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Abstract

This paper suggests RE-GLS and FE-GLS estimators for the generalized spatial panel model of
Baltagi, Egger and Pfaffermayr (2012) using the Generalized Moments method suggested by Kapoor,
Kelejian, and Prucha (2007). We derive the asymptotic distributions of these estimators and suggest a
Hausman test a la Mutl and Pfaffermayr (2011) based on the difference between them. Monte Carlo
experiments are performed to investigate the performance of these estimators as well as the corresponding
Hausman test.
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1 Introduction

Anselin (1988) and Kapoor, Kelejian, and Prucha (2007) considered two different variants of a random effects
panel data model with spatially correlated errors. The first paper estimated it with maximum likelihood
methods and the second estimated it with a generalized moments (GM) method that is computationally
simpler. Baltagi, Egger and Pfaffermayr (2012) generalized this random effects spatial model to encompass
both cases and derived LM and LR tests to distinguish between these models. The generalized model allows
the individual effects and the remainder errors to have different spatial autoregressive parameters. Using
maximum likelihood methods, Baltagi, Egger and Pfaffermayr (2008) examined the consequences of model
misspecification in this context using Monte Carlo simulations. These papers assume that the underlying
spatial panel model is random effects (RE). Spatial panel data model with fized-effects (FE) have been
considered by Baltagi and Li (2006), Mutl and Pfaffermayr (2011), and Lee and Yu (2010) to mention a

few. In fact, Baltagi and Li (2006) obtained the maximum likelihood estimator of a first order spatial
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autoregressive model with fixed effects and used it to forecast the consumption of liquor across a panel of
US states, while Lee and Yu (2010) established the asymptotic properties of a quasi-maximum likelihood
estimator for the spatial panel data model with fixed-effects. However, as pointed out by Kapoor, Kelejian,
and Prucha (2007), hereafter denoted by (KKP), the ML estimation of models variant to the one considered
in Cliff and Ord (1973, 1981) entail substantial computational problems if the number of cross sectional units
is large. To circumvent these computation problems, Mutl and Pfaffermayr (2011) suggest a Within-GLS
estimator based on a generalized moments (GM) estimator a la Kapoor, Kelejian, and Prucha (2007) but
applied to a spatial autoregressive panel data model. Mutl and Pfaffermayr (2011) also propose a Hausman
test based on the difference between the fixed and random effects specification of this model. This paper
applies the FE-GLS estimator of Mutl and Pfaffermayr (2011) to the generalized error component model
considered by Baltagi, Egger and Pfaffermayr (2012). We also suggest a RE-GLS estimator using GM
estimation of this generalized error component model, and apply a Hausman test based on the difference
between the fixed and random effects specification of this model. Small sample properties of these estimators
as well as the size of the proposed Hausman test are studied using Monte Carlo experiments. We show that a
misspecified GM estimator can cause substantial loss in MSE and wrong size for the corresponding Hausman
test.

The rest of the paper is organized as follows. Section 2 introduces the RE-GLS and FE-GLS estimators
for the generalized spatial error component model proposed by Baltagi, Egger and Pfaffermayr (2012).
Generalized moments (GM) estimators a la Kapoor, Kelejian and Prucha (2007) are proposed for this model
and their asymptotic distribution is obtained. Following Mutl and Pfaffermayr (2011), a Hausman test is
proposed based on the difference between the FE-GLS and feasible RE-GLS estimators of this spatial panel
model. Simulation results are reported in section 3, while section 4 concludes the paper. All proofs are

relegated to the Appendix.



2 The Model

Baltagi, Egger and Pfaffermayr (2012) considered a generalized spatial error components model. In each

time period t = 1, ..., T, the data are generated according to the following model:

ynv (1) = Xn(H)B+un(t) (1)
un (t) = win +uen (1), (2)
un = pWyuin + py, (3)
usn (t) = paWiuan (1) +vn (1), (4)

where yu (t) denotes the N x 1 vector of observation on the dependent variable in period ¢. Xy () denotes
the N x K matrix of observations on exogenous regressors in period ¢, which may contain the constant
term, S is the corresponding K x 1 vector of regression parameters, and uy (t) denotes the N x 1 vector of
disturbance terms. The disturbance term follows an error component model which involves the sum of two
disturbances. The N x 1 vector of random variables uiy captures the time-invariant unit-specific effects and
therefore has no time subscript. The N x 1 vector of the remainder disturbances ugy (t) varies with time.
Both w1y and ugy (t) are spatially correlated with the same spatial weights matrix Wy, but with different
spatial autocorrelation parameters p; and p,, respectively. Wy is an N x N weighting matrix of known
constants which does not involve ¢.

Stacking the cross-sections over time yields

yv = XnB+un (5)
uy = Zyuin + u2n, (6)
un = pWhuinv + py, (7)
usn = py(Ir @ WN)uan +vn, (8)

where yn = [Yn (1),.., 98 (D), Xy = XN (1),..., X (D), un = [y (1),...,uy (D], vay =
[uhn (1), .. uhn (T)] and vy = [vly (1),...,0% (T)). The unit-specific errors u;y are repeated in all
time periods using the NT' x N selector matrix Z,, = v ® In, where ¢7 is a vector of ones of dimension T'
and I is an identity matrix of dimension V. Let {ui,N} and {v;;, v} denote the elements of the N x 1 vector
of individual effects 115 and the n x 1 vector of remainder disturbances vy . Following Kapoor, Kelejian and

Prucha (2007), we employ the following assumptions:

Assumption 1 Let T be a fized positive integer. (a) For all1 <t < T and 1 <i< N, N > 1 the error

components vy N are identically distributed with zero mean and variance 02, 0 < o2 < b, < 00, and finite



fourth moments. In addition for each N > 1 and 1 <t < T, 1 < i < N the error components vit,n
are independently distributed. (b) For oll 1 < i < N, N > 1 the unit specific error components Wi N are
independently distributed with zero mean and variance az, 0< ai < b, < 00, and finite fourth moments. In
addition for each N > 1 and 1 <1 < N the unit specific error components p; n are independently distributed.

