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stable allocations by analyzing the conditions under which complete networks and star networks

are stable. We also address conditions for existence and uniqueness of a set of stable networks.
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1 Introduction

Although the analysis of networks goes back to seminal work of Myerson (1977), much of its

development has taken place over the past decade or so. After just a decade of intense interest and

research, the study of networks has now become a well-documented tool of analysis of interactions

among economic and social agents. The applications of network analysis range from social issues

such as friendship relations (see, for example, Wellman and Berkowitz (1988)) to economic problems

such as communication and information networks (see Bala and Goyal (2000) and Bolch and Dutta

(2009)), bargaining (see Corominas-Bosch (2004)), international trade (see Furusawa and Konishi

(2007)), cost allocation problem (see Henriet and Moulin (1996)), and transportation networks (see

Hendricks et al. (1995)).

Ever since the start of study of social and economic networks, game theoretic solution concepts

have been widely used in the context of network analysis. For example, Myerson (1977) and

Jackson and Nouweland (2005) studied cooperative solution concepts. On the other hand, numerous

authors used non-cooperative solution concepts such as variants of Nash equilibrium in the study

of networks, e.g., Myerson (1991), Dutta and Mutuswami (1997), and Bala and Goyal (2000). Our

paper falls in the former strand of literature on networks. As it is well argued in Jackson and

Nouweland (2005), although the non-cooperative solution concepts such as Nash-based equilibrium

solutions may offer powerful predictions and sufficient characterization of economic and social

networks, there are a number of reasons to study cooperative notions in this context. Notably,
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there are many social and economic environments where coalitional interactions among agents in

networks are more appropriate. Economic and social network examples of this kind of environment

are abundant: formation of international cartels, formation of trade blocs, membership in social

clubs, and internet chat rooms and social networks such as Facebook, to mention a few.

We investigate the stability of networks by introducing a notion of stability based on von

Neumann and Morgenstern (1947) (vN&M, hereafter) solution but somewhat stronger. Although

Dutta and Mutuswami (1997) and Jackson and Nouweland (2005) also address the issue of network

stability, the notion of stability we consider is different. Dutta and Mutuswami (1997) defined a

network, given an allocation, to be stable if no coalition of players wants to deviate by forming or

severing links. Accordingly, deviations are valid if all members are strictly better off. Jackson and

Nouweland (2005) considered a stronger notion of stability under which a deviation is valid if some

member of the deviating coalition will be strictly better off while others are weakly better off. The

notions of stability that were introduced in both Dutta and Mutuswami (1997) and Jackson and

Nouweland (2005) are core-type stability notions. The problem that we raise here is in the spirit of

the vN&M’s criticism of the notion of core in cooperative game context. That is, we raise an issue

with an allocation-network pair to which a coalition may deviate. Let an allocation-network pair be

disqualified because it is dominated by another allocation-network pair. In spirit of vN&M (1947),

what if this latter allocation-network pair is not stable itself? We should not give an immunity

status to this allocation-network pair. Thus, we follow vN&M (1947) and offer a new notion of

network stability.

Although we impose an additional requirement for stability of network, it should be noted our

notion of network stability is more robust than the core-like stability notions in current literature

such as Dutta and Mutuswami (1997). According to these core-type network stability concepts, it

is possible that a network would be deemed unacceptable (unstable) if there exists another network

that a group of players can induce (by forming or severing links) and be better off by doing so even

if the newly formed network is unacceptable (unstable) itself. In a sense, players are myopic as they

are unable to see the network they use as an objection to the current network lacks credibility. On

the other hand, according to our vN&M-based notion of network stability, a network is unacceptable

(unstable) if a group of players can block it by forming another network which itself is stable. Thus,

in a sense, an objection to a network is credible in our definition. Moreover, according to our notion
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of domination a coalition of players can object to a pair of allocation-network if they can induce

a new pair under which no player in the coalition is worse off while some members are better off.

In contrast, under the original vN&M notion of dominance relation all members of the coalition

should be better off. This feature of domination relation is similar to the dominance relation used

in Jackson and Nouweland (2005) although they applied it to defines a core-type stability notion.

In other words, our notion of stability is stronger than both Jackson and Neuweland (2005) as our

notion has a dual stability requirements (i.e., internal and external stability) as in vN&M (1947).

To motivate our vN&M-based notion of network stability, we appeal to a real world example.

One of the recent applications of network economics is the formation of free trade areas. If free

trade exists among a group of countries, these countries will be connected through links. As an

example assume there are four countries in the world: 1, 2, 3, and 4. Consider three networks (i.e.,

configuration of the world): A, B, and C. Assume we have bilateral free trade between 1 and 2,

1 and 4, 2 and 3, and 3 and 4 under network A. In network B countries 1 and 2 as well as 3 and

4 have bilateral free trade, while in network C we have global free trade whereby any country has

bilateral free trade with all other countries. These networks are depicted in Figure 1. For the sake

of argument, suppose trading arrangement A has been proposed. That is, let A be the status quo.

