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ABSTRACT 
 
We propose a simple model of trading based on the Kyle (1985) framework for securities that are 
included in Exchange Traded Funds (ETFs).  The model postulates that trading in ETFs will 
increase volatility in their component stocks, and that volatility spillovers will be increasing in 
liquidity and the relative proportion of each stock held by the fund.  An empirical analysis of 
trading in the S&P 500 SPDR and three heavily traded industry ETFs confirms these hypotheses, 
using both Amihud’s (2002) measure of illiquidity as well as stock turnover as proxies for 
liquidity.  The results are consistent with a positive volume-volatility relation as well as trading-
based explanations of volatility.  The findings are relevant to market practitioners, regulators and 
investors in these increasingly popular products, since ETFs may in fact contribute to volatility 
in their underlying component stocks, and thus to the stock market in general.   
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1.  INTRODUCTION 

Over the past decade, exchange-traded funds (ETFs) are have become the investment vehicle of 

choice for investors and traders seeking rapid, low-cost exposure to broad equity market indices, 

industry sectors, and other asset classes.  Hedge fund managers, institutional investors, and 

individuals increasingly turn to ETFs to implement their investment strategies.  Trading in these 

securities has become an important source of information dissemination in U.S. equity markets, 

and this paper examines how volatility information flows across broad market and industry ETFs 

and their largest component stocks.   

 Our simple theoretical model postulates that trading in ETFs increases volatility in their 

component stocks and predicts that the level of volatility spillovers is related to liquidity and the 

proportion of each stock in its respective ETF.  When stocks are included as component stocks in 

ETFs, they are exposed to an additional source of volatility that is generated by trading activity 

in ETFs.  To confirm these suppositions empirically, we conduct an analysis of volatility 

transmission among four of the most heavily traded ETFs in the U.S. using the recently 

developed spillover model of Diebold and Yilmaz (2009, 2012).  We find that volatility 

spillovers flow bi-directionally among ETFs and their largest component stocks, but the effect is 

significantly stronger from ETFs to stocks than in the reverse direction.  In addition, we find that 

the level of volatility spillovers from ETFs to component stocks is related to ETF liquidity and 

the proportion of each stock that is held in the ETFs.  We document significant volatility 

spillovers from ETFs to their component stocks that are driven by the well-documented volume-

volatility relation.  The results are consistent with trading-based explanations of volatility, and 

the results are relevant to market practitioners, regulators and investors in these increasingly 

popular products, since ETFs may indeed be inducing additional volatility in U.S. equity 

markets.   
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 Financial theory and the law of one price tell us that the prices of derivative instruments 

such as ETFs should be priced in a manner that is dependent on the value of their underlying 

securities.  However, there is substantial research that documents the fact that derivative prices 

often lead spot prices, and one explanation for this phenomenon is the lower trading costs and 

higher liquidity that is frequently associated with derivatives markets.  Chan (1992) finds that 

stock index futures lead cash market returns on an intraday basis, but only weak evidence of a 

relationship in the reverse direction.  He credits this result to the greater ability of futures 

markets to process market-wide information, and he cites the model of Admati and Pfleiderer 

(1988), which posits that information dissemination is related to the level of trading intensity.  

Hasbrouck (2003) investigates the price discovery process for equity ETFs, floor-traded stock 

index futures, and electronically-traded stock index futures (eMini’s) where the underlying asset 

is identical.  He finds that most price discovery for the S&P 500 and Nasdaq-100 indexes occurs 

in the eMini market, even though contract sizes are much smaller than the floor-traded contracts.  

More recently, Roll, Schwartz, and Subrahmanyam (2010), and Johnson and So (2012) find that 

ratio of options/stock (O/S) trading volume provides useful information regarding future stock 

returns.  They also note that the O/S ratio is positively correlated with firm size and therefore 

with liquidity in company shares.    

Given that trading in derivatives such as ETFs may affect future returns and volatility of 

their underlying stocks, we also examine the effects of liquidity and the volume-volatility 

relation.  Karpoff (1987) provides a survey of early work and Lamoureux and Lastrapes (1990) 

utilize a GARCH model that includes trading volume in the estimation of conditional volatility, 

finding it to be significant in the evolution of stock prices.  Such models are consistent with the 

“mixture of distributions” hypothesis whereby the arrival of new information (as proxied by 

volume) affects future return distributions.  The theoretical relation between the intensity of 
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information transmission and volatility are prominent in Kyle (1985) and Admati and Pfleiderer 

(1988).  In both models, higher trading volumes increase the presence of informed traders such 

that the price impact of volume (λ) is attenuated.  DeLong, Shleifer, Summers, and Waldmann 

(1990) and Shleifer and Vishny (1997) develop models whereby noise traders contribute to price 

volatility and arbitrageurs may rationally choose not to undertake profitable arbitrage 

opportunities.  Froot, Scharfstein, and Stein (1992) suggest that noise traders with short horizons 

may “herd” on information unrelated to economic fundamentals.  Avramov, Chordia, and Goyal 

(2006) propose a theoretical model of trading where selling activity induces excess volatility.   

Finally, the model of Malinova and Park (2011) predicts that “higher participation and 

systematic improvements in the quality of traders’ information lead to higher volume… and 

higher price volatility.” 

Empirical evidence regarding the relationship between liquidity and volatility is provided 

by Bessembinder and Seguin (1992), who find that equity market volatility is positively related 

to the “unexpected” component of futures volume (using an ARIMA (0,1,10) model).  Jones, 

Kaul, and Lipson (1994) find that volatility is related to the number of transactions in NASDAQ 

stocks, while Chan and Fong (2000) find that size of trades and order imbalances drive the 

volume-volatility relation in NASDAQ and NYSE stocks.  Chordia, Roll, and Subrahmanyam 

(2002) observe that “To explain volatility, it is imperative to account for order imbalance and 

volume.”  French and Roll (1986) find compelling evidence that trading activity is related to 

stock volatility since returns are as much as 72 times more volatile when the market is open than 

when it is closed.  They posit that this phenomenon is the result of differing rates of information 

transmission, but Haugen (2010) attributes this large difference in variance to trading activity 

itself.  Amihud (2002), Chordia, Roll, and Subrahmanyam (2001), and Haugen and Baker (1996) 

document the negative relation between liquidity and expected return.  Haugen, Talmor, and 
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Torous (1991) provide evidence of large shifts in volatility that are unrelated to economic 

conditions and/or events, leading them to conclude that “the noise component of volatility” stems 

from market microstructure itself.  Finally, a recent paper by Ben-David, Franzoni, and 

Moussawi (2012) examines these issues relative to ETFs specifically.  While the underlying 

intuition of their paper (that ETFs provide an additional source of volatility in component stocks) 

is quite similar to our study as well as consistent with our model, they employ different empirical 

techniques and high frequency data.  They too find evidence of price shocks that stem from ETF 

trading activity and link these shocks to ETF order imbalances and bid-ask spreads. 

The natural setting in which to examine the relationship among the volatilities of ETFs 

and their component stocks is the literature on volatility spillovers.  Much of the literature in this 

area applies GARCH models to focus on the effects of negative returns, interdependence, and 

volatility “contagion.”1  These studies and many others provide significant evidence of volatility 

spillovers across countries, asset classes, and securities.  But our objective is to model the 

spillovers among large numbers of securities simultaneously over time, so we choose to utilize 

the recently developed model of Diebold and Yilmaz (2009, 2012), which provides an efficient 

and tractable estimation procedure.  The model is similar in approach to the nonlinear 

multiplicative error models (MEM) developed by Engle (2002) and Engle, Gallo, and Velucchi 

(2008), and will be described further in Section 4.   

In addition to the theoretical and empirical examinations of liquidity and volatility, the 

study is motivated by the dramatic increase in the popularity of ETFs over the past decade, both 

in terms of assets under management and trading volumes.  According to BlackRock, one of the 

world’s largest asset managers and ETF issuers, U.S. ETF assets passed the $1 trillion mark on 

                                                 
1 See, for example; Forbes and Rigobon (2002), Hamao, Masulis, and Ng (1990) and Lin, Engle, and Ito (1994). 
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December 16, 2010.2  In terms of trading volume, U.S. ETF trading now accounts for 28.2% of 

total U.S. equity dollar volume, down slightly from 32.7% of volume in 2009.3  In light of this 

exponential and continuing growth, concerns have begun to surface that these derivative 

securities may be adversely creating volatility in their underlying securities and in equity markets 

at large.  Wurgler (2010) notes the recently rising correlations in equity markets and provides a 

link to the increase in index-linked investing.  He estimates that at least $8 trillion in investable 

assets are benchmarked to various U.S. broad-based indices alone, and suggests that this 

phenomenon is “distorting stock prices and risk-return tradeoffs.”  A significant portion of this 

increase is necessarily related to the popularity of ETFs, at both the market and industry levels.  

In addition to the exponential growth of ETFs as investment vehicles, the use of this 

particular data is motivated by the some observers who deem them a source of market instability.  