(¢) The process {; x} and {vi n} are independent.

Assumption 2 (a) All diagonal elements of Wy are zero. (b) |p1| < 1 and |ps| < 1. (c¢) The matric

In — pi W and Iy — poWh are nonsingular.

As pointed out in Baltagi, Egger and Pfaffermayr (2012), this model nests the various spatial panels
existing in the literature. When p; = po, it reduces to the model in Kapoor, Kelejian and Prucha (2007);
when p; = 0, it reduces to the Anselin (1988) model also described in Baltagi, Song and Koh (2003) and
Anselin, Le Gallo and Jayet (2008). When p; = p, = 0, it reduces to the familiar random effects (RE) panel
data model; see Baltagi (2008).

2.1 Spatial GLS Estimator

Let Q,, = var (un). The true GLS estimator of 3 is given by
A _ 71 _
Bors = (XN ' XN) XN, yn (9)

with variance var (BGLS) = (XJ’VleXN)fl. As shown in Baltagi, Egger and Pfaffermayr (2012),
_ _ -1
Ol =Jr® [TUZ(A’A) '+ 0% (B'B) 1} +0,%[Br ® (B'B)], (10)

where A = Iy — pyWx and B = Iy — poWyn. Ep = I — Jp, Jp = Jr/T and Jr is a matrix of ones of
dimension 7.

Define Q = Iy7 — P, wherer Iyr is an identity matrix of dimension NT and P = Jr ® Iy. Kapoor,
Kelejian and Prucha (2007) considers the special case where p; = p, and propose GM estimators of p, and
02 based on the following three moment conditions:

1 2

NTonP ol = o (11)
mE PnQrN] = %Oitr (WAWn), (12)
mE [PnQun] = 0, (13)

where vy = (IT & WN) vy. Define 1oy = (IT & WN) ugn and gy = (IT & WN) uan. Substitute vy =

UaN — Poliany and Uy = Uan — polion into the equation system above, we get



1 2 _ 1 _ _
mE [us Ny Quan] — msz [ug Ny Quan] + mPSE [uhnQuan] = ob, (14)
1 _ _ 2 _ _ 1 _ _ 1
mE g N Quan] — mﬂzE [ug N Quan] + mng [usnQuzn] = NUZW (WyWhip)
1 N 1 _ _ _ 1 — _
mE [ay Ny Quan] — msz [uynQuan + Wy QUan] + mPEE [upnQuan] = 0. (16)
Notice that @ (¢ @ uin) = 0. Therefore, for the general model in Equation (5)-(8), we have uyQuy =
uh Ny Quan, Wy Qun = Uy Quan and Uy Quy = U5y Quan. This system can be expressed as
F?V [Pz;ﬂgaaﬂ/ _7?\[ = Oa (17)
v £ [ty Qun] —~xa E [ayQun] 1 ~a— B [uyQun]
whereT% = | 2 CB[@Qun]  — b FliaQan] e (WWy) | anda% = | g Bl Qan]
xa—n B iy Quy +uyQun]  —x7— E luyQun] 0 ~a— E [ayQun]

Let 4y denote the OLS residuals from the (5), and let Gy and g%, be the sample analogues of I'S; and 7%,

substituting Uy for uy.We can get a GM estimator by solving
/
(ﬁ27612/) = arg min {f(])\[ (@7Q12/) f(])\/' (@7Q3) )& € [—ao,ao} 7Q3 S [O,bo]} ’ (18)
where £}y (p2,02) = G% [pgap%,ff,ﬂ’ — 9> a0 > 1 and by > by,

Assumption 3 The elements of Xy are bounded uniformly in absolute value. Furthermore, the limit
-1

Uy = lim yrXy {JT ® [TJZ (AA) 402 (B’B)’l] }XN and Uy = lim o X} [Br @ (B'B)] Xy

are finite and nonsingular.

Assumption 4 The row and column sums of Wy, (In — pyWx) ™" and (In — p,Wn) ™" are bounded uni-

formly in absolute values for all |py] < 1 and |py| < 1.
Assumption 5 The smallest eigenvalues of I'T'y are bounded away from zero.

Kapoor, Kelejian and Prucha (2007) showed that p and &,2, are consistent. It is worth pointing out that
the condition @ (¢ ® u1) = 0 holds for the general model given in equation (5), and not only for the special
case in Kapoor, Kelejian and Prucha (2007). Therefore, for all values of p; and ai in the parameter space,

the GM estimator of p, and o2 suggested by Kapoor, Kelejian and Prucha (2007) will always be consistent.

2

l,) under assumptions 1-5

By Theorem 1 of Kapoor, Kelejian and Prucha (2007), we have (ﬁQ,&E) 2 (pQ,a

as N — oo. Similarly, we introduce the following GM estimators of p; and ai:



Define i = W . We have the following three moment conditions:

1

VP eyl = ol (19)
1 o 1

NE[UINMN] = Naitr(WIIVWN)a (20)
1

ﬁE[M'NMN} = 0. (21)