Assume that countries 1 and 2 can be better off if they terminate their free trade (sever their links)

with 4 and 3, respectively. That is, they can induce network B and as a result be better off. With

core-type notions of network stability, such an objection would make network A unstable. However,

we question: what if the free trade configuration B can be objected via the configuration C by a

(weak) subset of countries? In this case it seems unreasonable to give immunity to the configuration

B. That is, the objection jointly made by countries 1 and 2 via proposing the configuration B is in

a sense not credible. In contrast, based on the concept of network stability that we introduce here,

a network will be ruled out as being unstable if some players can object to it via a stable network.

Insert Figure 1 here

In this context, we study the architecture of stable networks by showing the conditions under

which complete and star networks are stable. Interestingly, we will indicate that an egalitarian

allocation under a complete network can emerge as stable. While our notion of network stability is
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compelling, it is equally important to show the conditions under which such stable sets of networks

exists. We will also study the conditions for existence as well as uniqueness of stable networks.

Following this introduction, we will present our framework and define economic networks. In

Section 3 we will introduce our notion of stability. Section 4 investigates the structure of stable

networks. We will address the issues of existence of a stable set of networks in Section 5. We

conclude the paper in the last section. All proofs are presented in the appendix.

2 Economic networks

Let the finite set of players be N = {1, 2, 3, ..., n}. Denote by GN the set of all subsets of N with

size 2. Similarly, for any S ⊂ N , denote by GS the set of all subsets of S with size 2. The set of

all possible networks on N is defined as G = {g|g ⊂ GN}. A link between player i, j ∈ N , denoted

by ij, in network g is an element of g. This will be represented by the empty set if there is no

link between any two players. For any network g ∈ G and any S ⊂ N , define a subnetwork g(S)

as g(S) = g ∩ GS . We say that a player i ∈ N is an isolated player under a network g ∈ G if

ij 6∈ g, j ∈ N . That is, a player is isolated under a network if he does not have any link with any

other player in the network.

A path in network g ∈ G between players i and j, denoted by πg(ij), is a sequence of linked

players i1, i2, ..., iK such that ikik+1 ∈ g,∀k ∈ {1, 2, ...,K − 1} where i1 = i and iK = j. The

set of all paths between players i and j in network g is denoted by Πg(ij). A component of a

network g ∈ G is a subnetwork g(S) ⊂ g, S ⊂ N , where i, j ∈ S if and only if there exists a path

πg(ij) ∈ Πg(ij). Denote the set of all components of any network g ∈ G by C(g).

The value of a network is defined by a value function ν : G 7→ R+. We normalize the value

function such that ν(∅) = 0. For any g ∈ G and any permutation of the set of players π : N 7→ N ,

define gπ = {ij|i = π(k), j = π(l), kl ∈ g}.1 We say that a value function ν is anonymous if

ν(g) = ν(gπ). We say that a value function ν is convex if for all g1, g2, and g3 ∈ G, if g1 ⊂ g2 ⊂ g3,

then ν(g3)− ν(g2) ≥ ν(g2)− ν(g1). On the other hand, a value function ν(g) is non-convex if there

exist g1, g2, and g3 ∈ G such that g1 ⊂ g2 ⊂ g3, we have ν(g3)− ν(g2) < ν(g2)− ν(g1).

Denote the set of all allocations given the network g ∈ G by A|g, i.e., A|g = {x ∈ Rn+|
∑

i∈N xi ≤
1That is, π is a bijection from N to N .
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ν(g)}. We also denote for any g ∈ G and proposed allocation x ∈ A|g by x|g. We simply

refer to this as an allocation-network pair. Let Ω be the set of all allocation-network pairs, i.e.,

Ω = {x|g |g ∈ G, x ∈ A|g}. Consider networks g, g′ ∈ G. We say that g′ is reachable from g via

S ⊂ N , denoted by g 7−→S g
′ if:

1) ij ∈ g′ \ g, then i, j ∈ S; and

2) ij ∈ g \ g′, then i and/or j ∈ S.

3 Stability

One of the most important and widely used solution concepts in cooperative game theory is the

notion of core. We first define this notion in the context of economic networks.

Definition 1. A network g ∈ G is a core network with respect to allocation x ∈ A|g if there do

not exist g′ ∈ G, S ⊂ N , g 7−→S g
′, g′(S) ∈ C(g′) and y ∈ A|g′ such that

∑
i∈S yi ≤ ν(g′(S)) and

yi > xi∀i ∈ S.