Bradley and Litan (2010) conduct an in-depth study of ETFs and conclude that they pose 

“unquantifiable but very real systemic risks of the kind that were manifested very briefly during 

the ‘Flash Crash’ of May 6, 2010.”  They attribute increasing volatility feedback effects to ETF 

trading activity which exacerbates market declines.  As evidence they point to the fact that on 

May 6, 2010, trading in the Russell 2000 Index ETF (IWM) amounted to over 56% of the total 

trading volume of its constituent stocks.  The joint SEC-CFTC report “Findings Regarding the 

Market Events of May 6, 2010” addressed ETFs directly, noting that “equity-based ETFs were 

disproportionately affected by the extreme price volatilities of that afternoon.”4  The report also 

states that the market for ETFs is dominated by professionals, so that a much larger proportion of 

liquidity is found near the last trade price than for typical equity securities.  Thus when prices 

                                                 
2 Business Wire, “U.S. ETF and ETP Assets Break Through $1 Trillion Milestone,”  December 17, 2010. 
3 National Stock Exchange.  “Monthly ETF Reports.”  September 30, 2010.   
4 United States (2010), ‘Findings Regarding the Market Events of May 6, 2010’,  U.S. Commodity Futures Trading 
Commission and U. S. Securities Exchange Commission, p.39.   
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exceed the “normal” levels supported by market liquidity, ETFs can be subject to “free falls” 

because a much larger proportion of resting limit orders are concentrated near the last price.  The 

SEC-CFTC preliminary report on this matter noted that “Of the U.S.-listed securities with 

declines of 60% or more away from the 2:40 p.m. transaction prices, which resulted in their 

trades being cancelled by the exchanges, approximately 70% were ETFs.”5  In essence, when the 

liquidity providers stepped away on May 6 there were relatively few resting limit orders below 

the last trade price (as opposed to many such orders on the much deeper books of common 

equities), so many trades were executed against “stub” quotes, at prices as little as $0.01 and as 

high as $100,000 per share.  Approximately 160 ETFs traded at prices almost 100% lower than 

their closing price on the previous day (i.e. at or near $0.01 per share).  In summary, there 

appears to be substantial empirical and anecdotal evidence of a link between ETF liquidity and 

equity market volatility.  Although ETFs have traditionally been seen as a cost-efficient and 

effective tool for asset allocation, there may be unintended consequences whose effects have not 

yet been fully realized.   

The following section presents the main hypothesis and contribution of the study to the 

literature.  Section 3 presents the data and summary statistics for the study.  Section 4 presents 

the methodology and the results of generalized volatility spillover model and documents the 

relation of volatility spillovers to measures of liquidity.  Section 5 contains some concluding 

remarks. 

 
2.  HYPOTHESIS DEVELOPMENT 

 
The study follows in the long stream of literature that examines the efficient markets hypothesis.  

We seek to understand how trading in ETFs disseminates volatility information to their 
                                                 
5 United States.  U.S. Commodity Futures Trading Commission and U. S. Securities Exchange Commission.  
Preliminary Findings Regarding the Market Events of May 6, 2010.  Washington.  GPO, 2010.   
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component stocks. It could reasonably be argued that lead-lag relationships in returns and 

volatility might exist in the direction from the underlying securities to the ETFs, since ETFs are 

derivative securities and information transmission is not instantaneous, as observed by Grossman 

and Stiglitz (1980).  But mean-variance causality should not flow in the opposite direction as 

stock prices should be only indirectly influenced by the price of a market-based or industry-

based ETF (perhaps due to new market-wide or industry-wide information).  The results 

documented here are inconsistent with the EMH and indicate that trading in ETFs contributes to 

the volatility innovation process of their underlying securities.  The other hypothesis tested here 

is whether or not ETFs are responsible for contributing to market volatility through the effects on 

their underlying securities.  We extend the literature on volatility spillovers and their causes, 

lending credence to news reports and academic research that attributes some level of market 

volatility to the trading of ETFs. 

We develop a theoretical framework based on the Kyle (1985) model of trading.  Because 

large institutions and traders are able to exchange ETFs for an equivalent portfolios of stocks 

(through the mechanism of “creation” and “redemption” units), they provide efficient 

opportunities for arbitrage. Whenever a unit price becomes more (less) expensive than the value 

of the underlying portfolio, the arbitrageur can buy (short) the underlying stocks, create (redeem) 

a unit and short (buy) the ETF on the market. These positions offset and the arbitrageur does not 

face any financial or fundamental risk to remove the mispricing and he continues trading until 

prices reflect fundamental values.  Any shock to the ETF price, whether created by new market 

or industry information or noise traders taking advantage of ETF liquidity, should be eliminated 

quickly with a correction in the price of ETF, the underlying stocks, or both. In summary, when a 

stock becomes a component in an ETF, it will be exposed to a new source of volatility.  
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We assume that when a stock is not included in an ETF, its price is determined by  

𝑃�𝑖~(𝑃�𝑖, σ𝑃𝑖
2 ) , and that the stock price follows the linear form of Kyle (1985): 𝑃�𝑡𝑖 = 𝛿𝑡𝑖 + 𝜆𝑖(𝜔�𝑡𝑖), 

where 𝛿𝑡𝑖 is the available information for stock i at time t, 𝜆𝑖 is price impact measure (illiquidity) 

for stock i, and 𝜔�𝑡𝑖  is the order flow.  ETF prices under arbitrage are determined by 𝐸�𝑡 =

∑ 𝑎𝑖𝑃�𝑖𝑡𝑛
𝑖=1 , where 𝑎𝑖 is the proportion of stock i in ETF’s portfolio and 𝑃�𝑖𝑡 the corresponding 

stock price.  At any point of time, the ETF price may deviate from its fundamental value 

(𝐸�𝑡+1 = ∑ 𝑎𝑖𝑃�𝑖𝑡 + 𝜀̃𝑛
𝑖=1 ).  Because the underlying prices are the same as before, we assume that 

the deviation is a supply/demand shock (𝜀̃~(0,σ𝜀2)) to the price which creates an arbitrage 

opportunity. Arbitrageurs will take advantage of the mispricing until prices converge at t+2, 

when the price correction happens in the ETF and/or its underlying stocks.  

In the Appendix we provide a proof to demonstrate that when a stock is included as a 

component of an ETF, price shocks to the ETF lead to a change of the underlying stocks’ order 

flow and price.  The magnitudes of these changes are: 

𝐸[∆𝜔�𝑖|𝜀̃] =
𝑎𝑖𝜀̃

∑ 𝑎𝑗2𝜆𝑗 + 𝜆𝐸𝑇𝐹𝑛
𝑗=1

                                                                                                   (1) 

𝐸[∆𝑃�𝑖|𝜀̃] =
𝑎𝑖𝜆𝑖𝜀̃

∑ 𝑎𝑗2𝜆𝑗 + 𝜆𝐸𝑇𝐹𝑛
𝑗=1

                                                                                                    (2) 

Assuming that there is no correlation between price and the shock, individual stock volatility will 

now be: 

σ��́�𝑖
2 = σ𝑃𝑖

2 +  [ 𝑎𝑖𝜆𝑖
∑ 𝑎𝑗2𝜆𝑗+𝜆𝐸𝑇𝐹𝑛
𝑗=1

]2 σ𝜀2                                                                                               (3)  

The second term captures ETF to stock volatility spillover, and the size of the spillover therefore 

depends on the illiquidity of the stock, the illiquidity of the ETF, the proportion of the stock in 
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each ETF, and the variance of the shock.  In the later sections we use the above conjecture to 

examine the impact of each variable on volatility spillovers by using a linear regression: 

𝑉𝑜𝑙 𝑆𝑝𝑖𝑙𝑙𝑖 = 𝛼 + 𝛽1𝜆𝑖 + 𝛽2𝜆𝐸𝑇𝐹 + 𝛽3𝑎𝑖 + 𝑢𝑖                                                                           (4) 

where 𝜆𝑖 is our proxy for stock illiquidity,  𝜆𝐸𝑇𝐹 is our proxy for ETF illiquidity, and 𝑎𝑖 is our 

proxy for the proportion of each stock held in their respective ETF.  From Equation (3), we 

observe that individual stock volatility is decreasing in stock and ETF illiquidity (or increasing in 

liquidity), and increasing in the proportion of each stock that is held in its respective ETF.  Thus 

we hypothesize that the signs for the coefficient 𝛽1 on stock illiquidity and 𝛽2 on ETF illiquidity 

and will be negative, while the sign for 𝑎𝑖 (proportion) should be positive.  We confirm these 

hypotheses empirically in Section 4. 

 

3. DATA 
 

The study utilizes daily ETF and component stock return and price data from January 5, 

1999 to June 29, 2012, obtained from Bloomberg Professional®, for the S&P 500 ETF (symbol 

SPY) and three popular industry ETFs; the Energy Select Sector SPDR – XLE, the Financials 

Select Sector SPDR – XLF, and the Industrials Select Sector SPDR – XLI.  The data includes 

high and low daily prices for each ETF as well as the ten largest component stocks that comprise 

the holdings of each ETF as of June 29, 2012.  There are 3,396 observations for the each of the 

ETFs and their respective component stocks, with the exception of GS, MET, and UPS, which 

began trading subsequent to the inception of the industry ETFs.  We present summary statistics 

for the returns of the ETFs and their largest component stocks in Table 1, where all returns are 

expressed in percentages, including dividends.   

Although Berkshire Hathaway “B” shares are currently among the top ten component 

holdings in the Financials ETF, we exclude them from the study due to their relative illiquidity 
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prior to their 50:1 split in 2010.  PNC Financial (PNC) is included as a substitute since it is the 

next largest component stock as of June 29, 2012.  Although these companies were top holdings 

in the funds on that date , they were not necessarily top holdings for the entire period of the 

study.  However, they were held in significant amounts by each of their respective ETFs for the 

entire period, and the fact that they may not have been in the top ten for the entire period 

decreases the likelihood of finding the volatility spillovers that we document below.  For each of 

the ETFs and component stocks, we also collect daily dollar turnover, defined as share volume 

times price and calculated on an intra-day basis by Bloomberg.  We present average daily 

turnover for the ETFs (by year) in Table 2, which we will discuss further in the results below. 