Similarly define 41y = Wiyuin and a3y = Wytqn. Substitute py = uiny — prtan and iy = iy — pran

into the equation system above, we get

1 2 _ 1 ;o
NE [u} yuIN] — NmE [u) yuin] + Np?E [t yian] = ai, (22)
1 o, 2 -, 1 -, - 1
NE [u) NTU1N] — NmE [u) NTU1N] + prE [t} yliin] = ﬁgi“’ (WAWn), (23)
1. _ o 1 -,
NE [@) nuiN] — NplE [Uh yuiN + Ty NTULN] + prE [@ynTin] = 0. (24)
This system can be expressed as
/
Ty [p1: 0305 — vk =0, (25)
~E [ yuin] —~ B [yt N] 1 ~ E [uiyuin]
where Ty = ~ B i)y ] —%Eluhyurn]  wtr (WAWy) | and vy = | L E[a] yiy]
~E W yuin + @ yuin]  —§E [ yuin] 0 ~ E a1 yuin]
Define S = P — ﬁQ =Sy ® Iy, where Sp = Jr — ﬁET. Also
1 /
Pri,N = ﬁuﬁv (IT ® W]f[) S (IT ® Wzlv) uN
1
= Wuﬁv (It ® Wff,)/ (St @ In) (It ® W]lv) un
1
= ﬁugv (ST & WHWL) uy
for k,1 =0,1,2. Hence
1
1
= ﬁE [(Zyuin + usn ) (Sr® W]’f/W]lv) (Zyuin + uan)]
1 1
= —F [(Z#ulN)/ (ST ® WJ'IS/WIZV) (Z[LUIN)] + —F [UIQN (ST & W]’\g/WJlV) UQN]
NT NT
2
+WE [’LL/QN (ST & W]IS/WZIV) ZuulN}
= I+ I1I+1I1.



Notice that

]. / !
I = —E[(Zsun) (St @ WEWL) (Zyuin)] =

1 1
NT E [uly (pSrir @ WYWE) uin] = NE (W W Whuiy)

NT

since (. Spir = Uy (JT — ﬁET> vp = tpdpir — ﬁL/TETLT =T using Jrip = vr and Epur = 0;

1 1
II = ﬁE [U/2N (ST ® W WN) UQN} = —TE [V/N (IT ® B~ ) (ST QW WN) (IT ®B_1) VN}
1
= N7 F Wn (Sr@ BTYWYWrB™) vi]
= ol (Sp) tr (BB
=0

since tr (St) = tr (jT — ﬁET) =0; and

111 = %E [uhy (ST @ WNWL) Zuin] =0
since u1y and ugy are independent by Assumption 1. Hence, one gets E (gokl,N) = % (ulNW}f/WNulN)
%E [@y Sun] —ﬁE [@yStnN] 1 NLE [uySun]
Tl = 2 E[iy Say] — 7B [y Sun] wtr (WyWy) [; and vy = | ZrE[ayySay] |- The
7B iy Suy + @y Suy] —R5E [y Sun] 0 w7 E [Wy Sup]
oty Sty — sty St 1
sample analogues to I'\; and v} are G§; = %fcﬁvSﬁN NT“NSUN +tr (WLWy) | and
~r (T Sty +iySin)  —pily Sty 0
Uy SN
gk = ﬁﬁ@VSﬁ ~ |, respectively. Hence, a GM estimator can be obtained from
ity Sty
(p1.52) = argmin {k (p1,22) €k (p.2) o0 € ol 22 € 00l (26)

/
where g}\/ (plaai) = G}V [/)17P%a0'i] _gjl\la ay > 1 and bl > bu-

Theorem 1 Under Assumptions 1 -5, we have (i)l,éi) EN (pl,ai) as N — oo.

With the GM estimators of py, p,, 0 and &2, the corresponding feasible GLS estimator B FGLs 1S given
by

BraLs = (XNQ 1XN) XN yn, (27)



where

_ L1 N o
Ol =Jre {T&Z (A’A) +52 <B’B> } +5;2 [ET ® (B'B)} . (28)
The theorem below establishes consistency and asymptotic normality of the feasible GLS estimators. The

proof of the theorem is given in the appendix.

Theorem 2 Under Assumptions 1 -5, we have vV NT (BFGLS — 6) 4N (0, \I/_l) as N — oo, where U =
\Ifo =+ 0'52\111.

2.1.1 A special case—the Anselin model

Under the Anselin model, we have p; = 0 and hence A = Iy. Equation (10) reduces to

- 411
OGl=Jre [Tang +o2(B'B)|  +03%[Er® (B'B). (29)
We can estimate o2 from the first Equation in (19) as
1 1 1
~2 - - - - - -

Notice that it is the same estimator of az for the random effect model with p; = py = 0. From the proof of
Theorem 1, we know that under Assumptions 1-5, &i 2 ai as N — oo. With these GM estimators of py,

&i and 52, the corresponding feasible GLS estimator (g is given by
N ~ -1 ~
BraLs = (XJ/VQfXN> X% yw, (30)

where )
~ _ R N o~
Ol = Jre {T&i +52 (B’B) ] 62 [ET ® (B’B)} . (31)
Theorem 2 reduces to the following proposition.
Proposition 1 Under Assumptions 1 -5,when p; = 0, BFGLS has the same asymptotic distribution as in

! -1
Theorem 2, with Wq reducing to I&EHDOﬁXjV {JT ® [TUiIN + 02 (B/B)—l} }XN.

2.2 Spatial Within-GLS Estimator

Let {u1;, v} and {X;; v} denote the elements of the N x 1 vector of w3y and the NT x K vector of Xn. A
critical assumption for the consistency of the GLS estimator is that E (u1; v|Xit,n) = 0. If the unobserved

individual invariant effects are correlated with X, then F (u1;|X;+) # 0 and GLS is inconsistent. As pointed



out in Lee and Yu (2010), with the fixed effects specification, the panel models in Baltagi, Egger and
Pfaffermayr (2012), Kapoor, Kelejian and Prucha (2007) and Anselin (1988) have the same representation.
More specifically, premultiplying equation (5) by the fixed effects (or within) transformation Q = Er ® Iy,
one obtains