Denote the set of all core allocation-network pairs by C. According to the concept of core

networks, an allocation-network pair x|g is disqualified to be in the set of core allocation-network

pairs if there exists another allocation-network pair y|g′ and a subset of players such that these

players can induce g′ from g and all be better off under y|g′. The problem we raised in the

introduction is that what if y|g′ is itself dominated by yet another allocation-network pair? In

such a case, y|g′ should not be treated with immunity. vN&M (1947) addresses this criticism by

introducing a notion of stability in the context of cooperative game theory. Similarly, we define a

notion of stability in the context economic networks.

As stated in the introduction, although we propose a vN&M-based notion of stability in the

context of network, our stability concept is stronger than what vN&M originally introduced as

we use a stronger dominance relation to define stability. In contrast to the dominance relation in

vN&M stability notion, if a coalition of players can induce a pair of allocation/network by which

some members are better off while other members are not worse off, there is no reason for the latter

group of members not to go along. Thus, we re-define dominance relation in the context of networks

as follows. We say that a network g′ ∈ G dominates another network g ∈ G given x ∈ A|g if there

exist S ⊂ N , g 7−→S g
′, g′(S) ∈ C(g′) and y ∈ A|g′ such that

∑
i∈S yi ≤ ν(g′(S)), yi ≥ xi∀i ∈ S,
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and yi > xi for some i ∈ S. Denote by ∆(x|g) the set of allocation-network pairs that dominate

allocation-network pair x|g. Clearly, it follows from the definition of core allocation-network pair,

an allocation-network x|g ∈ C if ∆(x|g) = ∅. It should be note that that the converse of this

statement is not generally true. The following definition formally introduces our notion of network

stability.

Definition 2. A set of allocation-network pairs V ⊂ Ω is internally stable if for any x|g ∈ V

there does not exist y|g′ ∈ V such that y|g′ ∈ ∆(x|g). A set of allocation-network pairs V ⊂ Ω is

externally stable if for any z|g′ ∈ Ω \V , and V 6= ∅, there exists an allocation-network pair x|g ∈ V

such that x|g ∈ ∆(z|g′). A set of allocation-network pairs V is stable if it is both internally and

externally stable.

Internal stability addresses internal consistency. In other words, among the set of internally

stable allocations-network pairs, no subset of players can induce another (stable) allocation-network

pair that some members of the subset prefer while other members are at least indifferent. On the

other hand, external stability addresses external consistency. That is, there should be a reason a

pair of allocation-network is deemed unacceptable by a subset of players. Such players can induce

another pair of allocation-network which some such players prefer while other members of the subset

are at least indifferent and this allocation-network pair is itself acceptable (i.e., stable).2

Example 1:

Assume N = {1, 2, 3}. Define value function ν as:

ν({12, 13, 23}) = 3

ν({12, 13}) = ν({12, 23}) = ν({13, 23}) = 1

ν({ij}) = 0.5, i, j ∈ N, i 6= j.

Let g̃ = {12, 13, 23} and define V = {(x|g̃)|Σi∈Nxi = 3}. Set of allocation-network pairs V is

stable. Since set V contains only one network, under which all its Pareto allocations included, the

internal stability is trivial. To verify the external stability, note that for a network with a structure

g2 = {ij, jk} any player can at most get an allocation of 1, and the remaining players can get a total

of what is left of 1. Denote such an allocation by y where yi ≥ 0 and Σi∈Nyi = 1. Now consider

allocation x̃ such that x̃i = yi + 2/3. Clearly, Σi∈N x̃i = ν(g̃) and x̃i > yi,∀i ∈ N . Moreover,

2As it can be seen, our notion of stability is stronger than that of Jackson and Nouweland (2005) defined in the
context of networks due to our dual stability requirements (internal and external).
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x̃i|g̃ ∈ V and x̃i|g̃ ∈ ∆(y|g2). A similar argument can be made for all networks with structure {ij}

and their feasible allocations. Therefore, V is externally stable.

Although it is well-known that a core allocation of a cooperative game (if nonempty) is in its

vN&M solution, it is also interesting to relate the set of core allocation-network pairs with stable

set of allocation-network pairs. The following result addresses this relationship.

Claim 1. Let V be any set of stable allocation-network pairs. Then, C ⊂ V .

4 Network structure

Having defined the stability of economic networks, we now turn to network architecture. Under

what condition are various network structures and allocations stable? In this section, more specifi-

cally, we will study the conditions under which a complete network and a star network along with

a set of allocations are stable. We say that a network is complete, denoted by gc, if for any pair

of players i, j ∈ N , ij ∈ gc. That is, a network is complete if there is a link between every pair of

players. We say that a network is a star network, denoted by gs, if it does not have an isolated

player and there exists a player i ∈ N such that for every link jk ∈ gs we have j = i. Player i is

called the central player, and all player k ∈ N \ {i} are peripheral players.3 We say that a feasible

allocation is egalitarian, denoted by xe, under a network g ∈ G if xei = ν(g)/|N |.