 
 

4.  METHODOLOGY & RESULTS 
 

A.  The Generalized Volatility Spillover Model 

In order to examine volatility spillovers among these ETFs and their largest component stocks, 

we implement the model of Diebold and Yilmaz (2009, 2012, hereafter DY), which relies on 

variance decompositions.  The model is similar in approach to the nonlinear multiplicative error 

models (MEM) developed by Engle (2002) and Engle, Gallo, and Velucchi (2008), although it 

uses a least squares approach.  Engle (2002) observes that even in the presence of non-negative 

data, least squares estimation remains consistent, and the advantage of the DY approach is that it 

enables us to generate a time series of spillover levels.  We will utilize these time series to link 

volatility spillovers to measures of liquidity over the past decade. 

The original spillover model in DY (2009) relies on Cholesky factorization to achieve 

orthogonality, making it sensitive to the ordering of variables.  The authors compensate for this 

limitation by rotating and randomizing orderings to achieve robust results.  In their 2012 paper, 
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however, DY adopt the generalized VAR framework of Koop, Pesaran, and Potter (1996) and 

Pesaran and Shin (1998), hereafter KPPS, which results in a model that is not sensitive to the 

ordering of variables.  We utilize the more recent model specification to avoid the ordering of 

variables issue.  

For each ETF and their ten largest component stock returns, we estimate eleven-variable 

vector autoregressions (VAR(p)), using p equal to five lags to represent one week of trading 

activity: 

𝑥𝑡 = ∑ 𝜙𝑖𝑥𝑡−𝑖5
𝑖=1 + 𝜀𝑡, where 𝜀 ~ (0, Σ), 𝑖. 𝑖.𝑑                                                                         (5)  

Using a moving average representation, this expression becomes: 

𝑥𝑡 = �𝐴𝑖𝜀𝑡−𝑖

∞

𝑖=0

,𝑤ℎ𝑒𝑟𝑒                                                                                                                (6) 

𝐴𝑖 = 𝜙1𝐴𝑖−1 + 𝜙2𝐴𝑖−2 + … + 𝜙5𝐴𝑖−5                                                                                    (7)  

𝐴0 is an eleven by eleven identity matrix where 𝐴𝑖 = 0 for i < 0, and the moving average 

coefficients are used to construct variance decompositions.  Thus we can calculate the fraction of 

the H-step-ahead error variance in a forecast of 𝑥𝑡 that is generated by shocks to  𝑥𝑗  ∀≠ 𝑖 for 

each i.  In our estimations we set H = 10 to generate 10-day ahead forecasts from the variance 

decompositions.  DY define own variances shares as “the fractions of the H-step-ahead error 

variances in forecasting xi that are due to shocks to xi for i = 1,2, …, N, and cross variance 

shares, or spillovers, as the fractions of the H-step-ahead error variances in forecasting xi that are 

due to shocks to xj, for i, j = 1,2, …, N, such that i ≠ j.”  Thus each firm’s H-step-ahead variance 

decomposition is denoted by 𝜃𝑖𝑗
𝑔(𝐻) for H = 1, 2, …, H: 

𝜃𝑖𝑗
𝑔(𝐻) =

𝜎𝑗𝑗−1 ∑ �𝑒𝑖′𝐴ℎΣ𝑒𝑗�
2𝐻−1

ℎ=0

∑ �𝑒𝑖′𝐴ℎΣ𝐴ℎ′ 𝑒𝑗�𝐻−1
ℎ=0

                                                                                                  (8) 
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The variance matrix for the error vector ε is denoted by Σ and the standard deviation of the error 

term for the jth equation is 𝜎𝑗𝑗.  The selection vector 𝑒𝑖 contains one as its ith element and zeros 

otherwise.  Because the generalized variance decomposition framework of KPPS does not 

orthogonalize the innovations from the error term, the contributions to the variance of the 

forecast error may not sum to unity.  Thus DY “normalize” each entry in the decomposition 

matrix (own and cross variance shares) by the row sum as follows: 

𝜃�𝑖𝑗
𝑔(𝐻) =

𝜃𝑖𝑗
𝑔(𝐻)

∑ 𝜃𝑖𝑗
𝑔(𝐻)𝑁

𝑗=1
                                                                                                                   (9) 

By definition, therefore, ∑ 𝜃�𝑖𝑗
𝑔(𝐻)𝑁

𝑗=1 = 1 and ∑ 𝜃�𝑖𝑗
𝑔(𝐻)𝑁

𝑖,𝑗=1 = 𝑁. 

 DY proceed to construct the total volatility spillover index using the volatility 

contributions from the preceding variance decomposition: 

 𝑆𝑔(𝐻) =

∑ 𝜃�𝑖𝑗
𝑔(𝐻)𝑁

𝑖,𝑗=1
𝑖≠𝑗

∑ 𝜃�𝑖𝑗
𝑔(𝐻)𝑁

𝑖,𝑗=1
∙ 100

=

∑ 𝜃�𝑖𝑗
𝑔(𝐻)𝑁

𝑖,𝑗=1
𝑖≠𝑗

𝑁
∙ 100                                                            (10) 

As DY observe in their 2012 paper, this “is the KPPS analog of the Cholesky factor based 

measure used by Diebold and Yilmaz (2009)” in which they measure global equity spillovers.  

They note that the index measures “the contribution of spillovers of volatility shocks… to the 

total forecast error variance.”  The present study will focus on the individual directional spillover 

contributions from the ETFs to their component stocks and also in the reverse direction. 

 

B.  Volatility Spillover Analysis 
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We utilize the DY framework to analyze volatility spillovers among four popular ETFs and their 

ten largest component stocks.  To do this, we require daily estimates of price variance, and we 

choose the following variance estimate that is based on daily high and low prices.  For each ETF 

and stock i, on day t, we calculate: 

𝜎�𝑖𝑡2 = 0.361[𝑙𝑛�𝑃𝑖,𝑡
ℎ𝑖𝑔ℎ� − 𝑙𝑛�𝑃𝑖,𝑡𝑙𝑜𝑤�]2.                                                                                     (11) 

where 𝑃𝑖𝑡
ℎ𝑖𝑔ℎ is the maximum (high) price observed for stock or ETF i on day t, and 𝑃𝑖𝑡𝑙𝑜𝑤 is the 

minimum (low) price observation.  Support for this measure of price variance is provided by 

Parkinson (1980), Alizadeh, Brandt, and Diebold (2002), and Chan and Lien (2003).  In Table 3 

we provide summary statistics for this calculation on an annualized percentage basis such that 

𝜎�𝑖𝑡 = 100�255 ∙ 𝜎�𝑖𝑡2 .  While the mean values for annualized standard deviation are generally in 

the 20 to 30 percent range for these high capitalization companies, there are clearly some 

extreme values observed during the financial crisis. 

 Utilizing the methodology outlined above, we calculate total volatility spillover indexes  

for each of the ETFs and their respective component stocks.  We utilize a 200-day rolling 

estimation period, 5 lags in the VARs, and a 10-day forecast horizon, then plot the total volatility 

spillover indexes in Figure 1.  Each of the spillover plots is characterized by the same periodic 

volatility “bursts” observed in DY (2009), who study global equity spillovers up to 2007.  These 

spikes in volatility are clearly seen during the collapse of the internet bubble in 2001-2002, 

during the financial crisis in 2007, and surrounding the “flash crash” in May 2010.  Our plots 

differ from those of DY (2009), however, in two ways.  First, the general level of spillovers is 

higher (the average spillover for SPY is 63.9 percent, while those in DY09 averaged 39.5 

percent), and the ETF spillovers reach almost 90 percent in recent years.  This result is 

reasonable given that we study closely related securities that comprise their respective ETFs, 
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while DY (2009) study less closely related global equity markets.  It is also consistent with rising 

levels of arbitrage activity in ETFs and their component stocks. 

Additionally, while there was no observable trend in the spillover plots in DY (2009) 

(their sample is from 1992 – 2007), the plots in Figure 1 display clear upward trends since 2003, 

when spillovers were at relatively low levels.  The inception of this trend coincides with the 

exponential growth in the trading volumes of the ETFs from 2003 – 2008 that can be seen in 

Table 2.  This result provides the first indication of the volume-volatility relation among ETFs 

and their component stocks.  The concurrent upward trends in volume and volatility are 

consistent with the trading-based explanations of Chan (1992), Chordia, Roll, and 

Subrahmanyam (2002) and Haugen (2010).  

While the prior analysis is useful to examine the behavior of total volatility spillovers 

among all these securities, we are particularly interested in the two-way interaction of volatility 

spillovers among the ETFs and their largest component stocks.  DY provide a method to examine 

these relationships through the calculation of “directional” volatility spillovers.  They use the 

normalized forecast variance shares from Equation (9) to compute approximate directional 

volatility spillovers transmitted by ETF or stock i to ETF or stock j.  These spillovers are 

approximate since the generalized variance decompositions may not sum to one, as noted above.  

DY normalize by row, so the directional spillovers “from others” sum to unity across rows, but 

the spillovers “to others” do not sum to one by columns.  We apply this methodology to each of 

the four ETFs and their ten largest component stocks to compute total and directional volatility 

spillovers for these securities, and we present the results in Table 4. 