Qyn = QXNB + Quan, (32)

since Q (17 ® uyy) = 0, see Baltagi (2008). The Within estimator 3, = (XNhQXn) " X4 Quy wipes
out the individual effects and does not require the estimation of p; or ai. However, this estimator ignores
the spatial autocorrelation in the error. To gain efficiency, one can apply the Cochrane-Orcutt type transfor-
mation on the within transformed model in Equation (32) to obtain the Within-GLS estimator as suggested

in Mutl and Pfaffermayr (2011). More specifically, we premultiply equation (32) by It ® B, to get
(Er ® B)yy = (Er ® B) XnB + Qun. (33)

This uses the fact that (Ir ® B) Q = (Er ® B) = Q (Ir ® B) and (It ® B) Quay = Q (I7 ® B) uan = Qun.
Hence, the Within-GLS estimator of 3 is given by

Buithin-crs = X (Br@B')(Br®B)Xy]' Xy (Er © B') (Er @ B)yn (34)

(XN [Er @ (B'B)| Xy} ' X [Er ® (B'B)]yw,

with variance var (/BWithin—GLS) =02 {X}\ [Er ® (B'B)] Xy} ". If p, = 0, then B = Iy and the Within-
GLS estimator in Equation (34) reduces to the within estimator (X}VQXN)_lXﬁvQyN. Using the GM
estimators of p, and 62 from Equation (18), the corresponding feasible Within-GLS estimator By ;pin_ FGLS
is obtained by replacing B by its estimator B=1Iy-— paWh, ie.,

Buvsnin-rons = { X [Fre (2B)] x} " x4 [Bro (B'B)]ux. (35)

This estimator can be computed conveniently as the Within estimator after premultiplying the model in
equation (5) by I+ ® B. The theorem below establishes consistency and asymptotic normality of the feasible

Within-GLS estimators. The proof of the theorem is given in the appendix.
Theorem 3 Under Assumptions 1 -5, we have vV NT (BWithianGLS — ﬁ) 4N (O,UE\I/;I) as N — oo.

One of the advantages of the spatial within-GLS estimator of /3 is that it does not depend on O’i and
p:- Hence, the Within-GLS estimator is robust to different values of O’i and p;. Another advantage of the

Within-GLS estimator is that it is still consistent when E (u1;]2;+) # 0, while the RE-GLS estimator is not.



2.3 Hausman’s Test

One can perform Hausman’s (1978) specification test for endogeneity on this generalized spatial panel data
regression model. The null hypothesis is Hy : E (u1;, 5| X, n) = 0. Under the null hypothesis Hy, BGLS given
in (9) is the efficient estimator, while under the alternative Hy : E (u1; n|Xi,n) # 0, BG g 1s inconsistent
. In contrast, BWithinfGLS is consistent under the null and alternative. Let ¢ = BWithinfGLS - BGLS and

note that
cov (Buwinin-crs:Bzs) = B |(Bwinin-czs — ) (Bors - 8) |
- B [{X;V [Er @ (B'B)] Xn} ' X [Er ® (B'B)] unu/y Q5 X (X;VQjXN)”}
— (XN [Ere (B'B)Xx} ' Xi[Er® (B'B)] Q.0 Xn (X2 Xn) ™
= (Xn9Xn) " = var (Bows) -
Hence
var(q) = var (Bwimin-crs — Bows)
ar (Bwinin-crs) +var (Bars) — 2000 (Bwimin-crs: Bors)
( (ars) — 20ar ()

= var (BWithin—GLS) —var (»BGLS) .

|
<

= war 5Withm-GLS)+W7"

Under the null hypothesis Hy, the Hausman test m = ¢ [var (¢)]”' ¢ has a limiting x? distribution with
degrees of freedom equal to the rank of var(q). In practice, estimates of both p; and p, are needed to
calculate var (BG I 5). Under the Kapoor, Kelejian and Prucha (2007) random effects spatial model, p; = py
and under the Anselin (1988) random effects spatial model, p; = 0. One could perform a Hausman test based
on these random effects spatial specifications versus the within-GLS estimator proposed in this paper. In
fact, Mutl and Pfaffermayr (2011) suggested a Hausman test assuming p; = py. Its sensitivity under model

misspecification (say p; # p,) is checked in the following section via Monte Carlo experiments.

3 Extensions to MRSAR Model

This section considers the MRSAR model which replace Equation (5) by
yn = AMpyyn + XNB + un, (36)

where M,, is an N x N spatial weight matrix for Yy. My and Wy may or may not be the same. This

generalizes the model in Equation (5) with SAR error by incorporating a spatial lag. As shown in Kelejian

10



and Prucha (1998), the spatial lag Myyn is correlated with the vector of disturbances uy. Therefore, the
Ordinary Least Squares estimator will be inconsistent. Define Zy = (Myyn, Xn) and 6 = ()\,6/),. The
MRSAR model can be rewritten as

Yn = ZNO +un (37)

In the cross-section spatial autoregressive model, Kelejian and Prucha (1998) suggested instruments like
Hy = (X N, My XN, M3 X N). Applying the instruments to this Q, /2 transformed panel autoregressive
spatial model, we get the random effects spatial two-stage least square estimator (RE-S2SLS) of § given by

~ _ -1 _
Srp-2sis = |Zn 0 Hy (HyQ Hy) ™ HRQ Zn | 2600 Hy (HYQ Hy) ™ HyQ g (38)

2
m

where 3\2SLS = {ZEVHN (H;VHN)_l HJ/\IZN]

and o2 can be obtained from Equation (18) and (26) using ix = yn — ZNSQSLS,

1
ZyHn (H]’VHN)_1 Hyyn. With the GM estimators of py,

Estimates of p;, py, 0

P2 5’i and &2, the corresponding feasible GLS estimator ZS\RE_FQSLS is given by

~ . . -1 - . -1

SRE_FasLs = [Z;VQulHN (H 0 Hy ) H;VQulzN} ZnO Hy (AR HY ) HO gy (39)
where Q! is defined in Equation (31).