The following result characterizes the set of core allocation-network pairs. It highlights that a

condition under which core networks are complete networks.

Claim 2. Let value function ν be convex and C be non-empty. Then, ∀x|g ∈ C network g is a

complete network.

The following lemma will be useful in characterizing architecture of stable networks.

Lemma 1. Let a value function ν be convex. Then, ν(g)/|N | ≥ ν(g(S))/|S|, ∀S ⊂ N and ∀g ∈ G

if there is no isolated player under g.

This lemma addresses an important property of a convex value function. It states that the

per-member value of any network g is no less that the per-member value of any its nontrivial

3The central player in a network is a reminiscent of Kalai, Polstlewaite, and Roberts notion of the middleman (see
Kalai et al. (1978)).
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subnetworks (i.e., a g(S) 6= g, S ⊂ N) given that the value function is convex and the network does

not have an isolated player. As stated earlier, this lemma plays a crucial role in the architecture of

a stable network.

First, consider complete networks. This type of network structure is perhaps the most ap-

pealing form of economic or social network architectures, as it is the most inclusive. The ideal

of inclusiveness is a major characteristic of some important international clubs (or organizations)

such as United Nations and, to a lesser extend, the World Trade Organization. Therefore, it is of

paramount importance to study the conditions for stability of this type of networks. The following

theorem addresses this issue.

Theorem 1. Assume that the value function ν is convex and let V ⊂ Ω be a set of stable allocation-

network pairs. Then, the complete network with egalitarian allocation is stable, i.e., xe|gc ∈ V .

According to the above result, the complete network is among the set of stable networks if the

value function is convex. In addition, this condition guarantees that egalitarian allocation is also

among the set of allocations supported by the stable complete network. The notion of equity has

been a focal issue, and perhaps controversial, since the dawn of human civilization. The above

theorem reconsiders such a notion in the context of a network from the stability point of view.

Example 2:

In this example we show that the assumption of convexity is essential for validity of the results of

Theorem 1. Assume N = {1, 2, 3, 4}. Define the value function ν as:

ν({12, 23}) = 3

ν({13, 24}) = 2.4

ν({13}) = ν({24}) = 1.2

ν(g) = 0 for all other networks g.

Consider g̃ = {12, 23}. We claim that V = {x|g̃ |x1 + x2 + x3 = 3, x4 = 0} is a stable set of

allocation-network pairs. Internal stability is trivial. To show the validity of external stability of

V , it is enough to consider the following cases:

i) Consider network g1 = {13, 24}. For any y ∈ A|g1, we have Σi∈Nyi = 2.4. Now, consider the

subset of players S = {1, 2, 3} and construct allocation x̃ such that x̃i = yi + (0.6 + y4)/3 for all

i ∈ S and x̃4 = 0. Clearly, x̃ ∈ A|g̃. Moreover, players 2 and 3 can sever their links with 4 and
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1, respectively, and form new link with each other as well as 2 with 1. Clearly, g̃(S) ∈ C(g̃). In

addition, it is evident by construction that Σi∈S x̃i = 3, and x̃i > yi, ∀i ∈ S. Thus, x̃|g̃ ∈ ∆(y|g1)∩V .

ii) Consider network g2 = {13} (g3 = {24}). We have Σi∈Nyi = 1.2,∀y ∈ A|g2(∀y ∈ A|g3).

Now construct allocation x̃ such that x̃i = yi + (1.8 + y4),∀i ∈ S and x̃4 = 0. Players 1 and

3 can sever their link and each can form a new link with player 2 (Player 2 can sever her link

with 4 and form new links with 1 and 3). Thus, subset of players S = {1, 2, 3} can induce g̃ as

g̃(S) ∈ C(g̃). Moreover, by construction, we have Σi∈S x̃i = 3 and x̃i > yi,∀i ∈ S. It follows that

x|g̃ ∈ ∆(y|g1) ∩ V .

Next, we consider star networks, another type of network structure with numerous interesting

applications in economics and social settings. Hub-and-spoke - where a central member (the hub) is

connected to all other peripheral members (the spokes) - is a classic example of this kind of network.

As interesting economic example is the numerous bilateral preferential trading agreements formed

during the past couple of decades between the United States, the hub, and other countries, the

spokes, which did not have any form of preferential trade agreement among themselves (for instance,

Israel and Jordan). The following theorem considers the stability condition for star networks.

Theorem 2. Assume an anonymous value function ν. A star network gs given allocation x is a

stable network-allocation pair (i.e., x|gs ∈ V , for any stable set of allocation-network pairs V ⊂ Ω)

only if value function ν is non-convex.