First we note that the grand average of spillovers (plotted in Figure 1) among ETFs and 

stocks encompasses a fairly tight range, from 63.9 percent for SPY to 75.1 percent for XLE.  As 

noted earlier, however, spillovers are significantly higher since 2007.  Additionally, the total 
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directional spillovers from ETFs (contribution to others) are consistently higher than from ETFs 

to stocks.  For example, the contribution from SPY to its largest component stocks is 

approximately 119 percent (contribution to others), but only 76 percent (contribution from 

others) in the reverse direction.  Similar results obtain for the other three ETFs, where trading in 

ETFs is consistently providing more information regarding variance forecasts of the stocks than 

the stocks are providing about the variance forecasts for the ETFs.  These results are consistent 

with our model that hypothesizes greater variance for stocks that are included in derivative 

instruments such as ETFs.   

 Further information regarding the volatility transmission process can be gleaned from 

Table 4 by looking at the individual directional volatility spillovers in the first columns and first 

rows of each sub-table (highlighted in gray).  The largest spillovers consistently occur in the first 

column, reflecting spillovers from each ETF to its largest component stocks.  It is also 

noteworthy that the spillovers in column one generally decline with the percentage of each stock 

in the ETF (the stocks are sorted so that the top holding is just below the ETF own spillover 

while the smallest holding is at the bottom of the column).  This observation leads us to link the 

levels of volatility spillovers to measures of ETF and stock liquidity as well as the relative 

proportions of each stock held by the ETF. 

 As further evidence that ETF volatility spillovers play an important part in the variance 

innovations of component stocks, we present net pairwise volatility spillovers in Table 5.  These 

spillovers are obtained simply by subtracting the stock to ETF spillovers in column 1 of each 

section from their respective ETF to stock spillovers in row 1 of each section of Table 4.  In 42 

out of 50 cases, ETF to stock spillovers are greater than spillovers in the reverse direction.  The 

results are qualitatively similar when we normalize the variance shares by columns instead of by 
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rows.  It is clear that ETF to stock spillovers play an important role in determining future errors 

in forecast variance of the largest component stocks.            

 

C.  Volatility Spillovers and Liquidity 

Given the observations of the previous section and their link to our theoretical model, we next 

examine how volatility spillovers are related to measures of liquidity and the proportion of each 

component stock held in each ETF.  The first step in this process is to generate time series of the 

individual directional spillovers.  The values in Table 4 are effectively average spillovers for 

each stock and ETF for each of the 200-day moving average estimations, so we accomplish this 

by extracting the daily spillover values as they are calculated on a daily basis in Equation (11).  

We then use these daily volatility spillover time series as dependent variables in a series of 

regressions designed to measure the impact of liquidity and the proportion of each stock in its 

respective ETF on spillover levels. 

    Our first potential proxy for liquidity is a time series analog to that provided by Amihud 

(2002), which we define as: 

 

𝐼𝐿𝐿𝐼𝑄𝑖,𝑡 =
1

200∑ �𝑅𝑖,𝑡�200
𝑡=1

𝑉𝑂𝐿𝑖,𝑡
                                                                                                            (12) 

 

where �𝑅𝑖,𝑡� is the absolute value of daily return for each stock and ETF and 𝑉𝑂𝐿𝑖,𝑡 represents 

daily ETF and stock dollar turnover.   We employ a 200-day moving average of this figure so 

that it is comparable to the 200-day rolling estimates of volatility spillovers.  In an extensive 

study of liquidity measures, Goyenko, Holden, and Trzcinka (2009) find that this measure 

provides an assessment of the price impact that is at least as effective as more recent and more 

complicated measures of liquidity.  However, we cannot utilize this exact measure since volume 
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(and dollar turnover) is not stationary in general, and clearly not stationary during our sample 

period.  To eliminate the effect of the rising trend in turnover, we adopt Amihud’s (2002) mean-

adjusted illiquidity that we modify by first calculating average illiquidity for each of the ten 

stocks in each ETF:  

 
𝐴𝐼𝐿𝐿𝐼𝑄𝑡 =  1

10
∑ 𝐼𝐿𝐿𝐼𝑄𝑖,𝑡

10
𝑖=1                                                                                                                   (13)  

 
We then calculate the mean-adjusted illiquidity for each stock and ETF as follows: 
 

𝐼𝐿𝐿𝐼𝑄𝑀𝑖,𝑡 =
𝐼𝐿𝐿𝐼𝑄𝑖,𝑡
𝐴𝐼𝐿𝐿𝐼𝑄𝑡

                                                                                                                  (14) 

This measure of illiquidity is not sensitive to the overall level of turnover, and provides a good 

proxy for the relative illiquidities of the ETFs and their component stocks.  Our model also 

postulates that the level of volatility spillovers is related to the proportion of each stock 

contained in the ETFs.  We therefore estimate a proxy for the proportion of each stock in each 

ETF as if the ten component stocks are the only ETF holdings: 

𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛𝑖,𝑡 =
𝑀𝐾𝑇𝐶𝐴𝑃𝑖,𝑡

∑ 𝑀𝐾𝑇𝐶𝐴𝑃𝑖,𝑡10
𝑖=1

                                                                                           (15) 

where 𝑀𝐾𝑇𝐶𝐴𝑃𝑖,𝑡 is the closing daily market capitalization for each stock i at time t. 

 In order to estimate the relations among these variables and volatility spillovers, we 

estimate the following regression equation: 

𝑙𝑛 (𝑉𝑜𝑙𝑆𝑝𝑖𝑙𝑙𝑖,𝑡)  = 𝛼 + 𝛽1𝐼𝐿𝐿𝐼𝑄𝑀𝑖,𝑡 + 𝛽2𝐼𝐿𝐿𝐼𝑄𝑀𝐸𝑇𝐹,𝑡 + 𝛽3𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛𝑖,𝑡 + 𝜀𝑖,𝑡        (16) 

The regressions are estimated using robust standard errors that are clustered by 200-day periods, 

consistent with the 200-day rolling estimation period for the volatility spillovers, as suggested by 

Petersen (2009).  The results of these regressions are contained in Table 6, and are conducted for 

two separate time periods.  First, we estimate the results for the entire sample from 1999 to 2012, 

and also from 2003 to 2012.  The estimation of the sub-period results are motivated by two 
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factors.  First, the industry ETF volumes are relatively low during the early years of the sample, 

so the economic significance of these results may be low.  Each of the industry ETFs did not 

reach $10 million in average daily turnover until 2004.  Also, the exponential growth of ETF 

trading volume begins in 2003, so a separate examination of the results during this sample period 

seems appropriate. 

 In Panel A of Table 6, we observe that ETF illiquidity is a significant driver of volatility 

spillovers for both the full sample and the sub-period for three of the four ETFs.  The coefficients 

for ETF illiquidity are negative and significant as predicted by our model, and the negative 

coefficient for market illiquidity (SPY) is much larger than for the others.  This provides an 

indication that illiquidity in this market-based ETF plays a more significant role in the volatility 

generating process for its component stocks, which is consistent with the fact that turnover is 

much larger for SPY than for the industry ETFs.  It is also notable that the constants for all of the 

estimations are large and highly significant.  Thus there seems to be some constant level of 

volatility spillover driving the forecast variance of each ETFs’ component stocks that is 

unrelated to liquidity.  The coefficients on stock illiquidity are negative and significant in two 

cases (XLE and XLF) during both the full sample and the sub-period.  So in these two cases 

illiquidity in the component stocks actually contribute to the ability of the ETF to “spill over” 

volatility back to the components, which is consistent with a volatility feedback effect.  The 

coefficients on proportion are positive and significant only in the full sample for two ETFs, and 

for none of them in the later period, although they remain positive.  This may be the result of the 

fact that proportion and illiquidity are correlated, and the effects of proportion are being 

subsumed in the illiquidity coefficients. 

The results for stock to ETF spillovers presented in Panel B of Table 6 are less 

conclusive.  While there is still also a constant level of volatility spillovers from stocks to ETFs, 
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the effects of illiquidity and proportion are generally smaller, and only significant in the later 

period for SPY, which once again may be the result of its extremely high levels of turnover.  

However, proportion is significant and large for XLF in the both periods indicating that the 

largest financial firms are important to the volatility generating process for this ETF.   

We also conduct an additional examination of the relationship between liquidity and 

volatility using raw dollar turnover as a proxy.  Since turnover is not stationary, we de-trend 

turnover into its “expected” and “unexpected” components using a simple AR(1) process, in 

manner similar to those suggested by Bessembinder and Seguin (1992), Amihud (2002), and Lo 

and Wang (2010): 

𝑙𝑛(𝑇𝑢𝑟𝑛𝑜𝑣𝑒𝑟)𝑖,𝑡 =  𝛼 + 𝛽 𝑙𝑛(𝑇𝑢𝑟𝑛𝑜𝑣𝑒𝑟)𝑖,𝑡−1 + 𝜀𝑖,𝑡                                                          (17) 

We use the residual estimates from that equation to calculate 200-day moving averages of 

“unexpected” volume for both the ETFs and their component stocks, then utilize them as 

independent variables in the following regression: 

 𝑙 𝑛�𝑉𝑜𝑙 𝑆𝑝𝑖𝑙𝑙𝑖,𝑡� = 𝛼 + 𝛾1𝜀𝑡,𝑆𝑇𝐾 + 𝛾2𝜀𝑡,𝐸𝑇𝐹 +  𝛾3𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛𝑖,𝑡 + 𝑢𝑡                              (18) 

Once again, the standard errors are clustered as recommended by Petersen (2009), and the results 

of these estimations are presented in Table 7.  The results are generally similar to the results in 

Table 6.  The volatility spillovers from ETFs to stocks are driven by ETF volume in three out of 

four cases for the later “high volume” period, which is consistent with the volume-volatility 

relation.  The coefficients for proportion are significant and positive for all the ETFs in the full 

sample, and for two of the ETFs in the sub-sample.  Positive coefficients are expected here 

because we are using volume as a proxy for liquidity, whereas in the previous results we proxied 

illiquidity.  There is also a constant level of spillovers that is large and significant.   



