
       WP # 0036ECO-202-2012 
Date September 19, 2012 

THE UNIVERSITY OF TEXAS AT SAN ANTONIO, COLLEGE OF BUSINESS 

Working Paper SERIES 
     

 
 
 
 
 

 
 

  

ONE UTSA CIRCLE    
SAN ANTONIO, TEXAS  78249-0631         
210 458-4317  |  BUSINESS.UTSA.EDU 

Copyright © 2012, by the author(s). Please do not quote, cite, or reproduce without permission from the 
author(s). 

 
 

 
Donald Lien 

University of Texas at San Antonio 

Guel Lee 

University of New South Wales 

Li Yang 

University of New South Wales 

Chunyang Zhou 

Shanghai Jiaotung University 

 

 
 

Evaluating the Effectiveness of Futures Hedging 

 



1 
 

 

 

 

Evaluating the Effectiveness of Futures Hedging 

 

 

Donald Lien 

University of Texas at San Antonio 

Guel Lee 

University of New South Wales 

Li Yang 

University of New South Wales 

Chunyang Zhou 

Shanghai Jiaotung University 

 

 

JEL Code: G1, G2, G3 

 

(Draft: September 2012) 

 



2 
 

1.  INTRODUCTION 

Futures market provides a useful tool for hedgers to reduce the overall risk. The extent of 

the usefulness is, however, determined by the hedging strategy adopted by the hedger. In this 

regard, the hedging effectiveness measure proposed by Ederington (1979) has been the most 

popular criterion to evaluate the usefulness.  Different hedging strategies are compared in terms 

of Ederington hedging effectiveness (EHE). The strategy possessed with the greatest EHE is 

deemed the best strategy.   

Specifically, EHE is the percentage reduction in the return variance of the hedged 

portfolio relative to the return variance of the unhedged portfolio. While the variance could be 

conditional or unconditional, in empirical studies EHE is always calculated on the basis of 

unconditional variance. This is natural as Ederington (1979) considers only unconditional 

constant hedge strategies. Further development in futures hedging literature focuses on 

conditional dynamic hedge strategies. However, EHE remains the major criterion to evaluate the 

usefulness of these strategies.  This approach is inappropriate since the conditional hedge 

strategy is constructed to minimize conditional variance but its usefulness is measured by 

unconditional variance. As long as there is not a linear relationship between conditional and 

unconditional variances, the EHE should not serve as a benchmark to evaluate the conditional 

hedge strategy. 

This paper examines the EHE comparisons between the OLS hedge strategy (i.e., the 

unconditional strategy) with various conditional hedge strategies, assuming spot and futures 

returns are described by different statistical framework. It is shown that, for most statistical 

models, the OLS hedge strategy is most likely to outperform the optimal conditional hedge 

strategy. For example, in a vector error correction model (VECM), the optimal conditional hedge 

ratio should take into account the cointegration relationship. The resulting EHE from this optimal 
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ECM hedge ratio, however, underperforms the OLS hedge ratio (where the cointegration 

relationship is ignored). Similarly, when spot and futures returns follow a multivariate 

generalized autoregressive conditional heteroskedasticity (MGARCH) model, the GARCH 

hedge ratio is likely to be inferior to the OLS hedge ratio in terms of EHE. 

The above results are not surprising as OLS hedge ratio is chosen to minimize the 

unconditional variance whereas ECM and GARCH hedge ratios minimize their corresponding 

conditional variances. By definition, EHE is biased in favor of OLS hedge ratio over other hedge 

ratios. The only possible exception is the regime switching (RS) hedge ratio.  It is analytically 

shown that RS-OLS hedge ratio would outperform the conventional OLS hedge ratio under 

certain assumptions. 

Besides EHE, another popular hedging effectiveness measure is certainty equivalent 

derived from expected utility comparisons from hedged and unhedged portfolios. It is shown the 

sample certainly equivalent estimator, similar to the sample EHE estimator, is biased.  On the 

other hand, this utility-based effectiveness measure does not necessarily favor the OLS hedge 

ratio except when the futures price is a martingale or when the hedger is extremely risk averse.  