5 Existence

In this section we shall address the existence problem for sets of stable allocations-network pairs. As

in Jackson and Nouweland (2005), we relate the notion of network with an associated cooperative

game. By Doing so, we shall take advantage of substantial development in cooperative game theory.

A pair (N,ω) is a cooperative game whereN = {1, 2, 3, ..., n} is the set of players and ω : 2N 7→ R

is a characteristic function. An allocation x ∈ Rn is feasible if
∑

i∈N xi ≤ ω(N). A feasible

allocation x is a core allocation for (N,ω) if Σi∈Sxi ≥ ω(S) for all S ⊂ N . Denote the set of core

allocations for game (N,ω) by Cω. A set of feasible allocations X is internally stable if for all

x ∈ X there does not exist y ∈ X, S ⊂ N such that
∑

i∈S yi ≤ ω(S) and yi > xi∀i ∈ S. A set of

feasible allocations X is externally stable if for all feasible allocations y 6∈ X there exist a feasible
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allocation x ∈ X and S ⊂ N such that
∑

i∈S xi ≤ ω(S) and xi > yi∀i ∈ S. A Set of feasible

allocation X is stable if it is both internally and externally stable. Finally, for any value function

ν and set of players N define an associated cooperative game (N,Ων) where ων = maxg∈GS ν(g)

for all S ⊂ N . The following theorem relates the set of core allocation-network pairs with the set

of core allocations of an associated cooperative game.

Theorem 3. An allocation x ∈ Rn+ is in core of (N,ων) if and only if there exists g ∈ G where

x|g ∈ C.

We now turn to conditions under which a stable set of allocation-network pairs exists. It turns

out that convexity of a value function guarantee that a stable set of allocation-network pair exists.

Moreover, and equally importantly, such a set is unique and non-empty. The following theorem

formally addresses these results.

Theorem 4. Let value function ν be convex. Then, C 6= ∅ is a unique stable set of allocation-

network pairs.

This result states that if a value function is convex, then the set of core allocation-network pairs

is a stable set of allocation-network. In addition, not only does this set is a unique stable set of

allocation-network pairs, it is also non-empty.

6 Conclusion

This paper introduced a notion of stability of economic networks based on von Neumann and

Morgenstern (1947) solution although the notion of domination we used to define our notion of

network stability differs from von Neumann and Morgenstern (1947) and resembles that of Jackson

and Nouweland (2005). Apart from this departure from von Neumann and Morgenstern (1947),

our notion network stability also demands stronger stability requirements than those in the current

literature on economic networks (e.g., Dutta and Mutuswami (1997) and Jackson and Nouweland

(2005)), and is more appealing as it does not suffer from core-type criticism. This latter feature of

our stability notion is in the spirit of von Neumann and Morgenstern’s (1947) criticism of core.

As our main results, we studied the architecture of stable networks. More specifically, we

analyzed the conditions under which complete or star networks are stable. Assuming a convex value
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function, we showed that the egalitarian allocation under a complete network is stable. Moreover,

we addressed the existence of a stable set of allocations-network pairs. As is the case for vN&M

solution, existence and uniqueness are not guaranteed. Usually, restrictive assumptions are to

imposed for existence of a vN&M solution of a cooperative game. We showed that if a value

function is convex, then there exists a unique and non-empty stable set allocation-network pairs.

More importantly, we show that such a unique set is in fact the set of core allocation-network pairs.

The framework presented in this paper can be extended in several directions. First, one can

extend our ideas to one-sided networks. Second, our notion of stability can be applied to issue

of economic integration by analyzing the conditions under which various forms of trade blocs

can be stable following the rationale we presented in this paper. Third, our notion of stability

may be applied in the arena of international relations such as formation of international security

arrangements, among others.
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Appendix: Proofs

Proof of Claim 1. Let V be any set of stable allocations-network pairs. Assume in negation that

there exists a core allocation-network pair x|g ∈ C \ V . Then, by external stability of V , there

must exist an allocation-network pair y|g′ ∈ V such that y|g′ ∈ ∆(x|g). This, in turn, implies that

there exist a subset of players S ⊂ N , g′ ∈ G, and y ∈ A|g′ such that g 7−→S g
′, g′(S) ∈ C(g′),∑

i∈S yi ≤ ν(g′(S)), yi ≥ xi∀i ∈ S, and yi > xi for some i ∈ S. Without loss of generality assume

that for a single player k ∈ S we have yk > xk and yi = xi∀i ∈ S \ {k}. Now construct allocation

z ∈ A|g′ such that zi = yi ∀i ∈ N \ S, zk = yk − ε and for all i ∈ S \ {k} let zi = yi + ε/(|S| − 1),

for sufficiently small positive ε < yk − xk. Clearly, by construction we have
∑

i∈S zi =
∑

i∈S yi and

zi > xi∀ ∈ S. Thus, it follows that
∑

i∈S zi ≤ ν(g′(S)). All these conclude that there exist S ⊂ N

and an allocation-network pair z|g′ such that g 7−→S g′, g′(S) ∈ C(g′),
∑

i∈S zi ≤ ν(g′(S)), and

zi > xi∀i ∈ S. This contradicts our negation assumption that x|g ∈ C.