20 
 

In Panel B we present the results for stock to ETF spillovers, where the results are once 

again slightly less conclusive than those in Panel A.  ETF liquidity is positively related to 

spillovers only in half of the estimations, and the results for stock liquidity are mixed.  

Proportion is a significant factor in the full sample for all of the stock to ETF spillovers, but in 

only one ETF for the later period, indicating that the importance of this factor has attenuated as 

volume in the ETFs has grown much larger.  The fact that the coefficient for ETF liquidity is 

positive and significant for SPY in the full sample but not in later years is another indication of 

the increased importance of trading in ETFs in the volatility generating process of their 

underlying component stocks.  Finally, the large positive constant level of volatility spillover 

remains a significant feature of our results.  These results demonstrate that the volume-volatility 

relation we document is robust to two different proxies for liquidity and provide an indication 

that trading in ETFs may in fact contribute to the volatility generating process of their largest 

component stocks. 

 

5.  CONCLUSION 

We propose a simple theoretical model that seeks to explain the volatility generating process of 

ETFs and their largest component stocks.  The model posits that shocks to ETF prices, which 

may be driven by new fundamental information, liquidity-seeking institutions and/or “noise” 

traders, increase the volatility of component stocks.   

Using the recently developed volatility spillover model of Diebold and Yilmaz (2009, 

2012), we examine volatility transmission among four of the most heavily traded ETFs and their 

largest component stocks.  An examination of volatility spillover plots for the ETFs reveals the 

same volatility “bursts” found in DY (2009) that occur during periods of market instability.  But 
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we also observe a clear upward trend in volatility spillovers since 2003, which is concurrent with 

the dramatic rise in ETF trading over this period.   

We find that volatility spillovers in these securities flow bi-directionally, but the effect is 

stronger from ETFs to stocks than in the reverse direction, regardless of how the variance shares 

are normalized.  In addition, using robust regression analysis, we demonstrate that the level of 

volatility spillovers from ETFs to component stocks is related to ETF liquidity and the 

proportion of each stock that is held in the ETFs.  The results are strongest for the most heavily 

traded ETF, the S&P 500 SPDR, which indicates that price and volume shocks at the broad 

market level generate volatility spillovers in individual stock prices.    We document significant 

volatility spillovers from ETFs to their component stocks that are driven by liquidity, using two 

different proxies to document a volume-volatility relation in these securities.  The results are 

consistent with trading-based explanations of volatility, and they are relevant to market 

practitioners, regulators and investors in these increasingly popular products, since ETFs may 

indeed be inducing additional volatility in U.S. equity markets.   
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Table 1.  Summary Statistics of Daily Returns for ETFs and 10 Largest Component Stocks. 

January 5, 1999 – June 29, 2012 

SPY:  S&P 500 SPDR 
          Symbol/Statistic SPY AAPL XOM MSFT IBM GE CVX T JNJ WFC PG 

N 3395 3395 3395 3395 3395 3395 3395 3395 3395 3395 3395 
Mean 0.0099 0.1189 0.0341 0.0035 0.0269 -0.0027 0.0408 0.0063 0.0235 0.0256 0.0183 
Median 0.0696 0.1120 0.0722 0.0000 0.0250 0.0000 0.0772 0.0251 0.0149 0.0000 0.0224 
Std. Deviation 1.3625 3.1554 1.6963 2.1461 1.8768 2.1296 1.7416 1.8852 1.3559 2.7636 1.5509 
Variance 1.8564 9.9566 2.8774 4.6058 3.5223 4.5351 3.0331 3.5540 1.8384 7.6373 2.4054 
Skewness 0.0011 -3.7682 0.0435 -0.0342 -0.0974 0.0236 0.0861 0.1198 -0.3447 0.8102 -3.8357 
Kurtosis 8.6065 87.2595 8.9635 7.7233 7.7864 6.8795 10.1630 5.2167 12.9505 21.2060 89.6674 

            XLE:  Energy Select Sector SPDR 
         Symbol/Statistic XLE XOM CVX SLB OXY COP APC APA NOV HAL EOG 

N 3395 3395 3395 3395 3395 3395 3395 3395 3395 3395 3395 
Mean 0.0371 0.0341 0.0408 0.0377 0.0784 0.0448 0.0453 0.0653 0.0720 0.0242 0.0707 
Median 0.0881 0.0722 0.0772 0.0246 0.0874 0.0959 0.0979 0.1171 0.0782 0.0628 0.0836 
Std. Deviation 1.8881 1.6963 1.7416 2.5416 2.2698 1.9445 2.6730 2.5281 3.3090 3.1339 2.6345 
Variance 3.5650 2.8774 3.0331 6.4599 5.1518 3.7809 7.1447 6.3911 10.9498 9.8212 6.9408 
Skewness -0.4160 0.0435 0.0861 -0.2855 -0.2415 -0.3961 -0.5394 -0.1074 -0.2925 -1.5835 -0.1163 
Kurtosis 8.3191 8.9635 10.1630 4.4238 8.0516 5.9274 7.6085 4.6691 6.2164 32.3485 4.1799 

            XLF:  Financials Select Sector SPDR 
        Symbol/Statistic XLF WFC JPM BAC C USB AXP SPG GS MET PNC 

N 3395 3395 3395 3395 3395 3395 3395 3395 3313 3079 3395 
Mean -0.0058 0.0256 0.0029 -0.0253 -0.0545 0.0148 0.0249 0.0705 0.0213 0.0302 0.0169 
Median 0.0000 0.0000 -0.0247 0.0000 0.0000 0.0297 0.0000 0.1088 0.0000 0.0302 0.0000 
Std. Deviation 2.1738 2.7636 2.8553 3.3451 3.5628 2.5234 2.5917 2.4184 2.7306 0.0000 2.7057 
Variance 4.7255 7.6373 8.1527 11.1898 12.6938 6.3677 6.7168 5.8485 7.4561 8.9919 7.3208 
Skewness -0.0071 0.8102 0.2749 -0.2883 -0.4668 -0.0495 0.0200 0.2466 0.6498 -0.3104 -1.3612 
Kurtosis 10.9660 21.2060 10.2141 21.6220 32.7597 10.7950 7.2461 15.6273 12.3008 18.3857 57.3571 

            XLI:  Industrials Select Sector SPDR 
        Symbol/Statistic XLI GE UPS UTX MMM UNP BA CAT HON EMR DE 

N 3395 3395 3180 3395 3395 3395 3395 3395 3395 3395 3395 
Mean 0.0182 -0.0027 0.0227 0.0374 0.0353 0.0559 0.0317 0.0475 0.0165 0.0230 0.0546 
Median 0.0760 0.0000 -0.0160 0.0326 0.0255 0.0318 0.0401 0.0558 0.0163 0.0000 0.0077 
Std. Deviation 1.4749 2.1296 1.6658 1.9350 1.6280 1.9631 2.0973 2.2699 2.2866 1.9610 2.3777 
Variance 2.1753 4.5351 2.7749 3.7442 2.6503 3.8539 4.3987 5.1525 5.2283 3.8455 5.6537 
Skewness -0.2117 0.0236 2.1666 -1.4309 0.0935 -0.2010 -0.1744 -0.1029 -0.2121 -0.0563 -0.1274 
Kurtosis 4.7609 6.8795 42.9894 28.4974 4.0564 3.2747 4.9244 3.9788 10.2334 5.9124 4.3106 

 
This table presents summary statistics of returns for the four ETFs and their ten largest component stocks for the 
sample period of January 5, 1999 to June 29, 2012.  Three stocks (GS, MET, and UPS) were not publicly traded at 
the inception of the study, thus the number of observations is slightly lower than for the rest of the sample.  
Although Berkshire Hathaway “B” shares is currently a top ten component of XLF, we exclude that company from 
the study due to the relative illiquidity of those shares prior to the 50:1 split in 2010.  PNC Financial (PNC) is 
included as the next largest substitute. 
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Table 2.  ETF Average Daily Turnover ($ millions) 

 
SPY 

 
XLE 

 
XLF 

 
XLI 

Year 
Average Daily 

Turnover   
Average Daily 

Turnover   
Average Daily 

Turnover   
Average Daily 

Turnover 

1999 
                  

955.00  
 

                      
4.80  

 

                      
5.60  

 

                      
1.30  

2000 
               

1,090.00  
 

                    
10.70  

 

                    
13.50  

 

                      
1.82  

2001 
               

1,610.00  
 

                    
11.90  

 

                    
19.60  

 

                      
1.72  

2002 
               

3,220.00  
 

                      
8.40  

 

                    
55.10  

 

                      
4.36  

2003 
               

3,920.00  
 

                      
9.96  

 

                    
53.90  

 

                      
7.54  

2004 
               

4,870.00  
 

                    
65.10  

 

                    
97.00  

 

                    
18.60  

2005 
               

7,420.00  
 

                  
680.00  

 

                  
220.00  

 

                    
26.70  

2006 
               

9,160.00  
 

               
1,280.00  

 

                  
263.00  

 

                    
47.30  

2007 
             

23,400.00  
 

               
1,520.00  

 

               
1,430.00  

 

                  
152.00  

2008 
             

35,100.00  
 

               
2,460.00  

 

               
3,520.00  

 

                  
295.00  

2009 
             

22,500.00  
 

               
1,230.00  

 

               
1,730.00  

 

                  
258.00  

2010 
             

23,800.00  
 

               
1,040.00  

 

               
1,450.00  

 

                  
484.00  

2011 
             

27,300.00  
 

               
1,510.00  

 

               
1,300.00  

 

                  
712.00  

2012 
             

21,000.00    
               

1,050.00    
               

1,160.00    
                  

558.00  

Average 
             

13,238.93  
 

                  
777.20  

 

                  
808.41  

 

                  
183.45  

 

This table presents average daily dollar turnover, by year, for the four ETFs during the sample 
period of January 5, 1999 to June 29, 2012.  The data is calculated as price times volume on an 
intraday basis by the Bloomberg Professional ® service, and is presented in millions of U.S. 
dollars. 
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Table 3.  Summary Statistics of Annualized Volatility for ETFs and 10 Largest Component 

Stocks (in Percent). 

