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ABSTRACT

Testing inequality hypotheses in econometric models has posed a challenge in terms of identifying an
applicable null distribution. This study demonstrates an asymptotic boundary null distribution for testing
inequalities and discusses some of the trade o¤s in terms of test errors. 
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1 Introduction

Consider the problem of testing joint linear inequalities of the form R� � r de�ned on the parameter vector

� of the linear model

y = X� + "; " � N(0;
); (1)

where X is an (n� k) matrix of exogenous variables, � is the (k � 1) vector of parameters, 
 is the (n� n)

matrix of error covariances, R is an (m � k) matrix with m � k and r is an (m � 1) vector. The classical

approach formulates the problem as H0 : R� = r vs H1 : R� � r and applies the one-sided version of

a standard procedure. As elaborated in the standard references such as Theil (1971), Anderson (1984),

Lehmann (1986), and Greene (2008), there are well known and readily applicable F and �2 test procedures

for this classical formulation where the null distribution is developed under the hypothesis R� = r. However,

it is now well known that for testing R� � r, there is a gain in power when the problem is formulated in

a one-sided where the test statistic and its null distribution involve the inequality hypothesis R� � r; see

Gourieroux et al. (1982), Farebrother (1986), Kodde and Palm (1986), and Shapiro (1988).

The suggested procedures for the one-sided formulation are special cases of the one-sided procedures for

the general one-sided problem H0 : � 2 C vs H1 : � 2 Rm; where C is a closed convex cone in Rm and � is an

m-vector mean of a multivariate normal density with the covariance matrix �. The seminal studies of Kudo

(1963) and Perlman (1969) on the general one-sided testing problems in multivariate analysis provided the

basis for the one-sided null testing of inequality hypotheses and suggested a number of alternative boundary
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null distributions. Such boundary distributions have been adopted in a number of other contexts in the

literature, including the studies stated above for testing R� � r. The central problem is that under the

null hypothesis, the parameter � could take any value from the unbounded set C, thus characterization of

a null distribution is obscured. As will be brie�y discussed here, the most accurate of the null distributions

suggested in the literature is de�ned on a boundary of C as a weighted sum of �2 variables where the weights

sample dependent.

A major di¢ culty in applying the one sided formulations is associated with computing the weights in

the stated boundary distributions. Such a di¢ culty continues to hinder routine uses of the one sided

formulations. The literature has provided some approximations. In this study we review some of the

suggested approximations, provide a theoretical derivation of an applicable approximation, and discuss some

of the trade o¤s in relation to test errors.

2 Boundary distributions

Consider the problem of testing H0 : R� � r vs H1 : � 2 Rk on model (1) where the unconstrained maximum

likelihood (ML) estimator of the parameter vector � is �̂ = (X 0
�1X)�1X 0
�1y. In reducing the problem to

the one-sided testing in multivariate analysis, premultiply model (1) by R(X 0
�1X)�1X 0
�1 and subtract

r to generate

(R�̂ � r) = (R� � r) + � ; (2)

where � = R(X 0
�1X)�1X 0
�1". The expectation and covariance matrix of the the (m� 1) vector � are

then E(�) = 0 and V ar(�) = R(X 0
�1X)�1R0. De�ne � = R�� r, �̂ = R�̂� r, and � = R(X 0
�1X)�1R0.

Model (1) can then be written equivalently through (2) as

�̂ = �+ � ; � � N(0;�): (3)

It is now clear that the problem of testing H0 : R� � r vs H1 : � 2 Rk on model (1) is equivalent to the

problem of testing H0 : � � 0 vs H1 : � 2 Rm on model (3), which is a special form of the one-sided testing

problem in multivariate analysis.