The remaining of the paper is organized as follows. In Section 2, we discuss the 

Ederington hedging effectiveness measure and demonstrate the superiority of the OLS hedge 

ratio. The next sections consider two specific dynamic hedging strategies; Section 3 examines 

the GARCH specifications and Section 4 the regime switching models. The two models provide 

contradicting conclusions regarding the relative performance to the OLS hedge ratio. In Section 

5, we analyze the utility-based hedging effectiveness.  Finally, conclusions are provided in 

Section6.     

 

2.  EDERINGTON HEDGING EFFECTIVENESS 
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The fundamental idea of Ederington (1979) originates from Johnson (1960) and Stein 

(1961) which introduce portfolio theory into the area of hedging. Most of the previous hedging 

theories consider only the `naive' hedging, which is done by trading the hedging instrument in 

same amount as the asset being hedged. Ederington shows that the hedge ratio, which is the ratio 

of the amount of the hedging instrument being used relative to the amount of the asset being 

hedged, must be adjusted to obtain the maximum hedging effectiveness. To derive this result, 

Ederington proves that there exists an optimal hedge ratio which minimizes the variance of the 

portfolio value.  

2.1 Definition 

 Ederington shows that if we construct a hedged portfolio P which consists of the asset 

being hedged, S, and a hedging instrument, F, the optimal hedge ratio is the value where the 

partial derivative of the portfolio return variance with respect to the hedge ratio becomes zero. 

This partial derivative is given by 

 )],(2)(2[)( 2 fsCovfhVarX
h

pVar
s −=

∂
∂ ,              (1) 

where sX and fX  are the positions of the asset and the hedging instrument, respectively; 

sf XXh /−= is the hedge ratio; s and f are the price changes in S and F, respectively;  p is the 

return of the portfolio: )( hfsXfXsXp sfs −=+= .  (.)Var and (.,.)Cov are the variance and 

covariance operators, respectively. Given this formula, the optimal hedge ratio *h can be easily 

derived by setting equation (1) equal to zero, i.e., 

 )(/),(* fVarfsCovh = .                (2) 
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 As shown in equations (1) and (2), Ederington regards hedging as an act of “minimizing 

variance.” When devising his measure of hedging effectiveness, he also takes this property as the 

main criteria. Specifically, the Ederington hedging effectiveness (EHE hereafter) is defined as 

 
)(
)(1

sVar
pVarH −= .                 (3) 

Equation (3) shows that EHE is directly related to the percentage reduction of the variance in the 

asset return after hedging. 

2.2  Some properties 

The most evident characteristic of EHE is its simplicity. The variance and covariance in 

Equation (3) are both unconditional and are assumed to be constant over time. While this aspect 

of EHE is one of the reasons why it is being widely used, it also has caused some controversies 

about its appropriateness. It was argued that, given the information set, the hedger is concerned 

with the conditional variance of the portfolio return. Accordingly, unconditional variance and 

covariance in equation (3) should be replaced by their conditional counterparts. Various 

variables were taken into account to derive conditional variance and covariance, including past 

prices and inventories. In addition, recent research emphasizes the non-constancy nature of 

conditional variance and covariance and recommends time-varying hedge ratios.    

 In empirical implementation, the complete sample is divided into two sub-samples. The 

first sub-sample is applied to construct the most appropriate (within-sample) statistical models 

for conditional variance and covariance. Based upon the estimated model, optimal hedge ratios 

are obtained for the second sub-sample. Returns for the hedged portfolio are calculated for this 

sub-sample. The unconditional variance of the return series is adopted to calculate the so-called 

post-sample EHE which serves as a benchmark to compare various hedge strategies. Thus, the 

within-sample model is chosen to minimize conditional variance whereas the post-sample 
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hedging effectiveness is evaluated at unconditional variance. The inconsistency in criteria raises 

a concern for the appropriateness of EHE to be used as the criteria to compare conditional hedge 

strategies. Moreover, one would suspect the hedge strategy constructed by minimizing the 

within-sample unconditional variance may have the best out-of-sample EHE. 

 To address this question, Lien (2005a) introduces several assumptions: 

(1) The size of the estimation sample is sufficiently large. 

(2) The size of the evaluation sample is sufficiently large. 