SPY:  S&P 500 SPDR 
          Symbol/Statistic SPY AAPL XOM MSFT IBM GE CVX T JNJ WFC PG 

N 3396 3396 3396 3396 3396 3396 3396 3396 3396 3396 3396 
Mean 15.18 34.80 20.00 24.05 21.05 24.22 20.62 23.45 16.17 27.11 17.36 
Std. Dev. 10.78 21.30 12.27 14.68 13.60 18.03 12.56 15.15 10.25 25.18 13.94 
Min. 2.28 3.98 4.39 4.50 2.81 3.12 4.50 3.92 2.89 3.47 3.43 
Max. 114.51 248.85 156.87 121.63 120.93 226.10 162.66 164.93 120.07 247.28 446.03 

            XLE:  Energy Select Sector SPDR 
         Symbol/Statistic XLE XOM CVX SLB OXY COP APC APA NOV HAL EOG 

N 3396 3396 3396 3396 3396 3396 3396 3396 3396 3396 3396 
Mean 20.92 20.00 20.62 31.28 26.68 23.22 31.61 29.96 39.20 36.96 32.54 
Std. Dev. 13.58 12.27 12.56 16.62 16.14 13.99 18.57 17.26 24.34 23.91 18.78 
Min. 4.29 4.39 4.50 5.15 3.66 4.20 5.86 5.51 3.53 7.88 5.73 
Max. 170.15 156.87 162.66 185.80 169.44 161.57 235.96 204.12 306.72 618.32 220.31 

            XLF:  Financials Select Sector SPDR 
        Symbol/Statistic XLF WFC JPM BAC C USB AXP SPG GS MET PNC 

N 3396 3396 3396 3396 3396 3396 3396 3396 3315 3081 3396 
Mean 21.15 27.11 30.08 29.67 32.85 27.87 28.50 24.23 29.69 29.67 26.65 
Std. Dev. 17.79 25.18 23.09 29.94 33.76 23.20 21.78 22.15 22.63 26.95 24.86 
Min. 2.42 3.47 4.10 3.88 3.41 3.70 2.41 1.69 0.00 0.00 2.99 
Max. 169.23 247.28 252.29 460.85 570.92 322.25 257.28 246.86 320.98 262.33 512.63 

            XLI:  Industrials Select Sector SPDR 
        Symbol/Statistic XLI GE UPS UTX MMM UNP BA CAT HON EMR DE 

N 3396 3396 3181 3396 3396 3396 3396 3396 3396 3396 3396 
Mean 16.36 24.22 17.91 22.45 19.93 23.74 25.13 27.01 26.71 23.84 28.76 
Std. Dev. 11.15 18.03 12.70 14.12 12.53 15.47 14.44 15.67 17.04 14.47 17.87 
Min. 2.02 3.12 0.00 4.08 4.18 3.76 4.67 5.91 5.24 4.43 4.12 
Max. 111.27 226.10 200.71 163.07 274.75 148.93 136.65 203.11 239.02 148.31 211.77 

 

This table presents summary statistics for our volatility estimates for the four ETFs and their ten largest component 
stocks for the sample period of January 5, 1999 to June 29, 2012.  Daily volatility is estimated using daily high and 
low prices using the method suggested by Parkinson (1980) and others.  For each ETF and stock i, on day t, we 
calculate: 

𝜎�𝑖𝑡2 = 0.361[ln�𝑃𝑖,𝑡
ℎ𝑖𝑔ℎ� − 𝑙𝑛�𝑃𝑖,𝑡𝑙𝑜𝑤�]2.                                                                                     (11) 

where 𝑃𝑖𝑡
ℎ𝑖𝑔ℎ is the maximum (high) price observed for stock or ETF i on day t, and 𝑃𝑖𝑡𝑙𝑜𝑤 is the minimum (low) price 

observation.  We provide summary statistics for this calculation on an annualized percentage basis such that 
𝜎�𝑖𝑡 = 100�255 ∙ 𝜎�𝑖𝑡2 .   
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Figure 1. – Total Volatility Spillover Indices 

 

Utilizing the methodology of Diebold and Yilmaz (2012), we calculate total volatility spillover indexes  for each of the ETFs and their respective 
component stocks.  The time series estimates are presented here using a 200-day rolling estimation period, 5 lags in the VARs, and a 10-day 
forecast horizon.  Each of the spillover plots is characterized by the same periodic volatility “bursts” observed in DY (2009), who study global 
equity spillovers up to 2007.  These spikes in volatility are clearly seen during the collapse of the internet bubble in 2001-2002, during the 
financial crisis in 2007, and surrounding the “flash crash” in May 2010. 
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Table 4.  Directional Volatility Spillovers. 
 
 
Panel A:  S&P 500 SPDR (SPY) 
 

      
CONTRIBUTION FROM 

               

 
Symbol SPY AAPL XOM MSFT IBM GE CVX T JNJ WFC PG 

From 
Others 

 
SPY 24.3 3.3 12.9 4.7 7.0 8.2 13.9 7.4 8.6 7.0 2.5 76 

 
AAPL 7.6 44.5 4.7 4.0 8.7 5.9 4.7 2.7 3.8 1.4 12.0 56 

 
XOM 15.6 2.6 24.7 2.7 4.6 5.1 20.1 7.0 11.0 4.4 2.2 75 

 
MSFT 11.7 4.2 7.6 35.6 11.2 5.9 7.1 5.8 7.2 3.3 0.5 64 

 
IBM 12.2 7.2 6.1 9.0 35.1 6.6 6.4 6.4 6.0 3.1 1.8 65 

TO GE 11.3 3.9 5.6 2.8 5.5 37.3 4.4 5.0 5.9 13.7 4.8 63 

 
CVX 17.1 2.4 19.5 2.4 4.8 5.3 27.8 5.7 9.1 4.5 1.4 72 

 
T 13.1 2.4 9.1 3.5 7.9 5.9 7.7 34.3 10.2 5.4 0.5 66 

 
JNJ 12.9 2.6 12.7 4.0 6.0 6.8 10.4 8.7 30.3 3.7 1.9 70 

 
WFC 9.5 1.0 3.4 2.0 4.8 15.5 3.0 2.4 2.6 55.2 0.5 45 

 
PG 7.8 14.8 6.7 0.8 3.3 8.0 4.7 0.9 4.0 1.0 48.1 52 

 
Contr. to others 119 44 88 36 64 73 82 52 68 47 28 703 

 
Contr. including own 143 89 113 72 99 111 110 86 99 103 76 63.90% 

 
 
 
Panel B:  Energy Select Sector SPDR (XLE) 
 

      
CONTRIBUTION FROM 

                  

 
Symbol XLE XOM CVX SLB OXY COP APC APA NOV HAL EOG 

From 
Others 

 
XLE 17.7 8.9 9.5 9.9 9.9 12.8 7.3 9.2 8.5 0.9 5.3 82 

 
XOM 13.9 17.7 11.8 9.5 8.2 12.2 5.6 9.2 7.1 0.8 4.0 82 

 
CVX 13.6 11.3 15.6 9.2 8.9 13.0 6.2 8.9 8.0 0.6 4.6 84 

 
SLB 11.6 7.2 7.4 22.2 9.7 10.4 6.6 9.0 8.1 1.0 6.8 78 

 
OXY 12.5 6.9 8.4 10.6 18.0 12.7 7.1 8.3 7.7 0.5 7.2 82 

 
COP 13.0 8.8 9.3 10.1 10.2 19.9 6.6 8.8 7.4 0.5 5.5 80 

TO APC 10.5 5.7 6.4 9.7 8.5 9.8 23.9 9.3 7.1 0.6 8.5 76 

 
APA 11.8 7.1 7.4 10.3 8.3 10.5 7.3 20.2 8.9 0.7 7.4 80 

 
NOV 10.9 6.0 7.0 11.1 7.8 10.2 6.8 10.1 22.6 0.8 6.6 77 

 
HAL 4.5 2.9 2.2 4.7 2.2 2.7 1.9 2.3 2.8 71.9 1.9 28 

 
EOG 9.4 5.7 6.5 9.6 9.0 9.5 7.9 10.5 7.0 0.5 24.5 75 

 
Contr. to others 112 70 76 95 83 104 63 86 73 7 58 826 

 
Contr. including own 129 88 91 117 101 124 87 106 95 79 82 75.10% 
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Table 4 (continued).  Directional Volatility Spillovers. 
 