Proof of Claim 2. Assume the negation. That is, g is not complete for some x|g ∈ C. Now, consider

complete network gc and construct allocation y ∈ Rn+ such that yi = xi + [ν(gc) − ν(g)]/|N |. By

convexity of ν we have ν(gc) > ν(g) because g ⊂ gc, implying that yi > xi,∀i ∈ N . Also, by

construction we have
∑

i∈N yi = ν(gc). Finally, it is direct that g 7−→N g′ and gc(N) ∈ C(gc). All

these imply that x|g ∈ Ω \ C, contradicting with x|g ∈ C.

Proof of Lemma 1. Let N \ S = {k1, k2, k3, ..., kJ}. Construct network gk1 ≡ g(S) ∪ {ik1}, where

ik1 ∈ g \ g(S), for some i ∈ N . Note that as there is no isolated player under g, such a link exists.

By convexity ν(gk1)− ν(g(S)) ≥ ν(g(S))− ν(∅), indicating that ν(gk1)/|S ∪ {k1}| ≥ 2ν(g(S))/|S ∪

{k1}| ≥ ν(g(S))/(|S|), where the last inequality is due to the fact that 2/|S∪{k1}| = 2/(|S|+1) ≥

1/|S| ⇔ 2|S| ≥ |S| + 1 since |S| ≥ 1. Thus, ν(gk1)/|S ∪ k1| ≥ ν(g(S))/|S|. Similarly, construct

gk2 ≡ gk1∪{ik2}, where ik2 ∈ g\g(S) for some i ∈ N . Again by convexity, we have ν(gk2)−ν(gk1) ≥

ν(gk1)−ν(g(S)). This implies that ν(gk2) ≥ 2ν(gk1)−ν(g(S)) ≥ ν(gk1)+ν(g(S)) ≥ 3ν(g(S)), where

the last two inequalities are due to the fact that ν(gk1) ≥ 2ν(g(S)). It then follows that ν(gk2)/|S∪

{k1, k2}| ≥ 3ν(g(S)))/|S ∪ {k1, k2}|. On the other hand, 3ν(g(S)))/|S ∪ {k1, k2}| ≥ ν(g(S)))/|S|

because 3/|S ∪ {k1, k2}| = 3/(|S| + 2) ≥ 1/|S| ⇔ 3|S| ≥ |S| + 2 since |S| ≥ 1. All these imply

that ν(gk2)/(|S ∪ {k1, k2}|) ≥ ν(g(S))/|S|. Now assume that ν(gkJ−1)/|N \ {kJ}| ≥ ν(g(S))/|S|
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where gkJ−1 is defined as gk1, gk2, etc. as above. Similar to the argument we just made for gk1 and

gk2, it can be shown that ν(gkJ)/|N | ≥ ν(g(S))/|S| where gkJ ≡ gkJ−1 ∪ {ikJ} and ikJ ∈ g \ g(S).

Therefore, since N is a finite set and by induction, for ∀l ∈ N and glm ⊂ g (as constructed above),

lm ∈ g \ g(S), and m ∈ N \ S, we have ν(glm)/|S ∪ {m}| ≥ ν(g(S))/|S|. This concludes the

lemma.

Proof of Theorem 1. In light of Claim 1 it is enough to show that xe|gc ∈ C. To prove this, assume

the negation; i.e., xe|gc ∈ Ω \ C. That is, there exist S ⊂ N and g′ ∈ G such that gc 7−→S g′,

g′(S) ∈ C(g′), y ∈ A|g′,
∑

i∈S yi ≤ ν(g(S)) and yi > xei , ∀i ∈ S. As gc is a complete network,

it follows that for some i, j ∈ S, either ij /∈ g′ and/or ik /∈ g′ for some k ∈ N \ S. That is,

members of S can induce g′ by only severing links among themselves and/or links with other

players. It also follows from our negation assumption that for all i ∈ S, yi > xei = ν(gc)/|N |.

Let ȳ = min{yi|i ∈ S}. By the definition of domination, we conclude that ȳ ≤ ν(g′(S))/|S| since∑
i∈S yi ≤ ν(g′(S)). As g′ ⊂ gc, it follows from convexity of ν that ν(gc(S)) ≥ ν(g′(S)). Then, it

follows that ν(gc(S))/|S| ≥ ν(g′(S))/|S| ≥ ȳ > xei = ν(gc)/|N |. That is, ν(gc(S))/|S| > ν(gc)/|N |,

contradicting the convexity of ν due to Lemma 1 since there is no isolated player under a complete

network.