(3) There is no structural change between the estimation sample and the evaluation sample. 

Under these conditions, it is shown that the ratio of unconditional covariance to the conditional 

variance provides the best EHE. This ratio can be obtained by the ordinary least squares (OLS) 

method when regressing the spot price change on the futures price change.   

 The first two assumptions ensure sample unconditional variance and sample 

unconditional covariance both to be close enough to their population counterparts.  The third 

assumption requires the estimation and evaluation samples to be drawn from the same population 

such that the hedge ratio derived from the former is applicable to the latter. When there is a 

structural change across the two samples, nothing can be guaranteed. However, Lien (2005a, 

2005b) warns that it is a tautology to prove the superiority of OLS hedge ratio to other hedge 

ratios with EHE. Since the OLS hedge ratio is the hedge ratio which produces the minimum 

unconditional variance, it cannot be inferior to any other hedge ratios when compared in terms of 

EHE, which measures the unconditional variance reduction. Alternatively, one can argue that it 

is not appropriate to compare conditional hedge strategies on the basis of EHE. 

Lien (2005b) illustrates the superiority of the OLS hedge ratio with a simple example: 

ttt uff ++= −110 αα  ,                                    (4) 
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ttt vss ++= −110 ββ ;                                       (5) 

where both }{ tu  and }{ tv are white noises. Let 2
uσ  and 2

vσ  denote the variances of tu  and tv , 

respectively, and let uvσ denote the covariance between tu  and tv . In addition, to ensure 

stationarity, we require 11 <α and 11 <β . The unconditional hedge ratio (i.e., OLS hedge ratio) 

is 

 







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


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


−
−

= 2
11

2
1

1
1

u

uv
uh

σ
σ

βα
α

,                (6) 

whereas the conditional hedge ratio is simply 2/ uuvch σσ= . By construction, uh performs better 

than ch  in terms of EHE.  

 Upon incorporating the cointegration relationship between spot and futures prices into 

equations (4) and (5), Lien (2005a) demonstrates the superiority of the OLS hedge ratio over the 

error correction hedge ratio. For the importance of the error correction term for futures hedging 

and further comparisons between the two hedge ratios, see Lien (1996, 2004).   

2.3 Estimation bias 

In Lien (2006), it is shown that, the usual EHE estimator is downward biased and, 

therefore, tends to underestimate the true hedging performance, even when the estimator for 

optimal hedge ratio is unbiased. This is because the estimated optimal hedge ratio itself is a 

random variable so that its variance affects the expected EHE. Lien explains this by 

decomposing the EHE formula (3) as follows. 

 Let )/( keeIM kkk ′−= where kI  is a )( kk × -dimensional identity matrix and ke  is a k-

dimensional vector such that all elements are equal to 1. Then equation (3) can be decomposed to: 

 
Mpp
MwwH
′
′

−= 1 ,                (7) 
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where p and w are k-dimensional vectors consisting of k unhedged asset returns and hedged 

portfolio returns, respectively. Because the estimated hedge ratio ĥ  substitutes the optimal hedge 

ratio *h , The EHE one calculates based on ĥ  is also in fact an estimated EHE, Ĥ . That is, 

 
Mpp

wMwH
′
′

−=
ˆˆ

1ˆ ,                (8) 

where ŵ  is a k-dimensional vector consisting of the portfolio returns which are hedged with ĥ .  

 Since fhhww )ˆ(ˆ * −+= , equation (7) can be rewritten as 

 







′
′

−+







′
′

−+
′
′

=−
Mpp
Mffhh

Mpp
Mwfhh

Mpp
MwwH 2** )ˆ()ˆ(2ˆ1 ,           (9)  

and therefore 

 







′
′

−−







′
′

−−=
Mpp
Mffhh

Mpp
MwfhhHH 2** )ˆ()ˆ(2ˆ .                 (10) As a 

consequence, 

 







′
′

+−







′
′

+=
Mpp
MffhVarb

Mpp
MwfbHHE )]ˆ([2)ˆ( 2 ,                 (11) 

where )ˆ( *hhEb −= and )ˆ(2 hVarb +  are the estimation bias and mean squared error of ĥ ,  

respectively. If ĥ  is an unbiased estimator of *h , b becomes zero and equation (11) is reduced to 

 







′
′

−=
Mpp
MffhVarHHE )ˆ()ˆ( ,                         (12) 

This shows that Ĥ  is a downward biased estimator of H, even when ĥ  is an unbiased estimator 

of *h .  