Assumption 6 The elements of X are bounded uniformly in absolute value. Furthermore, the limit g =

- -1
lim =Hy {JT ® [Taz (AA) ' 102 (B/B)—l] }HN; Y1 = I&Enooﬁ]{]'v [Er ® (B'B) Hy,

N—o0
- _ Tt )
Iy = I&Enmf\’l:’“HJIV{JT@) [Tai (A’A)"" 4+ 02 (B'B) 1} }ZN and I'y = ngnooﬁHj'V [Er ® (B'B)] Zn are

finite and nonsingular.

The theorem below establishes consistency and asymptotic normality of the feasible GLS estimators. The

proof of the theorem is given in the appendix.

Theorem 4 Under Assumptions 1, 2,4, 5 and 6, we have vV NT (SRE,FggLS —6) 4N (0,I"S7IT) as
N — o0, where ¥ = ¥g + 0;221 and ' =Ty + a,szl.

Premultiplying equation (36) by the within transformation @ = E7 ® Iy, one obtains
Qyn = QZN6 + Quan. (40)
A further Cochrane-Orcutt type transformation It ® B yields:
(Er ® B)yny = (Er ® B) Znd + Quy. (41)

11



Applying the instruments (Er ® B) Hy, we get the fixed effects spatial two-stage least square estimator
(FE-S2SLS) of ¢ given by
~ _ -1
dFE—25L5 = {Z]/V [Er ® (B'B)] Hy (Hy |[Er ® (B'B)| Hy) ™' Hy [Br ® (B'B)] ZN}

Z\ [Br @ (B'B)| Hy (Hy [Br ® (B'B)| Hy) ™' Hyy [Er ® (B'B)]yn (42)

With the GM estimators of p, and & O' , the corresponding feasible GLS estimator 5 FE_F2SLS 1s given by

Orp-pasts = {Z;V (B (B'B)| ty (Hy [Ere (B'B)| Hy)  Hy [Ere (B'B)] ZN}_l
Z [ET ® (B B)} (H;V [ET ® (B’B ] )_1 HY, [ET ® (B } (43)
The theorem below establishes consistency and asymptotic normality of the feasible FE-2SLS estimators.

The proof of the theorem is given in the appendix.

Theorem 5 Under Assumptions 1, 2,4, 5 and 6, we have v NT (SRE_FQSLS — 5) 4N (O,J?,F’lﬁl_lFl) as

N — .

A Hausman test can be similiarly derived by replacing ¢ = SFE_QSLS — SRE_QSLS in section 2.3. Under
the null hypothesis Hy : E (u1; n|Xit.n) = 0, the Hausman test m = ¢ [var (¢)] " ¢ has a limiting x2

distribution with degrees of freedom equal to the rank of var(q).

4 Monte Carlo Simulation

This section performs some Monte Carlo experiments to study the finite sample performance of the proposed
within-GLS estimator and the corresponding Hausman test. Following Baltagi, Egger and Pfaffermayr

(2012), we consider the following model

yir =a+ Bxy+uy, t=1,....,Nandt=1,...,T, (44)
where @ = 5 and 8 = 0.5. x;; is generated by z;; = (; + 2z with (; ud U[-7.5,7.5] and z; “u [-5,5]. The

individual specific effects are drawn from a normal distribution so that p; “N (0,200). For the remainder

2
T 7 is the proportion of the total variance

erTor, we assume v, ~ N(0720 (1-60) witho<6<1. 6= Zta?

due to the heterogeneity of the individual-specific effects. This implies that Uu + 02 = 20. We construct the
spatial weights matrix such that its ¢-th row has non-zero elements in positions ¢ + 1 and ¢ — 1. Therefore,

the i-th element of w is directly related to the one immediately before it and the one immediately after it.
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This matrix is defined in a circular world so that the non-zero elements in rows 1 and N are, respectively, in
positions (2, N) and (1, N — 1). This matrix is row normalized so that all of its non-zero elements are equal
to 1/2. As in Kelejian and Prucha (1999), this weighting matrix is referred as “1 ahead and 1 behind”. p,
and p, vary over the set {—0.8,—0.5,-0.2,0,0.2,0.5,0.8}. We consider a panel with N = 100 regions and
T = 5 time periods. We also considered the case of N = 49 regions and 7" = 10. For each experiment, we
perform 10,000 replications. For each replication we estimate the model using: (i) Fixed-Effects ignoring
spatial correlation; (ii) Random Effects ignoring spatial correlation; (iii) Within-GLS for fixed effects with
spatial correlation; (iv) KKP random effects with spatial correlation; (v) Anselin random effects with spatial
correlation; (vi) General random effects with spatial correlation; and (vii) True GLS.

Table 1 reports the relative root mean squared error (RMSE) of each estimator of 8 with respect to true
GLS for various values of p; and p, fixing O'i = 10 and 02 = 10, i.e., # = 0.5; and N = 100 and T = 5.
Several conclusions emerge from this Table. Not surprisingly, true GLS is the most efficient estimator in
terms of root mean squared error. When the true model is spatial RE, KKP or Anselin, the ‘correct’ feasible
GLS estimator performs best and is the closest in RMSE to the true GLS. Within-GLS estimator performs
much better than standard FE which ignores the spatial correlation. For example, for p; = p, = 0.8, their
relative MSE with respect to true GLS is 2.356 and 1.232, respectively. Both estimators perform much worse
than any feasible spatial RE-GLS estimator. There is also much gain from performing RE-GLS allowing for
spatial correlation than ignoring it. For p; = p, = 0.8, the relative MSE of RE ignoring spatial correlation is
1.843 compared to 1.003 for KKP. For p; = 0.8 and p, = 0.5, the relative MSE of RE is 1.231 compared to
1.004 for the General spatial RE estimator of Baltagi, Egger and Pfaffermayr (2012). The gain in efficiency
from using the correct feasible GLS for our experiments is not that large, for p; = 0.8 and p, = —0.2, the
relative MSE of KKP is 1.171, compared to 1.129 for Anselin and 1.011 for General spatial RE estimator.
Tables 2 and 3 repeat these experiments only varying the proportion of heterogeneity among the individuals
from 6 = 0.5 in Table 1 to § = 0.25 in Table 2 and § = 0.75 in Table 3. By and large, the results are the same,
but the magnitudes of the relative MSE are different. Estimators that handle heterogeneity only perform
better as the degree of heterogeneity increases, and worse when the degree of heterogeneity decreases. We
ran more experiments for N = 49 and T' = 10, the results are reported in Tables 4, 5 and 6, for § = 0.5, 0.25
and 0.75, respectively. The flavor is the same, but the magnitudes of the relative MSE are different.