Proof of Theorem 2. Assume the negation. That is, assume an anonymous convex value function

ν and let V be a stable set of allocation-network pair where gs|x ∈ V for some x ∈ A|gs. Without

loss of generality let player 1 be the central player. Construct the following sequence of allocation-

network pairs.

• g1 = gs, y
1 = x

• g2 = g1
⋃
{23}, y2 ∈ A|g2 such that y2j = y1j + ν(g2)−ν(g1)

2 ∀j ∈ {2, 3} and y2j = y1j ∀j ∈

N \ {2, 3}

• g3 = g2
⋃
{24}, y3 ∈ A|g2 such that y3j = y2j + ν(g3)−ν(g2)

2 ∀j ∈ {2, 4} and y3j = y2j ∀j ∈

N \ {2, 4}

• ...

14



• gn−1 = gn−2
⋃
{2n}, yn−1 ∈ A|gn−1 such that yn−1j = yn−2j + ν(gn−1)−ν(gn−2)

2 ∀j ∈ {2, n} and

yn−1j = yn−2j ∀j ∈ N \ {2, n}

• ...

• gk = gk−1
⋃
{i(i + 1)}, yk ∈ A|gk such that ykj = yk−1j + ν(gk)−ν(gk−1)

2 ∀j ∈ {i, i + 1} and

ykj = yk−1j ∀j ∈ N \ {i, i+ 1}

• ...

• gM = gM−1
⋃
{(n−1)n}, yM ∈ A|gM such that yMj = yM−1j + ν(gM )−ν(gM−1)

2 ∀j ∈ {(n−1), n}

and yMj = yM−1j ∀j ∈ N \ {(n− 1), n}

where M = [n!/(n− 2)!]/2− (n− 2) is finite since n is finite. Note also that gM = gc. Due to con-

vexity, we then have Σi∈{2,3}y
2
i ≥ ν({23}) because ν(g2)− ν(g1) ≥ ν(g1) ≥ ν(g1({1i}) ≥ ν({1i}) =

ν({23}). The inequalities are followed from convexity and the equality is due to anonymity.

Similarly, we conclude that Σi∈{2,4}y
3
i ≥ ν({24}) because ν(g3) − ν(g2) ≥ ν(g2) ≥ ν(g1) ≥

ν(g1({1i})) ≥ ν({1i}) = ν({24}) ∀i ∈ N \ {1}. Again, the last equality is due to anonymity.

Moreover, Σi∈{2,3,4}y
3
i ≥ ν({23, 24}) because ν(g3) − ν(g1) ≥ ν(g1) ≥ ν(g1) ≥ ν(g1({1i, 1j})) ≥

ν({23, 24}) ∀i, j ∈ N \ {1}. In the same fashion we conclude that Σi∈{2,n}y
n
i ≥ ν({2n}) because

ν(gn) − ν(gn−1) ≥ ν(gn−1) ≥ ν(g1) ≥ ν(g1({1i})) ≥ ν({1i})) = ν({2n}) ∀i ∈ N \ {1}. In addi-

tion, Σi∈N\{1}y
n
i ≥ ν({2i|i ∈ N \ {1}}), Σi∈N\{1,n}y

n
i ≥ ν({2i|i ∈ N \ {1, n}}), ..., Σi∈{2,3,4}y

n
i ≥

ν({23, 24}). By continuing this line of argument we have Σi∈{n,n−1}y
M
i ≥ ν({n, n − 1}) because

ν(gM ) − ν(gM−1) ≥ ν(gM−1) ≥ ν(g1) ≥ ν(g1({1i})) ≥ ν({1i}) = ν({n(n − 1)}) ∀i ∈ N \ {1}

and Σi∈N\{1}y
M
i ≥ ν({ni|i ∈ N \ {1, n}), Σi∈N\{1,n}y

M
i ≥ ν({(n − 1)i|i ∈ N \ {1, n − 1}}), ...,

Σi∈{2,3,4}y
M
i ≥ ν({23, 24}). That is, by construction, we have Σi∈Sy

M
i ≥ ν(g(S)), ∀g ∈ G, ∀S ⊂ N .

This implies by external stability of V that yM |gM ∈ V . It also follows from our construction

that yMi > y1i , ∀i ∈ N \ 1 and yM1 = y11. Moreover, by the definition of a complete network we

have gc = gc(N) ∈ C(gc), i.e., set N can induce gc from gs. Thus, yM |gM ∈ ∆(x|gs) ∩ V , which

contradicts internal stability of V .

