granger causality estimations.  ***Significant at the 1% level, **Significant 
at the 5% level.  
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