Table 7 reports the empirical size (at the 5% level) of the spatial Hausman test for various values of p; and
po fixing 02 =10 and 02 = 10, i.e., § = 0.5; and N = 100 and T = 5 corresponding to the results reported in
Table 1. This is based on the contrast of the KKP random effects GM estimator and the Within-GLS in the

first column, and the contrast of the Anselin random effects GM estimator and the Within-GLS in the second
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column and the contrast of the General spatial RE estimator and the Within-GLS in the third column. We
can see that the spatial Hausman test based on KKP is over-sized if the true model is an Anselin random
effects model with p; = 0 and p, = —0.8 (or 0.8). In both cases, the test is oversized yielding a probability
of type I error of 0.094 (or 0.090) when it should be 0.05. This oversizing of the test gets worse p; = —0.8
and p, = 0.8. The Hausman test based on KKP yields a type I error of 0.121. Also, when p; = 0.8 and
po = —0.8. In this case, The Hausman test based on KKP yields a type I error of 0.211. In contrast, the
spatial Hausman test based on the Anselin random effects GM estimator is under-sized if the true model is
KKP with p; = p; = —0.8 (or 0.8). In both cases, the test is undersized yielding a probability of type I error
of 0.024 (or 0.023) when it should be 0.05. However, this undersizing does not get worse, and the Hausman
test based on Anselin performs well when the true model is a general spatial RE estimator with size varying
between 0.037 and 0.074. The spatial Hausman test based on the general spatial RE estimator performs
well with size between 0.047 and 0.097. Tables 8 and 9 repeat the spatial Hausman test results only varying
the proportion of heterogeneity among the individuals from # = 0.5 in Table 7 to # = 0.25 in Table 8 and
0 = 0.75 in Table 9. By and large, the results are the same, but the size magnitudes are different. Tables 10,
11 and 12 report the empirical size (at the 5% level) of the spatial Hausman test for N = 49 and T = 10,
corresponding to the results reported in Tables 4, 5 and 6. For this relatively smaller N, larger T case,
the KKP over-sizing of the Hausman test can be as large as 0.307 in Table 10, 0.278 in Table 11 and 0.317
in Table 12, all occurring when p; = 0.8 and p, = —0.8. For these values of p; and p,, the corresponding
over-sizing of the Hausman test based on the Anselin RE model is 0.117 in Table 10, 0.127 in Table 11, and
0.112 in Table 12, respectively. The corresponding over-sizing of the Hausman test based on the general

spatial RE model is 0.088 in Table 10, 0.146 in Table 11, and 0.07 in Table 12, respectively.

5 Conclusion

This paper suggests simple RE-GLS and FE-GLS estimators for the generalized spatial error component
model considered by Baltagi, Egger and Pfaffermayr (2012). These estimators apply the usual fixed effects
transformation and the GM method of KKP and Mutl and Pfaffermayr (2011) and are easy to compute.
We derive the asymptotic distribution of these estimators and investigate their performance using Monte
Carlo experiments. Our results show that this Within-GLS estimator performs much better than standard
FE which ignores the spatial correlation. There is also much gain from performing RE-GLS allowing for
spatial correlation than the standard RE estimator which ignores the spatial correlation. Not surprisingly,

the ‘correct’ feasible GLS estimator performs best and is the closest in RMSE to the true GLS. We also
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investigate the performance of the spatial Hausman test based on the contrast involving this Within-GLS
estimator and the KKP, Anselin and General variants of the random effects spatial model. We show that

this Hausman test can be misleading under misspecification.
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A  Proof of Theorem 1
Proof. First, let us show 'y, = O (1), v4, = O (1) and
G —TL 20 and gk — 9k 20 as N — oc. (45)

i
Let & = <§17N,...,§(T+1)N)N> = (M’N,...,'Ug,)/sothat un = Z,uiN+usn = (LT ®A_1) I~LN+(1T ®B_1) vy =
[(LT ® A_l) , (IT ® B_l)] &y and

L ’UQV (ST (9 WJI\C/WJZV) UN

Prl,N = NT
1
= e (e A (e B (Sr e WEWY) [(r© A7), (1r 9 B7)] €
1
T ! Afl/ch/Wl Afl Afl/Wk/Wl B*l
where Cy = Tle NN NN using ¢Sy = T and Spup = vp. Note
v St B VYWHWLA™Y BTYWHWL B!

the first matrix of the Kronecker product in Cy does not depend on N. The row and column sums of the
second matrix of the Kronecker product in C are bounded uniformly in absolute value by Remark A2(b)
in Kapoor, Kelejian and Prucha (2007). By the proof of Lemma Al in Kapoor, Kelejian and Prucha (2007),
we have E (gokl’N) =O0(1) and o y — E (901{1,1\/) 0. Notice that N are elements of Gy and g}
E (¢, ) are elements of I'y, and v}, Equation (45) is proved.