 We provide two further remarks.  First, Chen and Sutcliffe (2007) examine the benefits of 

a composite hedge where multiple hedging instruments are adopted over a simple hedge where 
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only one hedging instrument is adopted.  The benefit is measured by the improvement in EHE.  

Lien (2008) demonstrates the empirical estimator is biased. Secondly, through empirical studies, 

Lien (2007) concludes that the downward bias of the EHE estimator is negligible and therefore 

bias correction seems to be redundant.   

 

3.   GARCH HEDGING STRETAGY 

The previous analysis assumes the conditional second moments of spot and futures 

returns are constant over time. This assumption is frequently rejected through empirical data 

analysis. To describe time varying second moments, researchers rely upon different versions of 

multivariate GARCH (Generalized Autoregressive Conditional Heteroskedasticity) models. The 

standard univariate GARCH model is an extension of the ARCH (Autoregressive Conditional 

Heteroskedasticity) model proposed by Engle (1982).  

3.1  GARCH specification 

 Specifically, consider a time series }{ ty  such that 

 ttt xby ε+′= ,                (13) 

where tx  is the vector of exogenous variables contained in the information set previous to time t 

-1, 1−tϑ . The error term is normally distributed conditional on the information set; i.e.,  

),0(~ 2
1 ttt N σϑε − . Bollerslev (1986) proposed the following process for the conditional variance: 

 ∑∑
=

−
=

− ++=
p

j
jtj

q

i
itit

1

2

1

22 σβεαωσ .             (14) 

The result is termed GARCH(p,q) process. If we set p = 0 and 0≠q , the process is reduced to 

an ARCH(q) process. When p = q = 0, it is further reduced to a process with a constant variance.  
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 For futures hedging purpose, we need to consider multivariate GARCH models which 

specify the process for the conditional covariance as well. Various specifications are available in 

the literature, e.g., constant correlation, BEKK, and DCC (Dynamic Conditional Correlation) 

models. Different dynamic hedge ratios are then generated and compared on the basis of EHE; 

for example, see Baillie and Myers (1991), Myers (1991), Kroner and Sultan (1993), Dawson et 

al. (2000), and Kavussanos and Visvikis (2008).  

3.2   GARCH hedging strategy 

Underlying GARCH models, the optimal hedge ratio is determined by the ratio of the conditional 

covariance to the conditional variance, 

 
)(

),(

1

1
1

tt

tttc
t fVar

fsCov
h

−

−
− = ,               (15) 

where ),(1 ttt fsCov − is the conditional covariance between spot and futures returns at time t based 

upon information available at time t – 1 and )(1 tt fVar − is the conditional variance of the futures 

return at time t based upon information available at time t – 1. As both conditional moments are 

time varying, the conditional hedge ratio is expected to change over time as well.  

 That is, although OLS and GARCH hedge ratios have the same object of variance 

minimization, they differ in terms of the target variance. While OLS hedge ratio considers the 

unconditional variance, GARCH hedge ratio focuses on conditional variance under the GARCH 

assumptions. This difference suggests a concern about the appropriate procedure of assessing 

and comparing their effectiveness. Since their objectives are different, the relative superiority of 

one hedge ratio over the other can vary when one applies a different effectiveness measure. In 

particular, since EHE depends upon the reduction in the unconditional variance, OLS hedge ratio 

is naturally favored. Lien (2009) explains this result as follows. 
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3.3   EHE and GARCH hedging strategy 

Let us assume that there are two portfolios P0 and P1, both consisting of an asset S and a 

hedging instrument F. The first portfolio is constructed from the OLS hedge ratio, 

)(/),(0 ttt fVarfsCovh = , whereas the second portfolio is constructed from the GARCH hedge 

ratio, )(/),( 111 ttttt
c
t fVarfsCovh −−− = . We can decompose the unconditional variance of the 

return from portfolio P1 as: 