 

Panel C:  Financials Select Sector SPDR (XLF) 
 

      
CONTRIBUTION FROM 

               

 
Symbol XLF WFC JPM BAC C USB AXP SPG GS MET PNC 

From 
Others 

 
XLF 21.2 12.6 11.1 11.7 4.1 6.3 7.1 6.2 8.1 7.7 3.8 79 

 
WFC 12.8 25.1 8.2 16.1 7.2 9.3 4.4 2.8 4.3 6.4 3.6 75 

 
JPM 13.1 11.0 25.7 10.6 7.1 7.2 6.8 3.5 4.5 6.4 4.1 74 

 
BAC 10.0 15.4 6.1 31.3 6.1 9.6 3.9 2.2 1.6 4.2 9.6 69 

 
C 6.7 9.5 9.6 12.8 39.4 2.9 5.1 2.8 1.7 7.4 2.2 61 

 
USB 10.1 14.1 7.2 14.4 5.7 26.9 4.6 2.7 3.1 5.8 5.4 73 

TO AXP 13.1 10.2 7.3 9.7 1.9 5.1 28.9 5.9 6.4 8.6 2.9 71 

 
SPG 11.6 5.5 7.1 8.0 5.5 3.1 7.2 27.1 4.3 14.5 6.1 73 

 
GS 15.3 7.1 10.5 6.0 2.5 2.5 6.0 7.3 32.5 8.9 1.3 68 

 
MET 6.4 7.4 3.5 10.0 3.7 3.1 9.1 4.4 5.0 44.3 3.0 56 

 
PNC 7.2 9.6 5.4 16.6 3.2 10.5 3.8 3.0 2.4 6.3 32.1 68 

 
Contr. to others 106 102 76 116 47 60 58 41 41 76 42 766 

 
Contr. including own 128 127 102 147 86 87 87 68 74 120 74 69.60% 

 
 
 
Panel D:  Industrials Select Sector SPDR (XLI) 
 

      
CONTRIBUTION FROM 

                  

 
Symbol XLI GE UPS UTX MMM UNP BA CAT HON EMR DE 

From 
Others 

 
XLI 24.0 8.3 8.1 8.0 6.8 9.0 7.1 9.4 4.3 7.3 7.8 76 

 
GE 10.9 44.0 5.2 4.6 7.0 3.0 4.6 8.6 3.4 3.6 5.1 56 

 
UPS 9.4 5.1 29.3 9.4 3.6 9.4 3.3 10.3 5.5 5.5 9.1 71 

 
UTX 10.2 5.0 10.9 25.5 5.3 7.1 7.9 7.8 7.2 6.5 6.5 74 

 
MMM 12.3 7.8 5.2 9.2 35.6 3.9 8.9 6.9 4.0 3.1 3.0 64 

TO UNP 11.5 5.8 7.9 6.4 2.5 31.0 4.2 8.0 3.1 5.1 14.4 69 

 
BA 11.0 5.4 7.0 11.2 6.5 6.0 29.5 7.1 3.9 5.1 7.2 71 

 
CAT 10.5 8.2 9.8 7.1 4.6 6.9 4.3 28.9 3.8 5.0 10.9 71 

 
HON 7.8 4.5 8.1 11.3 3.8 4.9 4.6 6.2 40.2 3.8 4.8 60 

 
EMR 11.8 5.8 9.2 8.7 2.6 9.2 5.3 8.0 4.8 26.4 8.2 74 

 
DE 9.2 4.6 8.0 6.2 1.8 9.0 3.2 9.7 2.9 3.9 41.5 59 

 
Contr. to others 105 61 79 82 45 68 53 82 43 49 77 744 

 
Contr. including own 129 105 109 108 80 99 83 111 83 75 118 67.60% 

 
 
The table contains approximate directional volatility spillovers transmitted by ETF or stock i 
(contained in the top rows) to ETF or stock j (contained in the left-most columns).  The “from” 
spillovers are approximate since the generalized variance decompositions may not sum to one 
since they are normalized by row sum and not column sum, as in Diebold and Yilmaz (2012).  
The results are qualitatively similar when normalizing by column instead of by row.  The 
component stocks are sorted such that the stock that comprises the greatest percentage of each 
ETF (as of June 29, 2012) is just below the ETF in the left-most column, and then in descending 
order of proportion.  
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Table 5.  Net Pairwise Volatility Spillovers for ETFs and 10 Largest Component Stocks. 

  
FROM 

  
FROM 

  
FROM 

  
FROM 

 
Symbol SPY     XLE     XLF     XLI 

 
AAPL 4.30 

 
XOM 10.60 

 
WFC 9.50 

 
GE 7.60 

 
XOM 2.70 

 
CVX 0.70 

 
JPM 0.20 

 
UPS -3.50 

 
MSFT 7.00 

 
SLB 6.90 

 
BAC 5.30 

 
UTX 5.50 

 
IBM 5.20 

 
OXY 5.50 

 
C -0.30 

 
MMM 5.30 

TO GE 3.10 
 

COP 4.80 
 

USB 1.90 
 

UNP 3.30 

 
CVX 3.20 

 
APC -3.40 

 
AXP -0.80 

 
BA -2.90 

 
T 5.70 

 
APA 4.40 

 
SPG 4.20 

 
CAT 3.10 

 
JNJ 4.30 

 
NOV 2.30 

 
GS 6.70 

 
HON -0.80 

 
WFC 2.50 

 
HAL -2.50 

 
MET -0.60 

 
EMR 4.80 

 
PG 5.30   EOG 6.90   PNC 4.70   DE 6.70 

 
Mean 4.33     3.62     3.08     2.91 

 

This table contains net pairwise volatility spillovers that are calculated by subtracting the stock to 
ETF spillovers in column one of each Panel of Table 4 from their respective ETF to stock 
spillovers in row one of each Panel of Table 4.  Thus these figures represent the volatility 
spillover from each ETF to their respective component stocks in excess of the volatility spillover 
in the opposite direction (stock to ETF). 
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Table 6.  Directional Volatility Spillovers and Illiquidity 
 
𝑙𝑛 (𝑉𝑜𝑙 𝑆𝑝𝑖𝑙𝑙𝑖,𝑡)  = 𝛼 + 𝛽1𝐼𝐿𝐿𝐼𝑄𝑀𝑖,𝑡 + 𝛽2𝐼𝐿𝐿𝐼𝑄𝑀𝐸𝑇𝐹,𝑡 + 𝛽3𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛𝑖,𝑡 + 𝜀𝑖,𝑡 

 
 

𝐼𝐿𝐿𝐼𝑄𝑖,𝑡 =  1
200

∑ �𝑅𝑖,𝑡�/𝑉𝑂𝐿𝑖,𝑡200
𝑡=1     𝐴𝐼𝐿𝐿𝐼𝑄𝑡 =  1

10
∑ 𝐼𝐿𝐿𝐼𝑄𝑖,𝑡

10
𝑖=1      𝐼𝐿𝐿𝐼𝑄𝑀𝑖,𝑡 = 𝐼𝐿𝐿𝐼𝑄𝑖,𝑡

𝐴𝐼𝐿𝐿𝐼𝑄𝑡
 

 
Panel A.  ETF to Stock Volatility Spillovers 
 

1999-2012 2003-2012 
VARIABLES SPY XLE XLF XLI SPY XLE XLF XLI 

         
Stock Illiquidity -0.07 -0.06*** -0.20*** 0.05 -0.02 -0.05** -0.17* 0.00 

 (-1.14) (-4.07) (-3.83) (1.68) (-0.25) (-2.76) (-2.16) (0.08) 
ETF Illiquidity -1.10*** -0.04* -0.02 -0.00*** -1.17*** -0.01 -0.06*** -0.01*** 

 (-5.79) (-1.92) (-0.80) (-3.64) (-8.50) (-0.53) (-4.45) (-3.39) 
Proportion 0.67 0.38** -0.00 0.85** 0.76 0.13 0.01 0.35 

 (1.48) (2.28) (-0.01) (2.88) (1.22) (0.97) (0.03) (0.90) 
Constant 2.26*** 2.32*** 2.49*** 1.97*** 2.21*** 2.35*** 2.48*** 2.16*** 

 (22.77) (34.08) (32.65) (15.56) (14.50) (38.00) (21.36) (14.72) 
         

Observations 29,879 30,290 26,330 28,050 22,050 22,590 21,580 22,370 
Adj. R-squared 0.06 0.12 0.20 0.20 0.06 0.02 0.16 0.10 

 
 

Panel B.  Stock to ETF Volatility Spillovers 
 

1999-2012 2003-2012 
VARIABLES SPY XLE XLF XLI SPY XLE XLF XLI 

         
Stock Illiquidity -0.05 -0.07*** -0.13 0.05 -0.02 -0.09** -0.11 -0.03 

 (-0.60) (-3.67) (-1.53) (0.47) (-0.11) (-2.34) (-0.88) (-0.30) 
ETF Illiquidity -0.60** -0.03*** -0.02** -0.00*** -0.46*** -0.03 -0.06 -0.00 

 (-2.60) (-3.30) (-2.64) (-5.47) (-3.39) (-1.67) (-1.52) (-1.25) 
Proportion 1.59 0.60** 1.50*** 0.62 0.88 0.25 1.66** 0.01 

 (1.70) (2.72) (3.33) (1.53) (0.74) (0.96) (2.22) (0.01) 
Constant 1.72*** 2.04*** 1.95*** 1.75*** 1.76*** 2.10*** 1.93*** 1.93*** 