Second, let us show

Gy -GN 20 and gh — gy 20 as N — oo, (46)

provided 3 2 8 as N — oo. Note that the elements of G} and g} are CrN = mrUy (ST @ WEWE) un.
Since the row and column sums of the elements of Wy are uniformly bounded in absolute value by Assumption
4, it follows that the row and columns sums of the matrices St ® WX WY also have that property. Define
Prn = wplly (ST @ WEWL) Gy, which are the elements of G} and g). By the proof of Lemma A3 in
Kapoor, Kelejian and Prucha (2007), we have @5, x — ©p n 20 as N — oo. This completes the proof of
Equation (46).

Third, Let 6 = (p;,07) and 0 = (Bl,gi). The objective function of the nonlinear least squares

estimator and its corresponding nonstochastic counterpart are given by

!/
Ry (9) [G}v (1. P2 02] 911\/} [G}v (1. 03, 02] 911\/} :

[ao]]

2)—‘

S
Il

!
[F}V [p17p%70.i]/_7}\7:| |:F}V [plvp%aai]l_’y}\f} )

16



respectively. Under Assumption 5, Equation (45) and (46), from the proof of Theorem 1 in Kapoor,
Kelejian and Prucha (2007), we have

sup |Ry (8) — Ry (8)] = 0

p1€[—a1,a1],02 €[0,b1]

as N — oo. The consistency of p; and &i follows directly from Lemma 3.1 in Potscher and Prucha (1997).

B Proof of Theorem 2

Proof. First, using the central limit theorem and the law of large numbers, we have

-1
> 1 _
\/ﬁ (BGLS - ﬁ) {NTXNQ 1XN} \/ﬁngﬂgluN LA N (0, (\IIO + 0';2\111) 1) ,
as N — oo since
NTXNQ Xy
1 7 2 -1 2 -1t -2
= =Xk {JT ® [TU# (A'A)~ + o2 (B'B) } } Xy + 03 NTXN [Er ® (B'B)] Xy

2wy + 0,20,

and

1 _ d _
—— XN 'uy S N (0, lim —X Q' XN | =N (0,90 +0,%F)
\/W N*= %y ( N ’ v

using Assumption 3.

Second, we show that with consistent estimators p;, ps, 0 and & 0 , by Lemma 4 of Baltagi, Egger and

Pfaffermayr (2012), we have

1 1
NTXNQ Xy — NTXNQ Xy %0
and
1 /I V—1 1 / —1 p
T un = e Xl uy = 0.

Therefore, we have vV NT (BFGLS - BGLS> %, 0 as N — co. This proves the Theorem. m

C Proof of Theorem 3

Proof. First, using the central limit theorem and the law of large numbers, we have

—1
VNT (BWithin—GLS - B) {NTXN [Er ® (B'B)] XN} Xy [Er ® Bvy 4N (07‘73‘1’1_1) )

1
VNT
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as N — oo since
1
and

1
—— XN [Er @ Blvy 5 N (0,020,)

VNT

using Assumption 3.
Second, we show that with consistent estimators p, and 62, we have v NT (BWithianGLS — BW”hm7GLS) it

0 as N — oo. To prove this part it suffices to show that

_ 1 / n! 1 / ’ P
and
Ay = X [ET ® B’] VN — XUy [Er @ B vy 2 0. (48)
VvVNT VvVNT
We first demonstrate (47). It is readily seen that
B'B—B'B = (Ix—p.Wn) (In — poWn) = (In — ps W) (In = p2 W)

= [In =Py (Wi + W)+ BWAWr] — [In = py (Wi + W) + psWa W]

= —(Py— po) Wx +Wn) + (95 — p3) WaWh,

hence Ay = — (By — py) op XN [Br @ (Wi + Wa)| Xy + (75 — p3) o X [Er @ (WLWy)] Xn. In light
of Assumption 4, by Remark A2 of Kapoor, Kelejian and Prucha (2007), the elements of the matrices
7 XN [Er ® (W) + Wn)] Xn and 57Xy [Er @ (WWy)] Xy are uniformly bounded in absolute value.

Since py is a consistent estimator of py, it follows that A; 2 0 as N — co. We next demonstrate (48).
B' = B'=(Ix — p,Wn) = (In = pWn)' = = (py — p2) Wi

Hence, Ay = — (py — ps) ﬁX}V [Er @ Wy]lvy. Since Xy and Wy are nonstochastic matrices, the ex-

1 / / L . . . . . e
\/WX N [Er @ Wi]vy is a vector of zeros and its variance covariance matrix is

o2 = XN [Er ® (WAWn)] Xy. Hence, 14X [Er @ (WL Wy)] X is uniformly bounded in absolute value.

pected value of the vector

Therefore ﬁX}v [Er @ Wi]vy = O, (1), and A 2,0 as N — oo, since p, is a consistent estimator of

po. This proves the Theorem. m
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D Proof of Theorem 4

Proof. First, using the central limit theorem and the law of large numbers, we have

VNT (gRE72SLS - 5) =

ZNO Hy (HGQ Hy\ ' HL Q7 Zy
NT NT NT

-1
ZQ Hy (HVQ P Hy\ ' HAQ Yy
NT NT VNT

4N (o, (rs) ),
as N — oo since

1 -1 L 7 2 -1 2 -1t o 1
SFHNO Hy = NTH;V{JT@@[T%(A'A) +02(B'B) } Hy +0,%—

£>2520+0;221

1

1 _ 1 = —1 —177¢
ﬁH;VQulZN = ﬁHJ’V {JT ® [Tai (A’A)" + 02 (B'B) } }ZN +o Hy [Er @ (B'B)] Zn

ﬁ) F = FO + 0;2F1
and
b

1
\/WvaleuN 4N (0, lim H;VszngN> = N(0,%)

N—oo NT
using Assumption 6.