)()1( 1 t
c
tt fhsVarpVar −−=  

 )]([)]([ 1111 t
c
tttt

c
ttt fhsEVarfhsVarE −−−− −+−= ,          (16) 

where (.)E is the unconditional expectation operator and (.)1−tE is the conditional expectation 

operator based upon information available at time t – 1. We can rewrite the first term of equation 

(16) as follows: 

 







−=








−

−

−

−

−
− )(

),(
)(

)(
),(

)(
1

2
1

1

2
1

1
tt

ttt
t

tt

ttt
tt fVar

fsCov
EsVar

fVar
fsCov

sVarE ,         (17) 

using the definition of c
th 1− .  Suppose that the sample size is sufficiently large, we can 

approximate the second term of equation (17) by 

 
)(

),(
)]([

),([
)(

),( 2

1

2
1

1

2
1

t

tt

tt

ttt

tt

ttt

fVar
fsCov

fVarE
fsCovE

fVar
fsCov

E =≈








−

−

−

− .           (18) 

Consequently, 

 )]([
)(

),(
)()1( 11

2

tttt
t

tt
t fhsEVar

fVar
fsCov

sVarpVar −− −+−≈ .          (19) 

On the other hand, by the definition of 0h , the unconditional variance of the return from 

portfolio P0 is: 
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)()0( 0 tt fhsVarpVar −=
)(

),(
)(

2

t

tt
t fVar

fsCov
sVar −= .           (20) 

Therefore,  

 )]([)0()1( 11 tttt fhsEVarpVarpVar −− −+≈ ,            (21)  

implying )1( pVar tends to be larger than )0( pVar . That is, the OLS hedge ratio is likely to have 

a greater hedging effectiveness than the GARCH hedge ratio, in terms of EHE. 

Note that, the derivation of equations (16)-(21) do not rely on any specific properties of 

the GARCH model. The above conclusion, therefore, applies to any general dynamic hedge 

strategy that aims at minimizing the conditional variance; see, also, Lien (2010).  In other words, 

when adopting EHE as the effectiveness measure, the OLS hedge ratio is likely to outperform 

any dynamic hedge ratio. However, we should be careful when interpreting this result. As Lien 

(2005a) points out, EHE is focused on the unconditional variance and it would be an abuse to use 

EHE to assess a conditional variance minimization strategy.  

Kavussanos and Nomikos (2000) suggest that, for the GARCH hedge strategy to 

outperform the OLS hedge strategy, the variability of the resulting GARCH ratio must be 

sufficiently large. On the other hand, Park and Jei (2010) find an inverse relationship between 

the variability of the GARCH hedge ratio and corresponding hedging effectiveness (i.e., EHE).  

 

4.  REGIME SWITCHING HEDGING STRETAGY 

Lien (2010) provides a theoretical analysis on the relationship between the variability of 

the hedge ratio and hedging performance in support of the finding from Park and Jei (2010).  

Extending the result to general dynamic hedge strategy, there is a small window for the strategy 



13 
 

to outperform the OLS strategy, that is, when the variability of the hedge ratio cannot be too 

small or too large.  We therefore turn to regime switching hedge strategies.   

4.1 Definition of regime switching 

Both GARCH and regime switching models belong to the family of non-linear time 

series.  Hamilton (1988, 1989) characterizes the concept of “regime switching” (RS hereafter) 

and proposes an approach to model the RS process. The simplest RS model specification of RS 

is the first-order Markov process with two states. If }1,0{∈tS denotes the (not directly 

observable) state of the system in which the source of the time-series data exists, the transition 

between two states is driven by the following first-order Markov process: 

pSSob tt === − )11(Pr 1 , pSSob tt −=== − 1)1,0(Pr 1 ;        (22a) 

qSSob tt === − )00(Pr 1 , qSSob tt −=== − 1)0,1(Pr 1 .        (22b) 

Thus, the probability of state transition depends only upon the state of the previous period. 