 (9.98) (48.47) (15.97) (10.50) (7.42) (41.78) (10.11) (10.81) 
         

Observations 29,879 30,290 26,330 28,050 22,050 22,590 21,580 22,370 
Adj. R-squared 0.04 0.09 0.13 0.07 0.01 0.05 0.14 0.03 

 
This table presents the results of robust regressions of volatility spillovers on illiquidity and a proxy for the 
proportion of each stock held in its respective ETF.  Illiquidity is measured using Amihud’s (2002) mean-adjusted 
measure (ILLIQM) to account for the rising trend in volume over this period.  Robust t-statistics (in parentheses) are 
estimated using 200-day periods as suggested by Petersen (2009).   
*** p<0.01, ** p<0.05, * p<0.10. 
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Table 7.  Directional Volatility Spillovers and Turnover 
 
𝑙𝑛(𝑇𝑢𝑟𝑛𝑜𝑣𝑒𝑟)𝑖,𝑡 =  𝛼 + 𝛽 𝑙𝑛(𝑇𝑢𝑟𝑛𝑜𝑣𝑒𝑟)𝑖,𝑡−1 + 𝜀𝑖,𝑡 
 
𝑙𝑛 (𝑉𝑜𝑙 𝑆𝑝𝑖𝑙𝑙𝑖,𝑡) = 𝛼 + 𝛾1𝜀𝑡,𝑆𝑇𝐾 + 𝛾2𝜀𝑡,𝐸𝑇𝐹 +  𝛾3𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛𝑖,𝑡 + 𝑢𝑡 
 
Panel A.  ETF to Stock Volatility Spillovers 
 

1999-2012 2003-2012 
VARIABLES SPY XLE XLF XLI SPY XLE XLF XLI 

         
εSTK 1.21*** -0.32 0.83 0.42 0.55 -4.05*** 1.29 1.42 

 (2.98) (-0.14) (0.81) (0.55) (0.60) (-3.41) (0.95) (1.55) 

εETF 0.70 1.51 -0.02 2.27*** 1.29** 4.24*** -0.60 1.72*** 
 (1.67) (1.36) (-0.02) (4.71) (2.82) (4.14) (-0.56) (3.91) 

Proportion 1.02*** 0.57*** 1.60*** 0.73** 0.54 0.33* 1.66*** 0.36 
 (3.10) (3.09) (5.93) (2.83) (1.51) (2.09) (6.29) (0.96) 
         

Constant 2.06*** 2.14*** 2.09*** 1.83*** 2.13*** 2.26*** 2.12*** 2.09*** 
 (50.49) (32.75) (43.61) (29.43) (39.43) (48.12) (42.49) (39.18) 
         

Observations 29,879 30,290 26,330 28,050 20,060 20,600 19,590 20,380 
Adj. R-squared 0.06 0.14 0.11 0.38 0.08 0.09 0.11 0.32 

 
 
Panel B.  Stock to ETF Volatility Spillovers 
 

1999-2012 2003-2012 
VARIABLES SPY XLE XLF XLI SPY XLE XLF XLI 
         

εSTK 1.07* -0.69 2.37** 0.95 0.63 -4.09* 3.84** -0.05 
 (1.83) (-0.40) (2.56) (1.13) (0.47) (-2.11) (2.45) (-0.10) 

εETF 0.61* 1.32 -0.71 0.86** 0.96 5.01** -1.57 1.78*** 
 (2.04) (1.51) (-1.16) (2.38) (1.09) (2.92) (-1.33) (8.14) 

Proportion 1.85** 0.82*** 2.54*** 0.48* 0.09 0.46 2.77*** 0.03 
 (2.35) (3.47) (6.54) (2.02) (0.10) (1.53) (6.89) (0.11) 

Constant 1.60*** 1.87*** 1.67*** 1.72*** 1.79*** 1.95*** 1.67*** 1.85*** 
 (18.99) (55.03) (35.02) (50.63) (16.51) (41.45) (36.97) (50.87) 
         
Observations 29,879 30,290 26,330 28,050 20,060 20,600 19,590 20,380 

Adj. R-squared 0.05 0.09 0.14 0.15 0.03 0.07 0.20 0.19 
 
This table presents the results of robust regressions of volatility spillovers on liquidity and a proxy for the proportion 
of each stock held in its respective ETF.  Liquidity is measured  We de-trend turnover into its “expected” and 
“unexpected” components using a simple AR(1) process, in manner similar to those suggested by Bessembinder and 
Seguin (1992), Amihud (2002), and Lo and Wang (2010).  Robust t-statistics (in parentheses) are estimated using 
200-day periods as suggested by Petersen (2009). 
*** p<0.01, ** p<0.05, * p<0.10. 
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Appendix – Proofs of Equations (1) and (2). 

Prior to a price shock generated by new fundamental information or liquidity seeking traders, the 

ETF price is: 

𝑃𝐸𝑇𝐹𝐵 = ∑ 𝑎𝑖𝑃𝑖𝑛
𝑖=1                                                                                                                         (19) 

which is the portfolio’s fundamental value.  After a shock to the price of the ETF we have: 

𝑃𝐸𝑇𝐹𝐴 = ∑ 𝑎𝑖𝑃𝑖𝑛
𝑖=1 + 𝜀                                                                                                                 (20)  

Assuming no market frictions or new information, the mispricing will be eliminated by a change 

in price of the ETF and/or the underlying stocks.  Thus, the following equality should hold: 

𝑃𝐸𝑇𝐹𝐴 − 𝛥𝑃𝐸𝑇𝐹𝐴 = ∑ 𝑎𝑖𝑃𝑖𝑛
𝑖=1 + 𝜀 − 𝛥𝑃𝐸𝑇𝐹𝐴 = ∑ 𝑎𝑖(𝑃𝑖 + 𝛥𝑃𝑖𝐴)𝑛

𝑖=1                                   (21)  

or: 

∑ 𝑎𝑖𝛥𝑃𝑖𝐴
𝑛
𝑖=1 + 𝛥𝑃𝐸𝑇𝐹𝐴 = 𝜀                                                                                                         (22) 

In the Kyle (1985) linear pricing framework, price is a function of information and order flow: 

𝑃�𝑡𝑖 = 𝛿𝑡𝑖 + 𝜆𝑖(𝜔�𝑡𝑖). However, we assume that information has not changed and the price 

correction will be only a function of order flow (𝛥𝜔𝑖).  Replacing (𝛥𝑃𝑖) in (22) yields: 

∑ 𝑎𝑖𝜆𝑖𝛥𝜔𝑖𝐴
𝑛
𝑖=1 + 𝜆𝐸𝑇𝐹𝛥𝜔𝐸𝑇𝐹𝐴 = 𝜀                                                                                           (23)  

The arbitrageur takes no risk and is able to create and/or redeem the exact proportion of each 

underlying stock to remove the mispricing, so the order flow for each stock is proportional to the 

holding of that stock in the portfolio: 

𝛥𝜔𝑛𝐴
𝛥𝜔1𝐴

= 𝑎𝑛
𝑎1

 , … ,
𝛥𝜔𝑛𝐴
𝛥𝜔𝑛−1𝐴

= 𝑎𝑛
𝑎𝑛−1

                                                                                                    (24)  
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Rewriting (23) results in: 

𝑎1𝜆1𝛥𝜔1𝐴 + 𝑎2𝜆2𝛥𝜔2𝐴 + ⋯𝑎𝑛−1𝜆𝑛−1𝛥𝜔𝑛−1𝐴 + 𝑎𝑛𝜆𝑛𝛥𝜔𝑛𝐴 + 𝜆𝐸𝑇𝐹𝛥𝜔𝐸𝑇𝐹𝐴 = 𝜀      (25) 

Substituting for every 𝛥𝜔𝑖𝐴 as a function of  𝛥𝜔𝑛𝐴 by using (24) gives: 

𝑎1𝜆1𝛥𝜔𝑛𝐴 �
𝑎1
𝑎𝑛
� + 𝑎2𝜆2𝛥𝜔𝑛𝐴 �

𝑎2
𝑎𝑛
� + ⋯𝑎𝑛−1𝜆𝑛−1𝛥𝜔𝑛𝐴 �

𝑎𝑛−1
𝑎𝑛

� + 𝑎𝑛𝜆𝑛𝛥𝜔𝑛𝐴

+ 𝜆𝐸𝑇𝐹𝛥𝜔𝑛𝐴 �
1
𝑎𝑛
� = 𝜀                                                                                     (26) 

Solving for 𝛥𝜔𝑛𝐴:   

 𝛥𝜔𝑛𝐴 =  𝑎𝑛𝜀
∑ 𝑎𝑗2𝑛
𝑗=1 𝜆𝑗+𝜆𝐸𝑇𝐹

                                                                                                             (27) 

which is the ex-post change in flow when a shock of size 𝜀 is realized. Thus the ex-ante expected 

changes in flow and price, conditional on shock 𝜀̃ are: 

𝐸[∆𝜔�𝑖|𝜀̃] =
𝑎𝑖𝜀̃

∑ 𝑎𝑗2𝜆𝑗 + 𝜆𝐸𝑇𝐹𝑛
𝑗=1

                                                                                                 (28) 

𝐸[∆𝑃�𝑖|𝜀̃] =
𝑎𝑖𝜆𝑖𝜀̃

∑ 𝑎𝑗2𝜆𝑗 + 𝜆𝐸𝑇𝐹𝑛
𝑗=1

                                                                                                  (29) 
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