Proof of Theorem 3. First, Let x ∈ Rn be a core allocation for game (N,ων). In negation, let

x|g ∈ Ω\C,∀g ∈ G. That is, there does not exist g ∈ G such that x|g ∈ C. Our negation assumption
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implies that ∃S ⊂ N, g′ ∈ G, y ∈ A|g′ such that g 7−→ g′, g′(S) ∈ C(g),
∑

i∈S yi ≤ ν(g′(S)) and

yi > xi, ∀i ∈ S. However, since ων(S) = maxg∈GS ν(g), it must be the case that ων(S) ≥ ν(g′(S)).

Now fix allocation x such that zi = yi + [ω(S)− ν(g′(S))]/|S| for all i ∈ S and zi = yi, ∀i ∈ N \ S.

Clearly, by construction, we have
∑

i∈S zi ≤ ων(S) and zi ≥ yi > xi,∀i ∈ S. This contradicts with

x being a core allocation for (N,ων).

Second, assume that x|g ∈ C but in negation let allocation x not be a core allocation for game

(N,ων). By negation assumption and the definition of ων , there must exist a network g′ ∈ G and

S ⊂ N such that g′(S) ∈ arg maxg∈GS ν(g), thus g′(S) ∈ C(g′), and exist an allocation y such that∑
i∈S yi ≤ ων(S) = ν(g′(S)) and yi > xi, ∀i ∈ S. Since

∑
i∈S yi ≤ ν(g′(S)), g′(S) ∈ C(g′) and

yi > xi, ∀i ∈ S, we have x|g 6∈ C which is a contradiction.

Proof of Theorem 4. First, we show that Cω is a unique vN&M solution of game (N,ων) if ν is

convex. Since it is well-known that the set of core allocations of a cooperative game is its unique

vN&M solution if its characteristic function is convex, it is sufficient to show that if value function

ν is convex then ων is convex.4 To prove this, let ν be convex and fix any arbitrary S ⊂ T ⊂ N .

By convexity of ν, for any g ∈ G and i ∈ S ⊂ T we have ν(g(T )) ≥ 2ν(g(T \ {i})) and ν(g(T )) ≥

2ν(g(S)). These inequalities imply that ν(g(T )) ≥ ν(g(T \ {i})) + ν(g(S)). Since ν(g(S \ {i}) ≥ 0,

we conclude that ν(g(T )) ≥ ν(g(T \ {i})) + ν(g(S))− ν(g(S \ {i}) ⇐⇒ ν(g(T ))− ν(g(T \ {i})) ≥

ν(g(S))− ν(g(S \ {i}). Since this inequality is true for any artbitrary g ∈ G and i ∈ S ⊂ T ⊂ N ,

it implies that ων(T )− ων(T \ {i}) ≥ ων(S)− ων(S \ {i}). That is, ων is convex.

Next, we show that C is stable. Since x|g ∈ C if ∆(x|g) = ∅, internal stability of C is direct.

Therefore, it is enough to show that C is externally stable. Let x|g ∈ Ω \ C. It follows from

Theorem 3 that x 6∈ Cω. By external stability of Cω there must exist S ⊂ N, y ∈ Cω such that∑
i∈S yi ≤ ων and yi > xi,∀i ∈ S. Then, Claim 2 and Theorem 3 imply that y|gc ∈ C. If S = N ,

then y|gc ∈ C ∩ ∆(x|g), i.e., C is externally stable. It is left to show that S = N . Assume the

negation, i.e., S 6= N . Construct allocation z ∈ Rn+ such that zi = yi+[ων(N)−ων(S)]/|N |,∀i ∈ N .

Since maxg∈GN ν(g) > maxg∈GS ν(g) due to convexity of ν, by construction we have zi > yi,∀i ∈ N

implying that y 6∈ Cω, which is a contradiction. Therefore, S = N implying that C is externally

stable.

4A characteristic function ω is convex if ω(T )−ω(T \ {i}) ≥ ω(S)−ω(S \ {i}) for all i ∈ S ⊂ T ⊂ N (see Shapley
(1971)).
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Finally, we need to show that C is unique and non-empty. In light of Theorem 1, note that

xe|gc ∈ C. Thus, we conclude that C 6= ∅. To prove the uniqueness, assume the negation. In

particular, assume that there exists another stable set of allocation-network pairs V 6= C. It follows

from Claim 1 that C ⊂ V . Consider an allocation-network pair x|g ∈ V \C. By external stability of

C, there must exist an allocation-network pair y|g′ such that y|g′ ∈ C∩∆(x|g). But, since C ⊂ V ,

then y|g′ ∈ V . That is, we have x|g ∈ V and y|g′ ∈ V , where y|g′ ∈ ∆(x|g), contradicting internal

stability of V .
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