 In each state, the spot and futures returns can be described by linear models such as ECM, 

or non-linear models such as GARCH processes.  For the former case, there will be two constant 

hedge ratios each pertaining to one state; for the latter case, there will be two dynamic hedge 

ratios instead. The literature on RS hedge strategies began with the former case and recently 

extended to the latter case. For example, Sarno and Valente (2000) and Alizadeh et al. (2008) 

combine RS with ECM; Alizadeh and Nomikos (2004) and Lee and Yoder (2007a, b) add RS 

into the GARCH models; Lee (2010) combines RS with dynamic conditional correlation (DCC) 

models. In most cases, it is shown that the hedging performance is improved when regime 

switching is incorporated into the econometric framework.  

4.2  RS hedging strategy 
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Although RS can be introduced in various ways, it is most understandable when we 

combine RS with the OLS hedging strategy. Lien (2012b) explains the basic framework of the 

RS-OLS strategy as follows. Suppose that RS process is given as (22). When 11 =−tS , the OLS 

hedge ratio in equation (2) is modified to 

 
)()1()(

),()1(),(

01

01*
1

tt

tttt

fVarpfpVar
fsCovpfspCov

h
−+
−+

= ,            (23) 

where (.)nVar and (.,.)nCov denote the variance and covariance operators in state n, respectively; 

n = 0, 1. Similarly, when 01 =−tS , the corresponding  OLS hedge ratio is  

 
)()1()(

),()1(),(

10

10*
0

tt

tttt

fVarqfqVar
fsCovqfsqCov

h
−+
−+

= .            (24) 

The pair of hedge ratios ),( *
1

*
0 hh constitutes the optimal RS-OLS hedge ratio. To apply this hedge 

strategy, it requires the hedger to be able to identify the state at the moment of making the 

hedging decision. 

Lien (2012b) compares the RS-OLS hedge strategy to the conventional OLS hedge 

strategy. To calculate the conventional OLS hedge ratio under the RS framework, we first derive 

the steady-state probability for each state. Let α  and α−1  denote the steady-state probability of 

state 1 and 0, respectively. Thus,  

 ααα =−+− )1()1( qp ,              (25) 

or, equivalently 

 
qp

q
−−

−
=

2
1α .               (26) 

Given the steady-state probability of each state, we can obtain the conventional OLS hedge ratio 

as follows: 
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)()1()(

),()1(),(

01

01*

tt

tttt

fVarfVar
fsCovfsCov

h
αα
αα

−+
−+

= .            (27) 

Let *
0

*
1

* )1( hhhRS αα −+= , the expected RS-OLS hedge ratio.  Lien (2012b) shows the expected 

RS-OLS hedge ratio exceeds the conventional OLS hedge ratio: 

 ** hhRS ≥ .                (28) 

Thus, more transaction cost is incurred when implementing the RS-OLS hedge strategy. 

4.3  Hedging effectiveness 

To compare the hedging effectiveness, let )(hV denote the variance of the return from the 

hedged portfolio, where *
1

*
0 ,hhh = , or *h .  The expected variance of the RS-OLS hedged 

portfolio is then )()1()( *
0

*
1 hVhVVRS αα −+=  .  Lien (2012b) demonstrates that  

)( *hVVRS ≤ ;                 (29) 

that is, the RS-OLS hedged portfolio has a smaller variance than the conventional OLS hedged 

portfolio.  Consequently, the RS-OLS strategy outperforms the OLS strategy in terms of EHE. 

While the RS-OLS seems to be very promising, a serious problem with this result is that, 

as Lien (2011a) points out, the superiority of the RS-OLS strategy is based on the assumption 

that a hedger can always correctly identify the prevailing state at the decision time correctly. To 

successfully conduct the above hedging strategy, we must succeed in at least three tasks to 

complete the correct identification: 

(1) We must identify the entire set of possible states. 

(2) We must identify the prevailing state. 

(3) We must identify the relationship between spot and futures returns in each state. 

In reality, it is unlikely to complete any of these tasks without errors. Hamilton (1989) is well 

aware of these issues and emphasizes the importance of “optimal probabilistic inference” to find 
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the turning points. One may try to go around this problem by a weighted average strategy such 

that the optimal hedge ratio is chosen to be 

 *
0

*
1

* )1(ˆ hhh ββ −+= ,               (30) 

where β  is the estimated probability that the prevailing state is state 1. However, as Lien (2012b) 

points out, this again dilutes the relative superiority of RS-OLS strategy, since at least one of the 

states is false at any time t. We can conclude that, therefore, one must succeed in the structural 

definition of possible states and correct identification of the current state to fully take advantage 

of the RS framework. 