The theoretical foundations for the stated one-sided problem are based on the seminal study of Perlman

(1969). The general problem considered by Perlman is H0 : � 2 C vs H1 : � 2 Rm where C is a closed

convex cone in Rm. In the present context, C is the positive orthant in Rm, i.e., C = f� 2 Rm : �i � 0 for

all i = 1; : : : ;mg. We follow with a brief review of the testing procedure for model (3) and its connection to

model (1). Let �̂ be the ML estimator of �. As shown by Perlman (1969), the likelihood ratio test statistic

U(C) is a function of C and is de�ned by the following norm in Rm

U(C) =k �̂� ~� k2�= (�̂� ~�)0��1(�̂� ~�); (4)
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where ~� is the projection of �̂ on C with respect to �, i.e., ~� is the solution to the following optimization

problem

min
�2C

(�̂� �)0��1(�̂� �): (5)

Since C is a closed and convex set, the solution ~� exists and is unique. It is clear that ~� is the projection

of �̂ on C, hence the statistic U(C) is the distance between �̂ and the set C. In relation to model (1), it is

clear that �̂ = R�̂ � r as shown above. Also, it can be shown that ~� = R~� � r where ~� is the ML estimator

of � in model (1) subject to the inequality constraint R� � r.

To implement the stated test H0 : � 2 C vs H1 : � 2 Rm, one requires a characterization of the

distribution of the statistic U de�ned in (4) under the null hypothesis H0 : � 2 C. Given such a distribution

and a type I error size �, the cut-o¤ value c is the solution to

P [U � c j H0 : � 2 C] = �; (6)

where the probability measure P stated in (6) corresponds to the null distribution for the stated test proce-

dure. The hypothesis H0 : � 2 C is rejected if U > c. The main di¢ culty is associated with characterizing

the null distribution represented by P in (6).

Speci�cation of a null distribution for any test typically requires �xing a value for the parameter under

the null hypothesis. Therefore, it is clear that the formulation H0 : � 2 C raises a problem for specifying

the null distribution in (6) above. The usual approach is to adopt a �conservative�approach by choosing

the �least favorable�value of � in C, that is, choosing the value � 2 C that yields the largest cut-o¤ value c

for a given type I error size �. This approach ensures that the true type I error of the test does not exceed

the speci�ed �. Thus, based on this approach, the cut-o¤ value c is the solution to

sup
�2C

P [U � c] = �: (7)

The stated studies have shown in various contexts that

sup
�2C

P [U � c] =
mX
i=0

w(m;m� i;�) � P [�2(i) � c]; (8)

where each weight w(m;m � i;�) is the probability that the projection m-vector ~� has exactly (m � i)

positive components where the sum of the weights over i is equal to one. Based on the result in (8) above

and a type I error size �, the cut-o¤ value c is the solution to

mX
i=0

w(m;m� i;�) � P [�2(i) � c] = �: (9)

The main di¢ culty in applying the distribution in (8) is computing the weights w(m;m � i;�). These

weights are sample-dependant thus vary from case to case. Bohrer and Chow (1978) elaborated on the

complications involved in computing such weights. These complications in computing the weights have
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made distributions such as the one in (8) rather unusable in applications. However, it can be shown that

an asymptotic upper bound approximation to the null distribution in (8) when the covariance matrix � is

completely unknown is given by

lim
n!1

sup
�2C;�>0

P [U � c] = 1

2
P [�2(m� 1) � c] + 1

2
P [�2(m) � c]: (10)

According to this result, for a given size �, the cut-o¤ value c for the test is the solution to

1

2
P [�2(m� 1) � c] + 1

2
P [�2(m) � c] = �: (11)

The main contribution of the approximation (10) relative to the distribution in (8) is the fact that computing

the cut o¤ value via (10) avoids the di¢ culties associated with computing the weights in (8).

3 Test errors

In the one-sided procedure elaborated above for testing � 2 C, the derivation of a power function for the

test involves speci�cation of the distribution of U when � belongs to the complement of the closed convex

cone C in Rm, i.e. when � 2 (RmnC). Note that the set (RmnC) has properties that are substantially

di¤erent from C. For instance, (RmnC) is neither closed nor convex, thus the boundary methods applied in

deriving the boundary distributions will fail when applied in deriving a power function. However, certain

general results can be shown regarding the test power when a true null distribution is replaced by a boundary

approximation. As will be shown, there are trade o¤s in terms of test power when such approximations are

used.

The main argument in this section is that when a true null distribution is replaced by an upper bound

approximation, the test power declines. This argument intuitively follows from the primary motivation for

adopting the upper bound distributions, which is, as stated in the previous section, to ensure that the true

type I error of the test does not exceed the speci�ed �. A more elaborate justi�cation for the present

argument can be constructed from the fact that supP [U � c j � 2 C] � P [U � c j � 2 C].
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