 

5.  UTILITY-BASED HEDGING EFFECTIVENESS 

Up to now, we assume that the sole objective of hedging is variance reduction, and 

correspondingly the optimal hedge ratio is the one that minimizes variance. This is quite intuitive 

because risk minimization is the most important reason that hedging is actually being done. In 

the real world, however, the variance-minimizing hedge ratio is not always the optimal one. To 

understand why this is true, we must know that there are some other factors than variance 

minimization about which a hedger should consider. For example, if a hedger assumes that a 

price process is sub-martingale and wants to take advantage of positive expected return, she will 

try to afford some risk by a non-perfect hedging. In this situation, variance reduction cannot be 

the perfect measure for hedging effectiveness. 

5.1  Definition of utility-based hedging 

Given these restrictions, we can adopt a multivariable function as the alternative and 

consider additional factors other than variance to measure the hedging effectiveness. In particular, 

we can consider how large the expected return will be after hedging cost is offset, how much risk 



17 
 

a hedger can afford to retain a certain amount of expected return, as well as how large the 

variance will be. Many previous studies, e.g. Kroner and Sultan (1993), Gagnon et al. (1998), 

Follmer and Leukert (1999, 2000), and Monoyios (2004) introduce the idea of utility function to 

construct a framework for this multivariate relationship. 

A basic framework of utility-based hedging effectiveness measure is provided in Lien 

(2012a). Consider a two-date one-period model. The expected utility of an unhedged portfolio 

can be defined as 

)]([)]([ 010,1 sswUEwUE u −+= ,             (31) 

where 0w is the initial wealth (i.e., the wealth at time 0), 1s  is the random value of the spot asset 

at time 1, 0s  is the value of spot asset at time 0, and uw ,1 is the random value of wealth at time 1 

when there is no hedging conducted. If we adopt a hedging strategy, the expected utility of the 

hedged portfolio is  

 ))](([)]([ 01010,1 ffhsswUEwUE h −−−+= ,                                                                 (32) 

where 1f  is the random value of the hedging instrument at time 1, 0f  is the value of the hedging 

instrument at time 0, and hw ,1  is the random value of wealth at time 1 when hedging is conducted. 

Hedging performance is measured by the certainty equivalent C:  

 )]([)](] ,1,1 hu wUECwUE =+ .              (33) 

5.2  Utility function and risk aversion 

One of the simplest types of utility function, which can be used as a hedging effectiveness 

measure, is the expected mean-variance utility function. It is also quite popular since it can 

consider all the factors above within a simple framework; see, for example, Kroner and Sultan 

(1993), Gagnon et al. (1998), and Lafuente and Novales (2003). Suppose that a hedger is 
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endowed with a strictly increasing and twice-differentiable concave utility function )(xU , such 

that 0)( >′ xU  and 0)( <′′ xU . Then the expected utility of the hedged portfolio P at time t -1 can 

be defined as 

 )()()]([ 111 ttttt pVarpEPUE −−− −= λ ,             (34) 

where p is the return of the portfolio P and λ  is a positive risk aversion parameter.  

The existence of the risk aversion parameter is suggested by Merton (1973). Chou (1988) 

explains that there exists a linear relationship between the equity premium π  and return variance 

in the inter-temporal CAPM model of Merton (1973), such that 

 )( tmt MVarλπ = ,                (35) 

where tM  is the instantaneous market return and mλ  is the harmonic mean of individual 

investor’s risk-aversion parameter. Various studies, e.g. Grossman and Shiller (1981) and 

Pindyck (1986), show that the idea of premium can explain much of the stock price changes 

beyond changes in dividends and interest rates. Also, their estimation results show that λ  ranges 

approximately from 3 to 4.5. 

One thing we should note is that, the estimation of λ  relies on the variance estimation 

method. Poterba and Summers (1986) employ a two-stage OLS procedure to estimate the 

variance, and conclude that shocks to the volatility decay rapidly so that it is skeptical to claim 

that fluctuations in risk premia account for much of the variation in prices. On the other hand, 

Chou (1988) introduces GARCH-M model and argues that the persistence of volatility shocks is 

significant such that fluctuations in risk premia can explain much of the price changes. Given 

that the other aspects of both researches are quite similar, this observation implies that different 

variance estimation method will lead to different estimates for λ . 

5.3  Utility-based hedging effectiveness 
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Similar to the EHE case, Lien (2012a) shows that the sample utility-based hedging effectiveness 

estimator is downward biased and therefore tends to underestimate the true hedging performance, 

even when the sample estimator for the optimal hedge ratio is unbiased. To explain in detail why 

this happens, Lien first assumes that a hedger is endowed with a mean-variance expected utility 

function, i.e., equation (34). Given equations (33) and (34), we obtain 

 )()()]([ 0,1 sVarsECwCwUE u ∆−∆++=+ λ ,                      (36) 

 )()()]([ 0,1 fhsVarfhsEwwUE h ∆−∆−∆−∆+= λ ,           (37)  

where 01 sss −=∆  and 01 fff −=∆ . From the above two equations, we derive 

 )]()([)( fhsVarsVarfhEC ∆−∆−∆+∆−= λ .            (38) 

The sample estimator of C is then  

)]ˆ()([)(ˆˆ fhsVarsVarfEhC ∆−∆−∆+∆−= λ .            (39) 

From equations (38) and (39), we obtain 

 )]ˆ()([)()ˆ(ˆ fhsVarfhsVarfEhhCC ∆−∆−∆−∆+∆−−= λ .          (40) 

After algebraic manipulations, equation (40) becomes 

 )()ˆ(),()ˆ(2)()ˆ(ˆ 22 fVarhhfsCovhhfEhhCC ∆−−∆∆−+∆−−= λλ .        (41) 

Suppose that ĥ  is an unbiased estimator of h, i.e., hhE =)ˆ( , the

 CfVarhVarCfVarhhECCE <∆−=∆−−= )()ˆ()()ˆ()ˆ( 22 λλ .         (42) 

That is, the expected value of Ĉ  is downward biased. Lien (2012a) shows that the downward 

bias result can be extended to the case when a hedger is endowed with another type of strictly 

increasing concave utility function. 

 Because the certainty equivalent is not a strictly monotonically decreasing function of the 

portfolio variance (except when 0)( =∆fE or when λ is infinitely large), the solution to variance 
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minimization is not the same as the solution to certainty equivalent maximization. Therefore, 

OLS hedge ratio is not necessarily favored by the utility-based performance measure. 

 

6.  CONCLUSIONS 

This paper analyzes the properties of Ederington hedging effectiveness (EHE) in general 

and within different statistical framework. The most popular EHE is measured by the percentage 

reduction in the unconditional return variance of the hedged portfolio relative to the 

unconditional return variance of the unhedged portfolio. Because of this emphasis on 

“unconditional” statistics, the OLS hedge strategy (which does not take into account any other 

information except current spot and futures returns) is most likely to outperform the optimal 

conditional hedge strategy.  

This superiority of the OLS hedge ratio is challenged by the concern of the 

appropriateness to evaluate conditional hedging strategies by EHE. Nonetheless, the regime 

switching (RS) hedge ratio seems to be an exception. Under specific assumptions, the RS-OLS 

hedge ratio will outperform the conventional OLS hedge ratio. 

Utility-based hedging effectiveness is another popular measure examined in the literature. 

The sample estimator of this effectiveness is, similar to the sample EHE estimator, is biased.  On 

the other hand, the measure does not necessarily favor the OLS hedge ratio except when the 

futures price is a martingale or when the hedger is extremely risk averse.  

Recently there have been several alternative effectiveness measures related to tail risk 

such as lower partial moment, value at risk, conditional value at risk. Similar problems prevail.  

That is, a hedge strategy may be chosen to minimize the conditional value at risk.  However, 

when in the evaluation stage, it is the unconditional value at risk that counts.  We do not address 

these issues in the current paper.  It will be left for future research. 
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