Second, it is easy to show that Oasrs B 8 as N — oo. From Kapoor et al. (2007) and the proof of
Theorem 1, we know the GM estimators of p;, ps, &i and &2 are consistent. Similiar to Lemma 4 of Baltagi,

Egger and Pfaffermayr (2012), we have
Lo oy - 0 Hy B0

1 I -1 1 ! -1 p
NTHNQu ZN NTHNQu ZN—>0

and

1 - 1
———H O uy — —=HNQ uy 5 0.

VNT VNT

Therefore, we have v NT (;S\RE,FQSLS — 3\RE,QSLS) 2.0 as N — co. This proves the Theorem. m

19



E Proof of Theorem 5

Proof. First, using the central limit theorem and the law of large numbers, we have

—1
o (7 | Zy|BEr® (B'B)Hy (Hy|BEr ® (B'B)|Hy\ ' Hy [Er ® (B'B)]| Zy
NT (5”*25“ - 5) - { NT NT NT
Zl [Br ® (B'B)|Hy (H)y[Br ® (B'B)|Hy\ " Hly [Er ® B'|vy
NT NT VNT
4N (0,02 (i37T) ),
as N — oo since
Lo [Er ® (B'B)|Hy 2 %
NT N T N 1
1
~7 Hn [Br ® (B'B)] Zx L1
and
1 ) 1
\/WHJIV [ET ® B/] UN 4 N (071\}5%0]\/'1—'}[]/\] [ET ® (B’B)] HN) =N (0,0521)

using Assumption 6.

Second, similiar to the proof of Theorem 3, one can show that
Lo [ET ® (B’B)} Hy — L H\ [Er @ (B'B) Hy %0
NT N NT N

1 ~, 1
and

VNT VNT

Therefore, we have vV NT (SFE,FQSLS —SFE,QSLS) 2,0 as N — co. This proves the Theorem. m

HY, [ET ® B’} uN — HY [Er ® By % 0.

20



Table 1: Relative Efficiencies of Spatial Panel Data Estimators (N = 100, T= 5)

=

N
2
=
=
=

Within- KKP Anselin General
GLS

RE 1.226 1.006 1.232 1.005 1.004 1.015
KKP -0 - 2.179 1.768 1.190 1.000 1.080 1.007
-0 - 1.434 1.179 1.202 1.001 1.033 1.006

-0 - 1.214 1.023 1.190 1.008 1.009 1.012

0 1.242 1.031 1.194 1.008 1.020 1.014

0 1.448 1.199 1.213 0.999 1.034 1.009

0 2.356 1.843 1.232 1.003 1.091 1.003

Anselin - 2.108 1.489 1.149 1.065 1.012 1.013
- 1.425 1.133 1.194 1.035 1.005 1.010

- 1.217 1.021 1.193 1.017 1.007 1.016

1.230 1.021 1.183 1.003 1.011 1.014

1.412 1.130 1.183 1.023 1.001 1.004

2.266 1.489 1.184 1.039 1.005 1.012

General -0.8 - 1.456 1.273 1.220 1.024 1.109 1.015

1 | 1 1 | 1 | 1 1 | 1 | 1 1 | 1 |
Slelalelalelalelslelalelslelslelslelolelolellelolelolelolelelelafelele
1 | 1 1 1 1

OO OO0 OO OO0 OO0 OO0 OO0

1.280  1.171  1.232  1.099  1.150  1.008
1469 1308 1231  1.031 1.106  1.004

00 00 00 00 00 0O LTLTITLTUTITRD DO B B 1O B B B B B I B CTEA TN &M 00 50 00 00 00 00| O © © © © S| o UTho bo U1od O
TR0 O B0 U100 00 1O O b T 00 00 U1 D U100 00 LT O T 00 00 TR O B 00 00 LT O B &1 00 &t b b &t 00| 00 Tt b bo &t o S
ro
)
)
>
—
o
S
<o
[
—
o
)
—
o
)
IS
—
o
&
—
—
o
o
\]

Notes: (a) Relative mean square error with respect to the true GLS. (b) 10,000 replications. (c¢) o2 = 10 and
oy =10, ie., 0 =0.5.
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Table 2: Relative Efficiencies of Spatial Panel Data Estimators (N = 100, T= 5)

=

N
2
=
=
=

Within- KKP Anselin General
GLS

RE 1.468 1.041 1.474 1.001 1.001 1.010
KKP -0 - 2.567 1.811 1.402 0.999 1.124 1.005
-0 - 1.683 1.200 1.411 1.007 1.022 1.012

-0 - 1.439 1.046 1.409 1.009 1.014 1.017

0 1.474 1.063 1.419 1.002 1.014 1.008

0 1.730 1.246 1.448 1.007 1.040 1.002

0 2.867 1.966 1.500 1.013 1.129 1.018

Anselin - 2.398 1.503 1.308 1.042 1.032 1.017
- 1.656 1.134 1.389 1.032 1.006 1.012

- 1.432 1.035 1.402 1.002 1.007 1.011

1.461 1.053 1.406 1.003 1.003 1.019

1.673 1.175 1.400 1.013 1.003 1.006

2.654 1.598 1.386 1.042 1.041 1.020

General -0.8 - 1.694 1.315 1.421 1.017 1.113 1.005

1 | 1 1 | 1 | 1 1 | 1 | 1 1 | 1 |
Slelalelalelalelslelalelslelslelslelolelolellelolelolelolelelelafelele
1 | 1 1 1 1

OO OO0 OO OO0 OO0 OO0 OO0

1.502 1229  1.444  1.107  1.166  1.009
1.744  1.368 1461  1.021  1.119  0.996

00 00 00 00 00 0O LTLTITLTUTITRD DO B B 1O B B B B B I B CTEA TN &M 00 50 00 00 00 00| O © © © © S| o UTho bo U1od O
TR0 O B0 U100 00 1O O b T 00 00 U1 D U100 00 LT O T 00 00 TR O B 00 00 LT O B &1 00 &t b b &t 00| 00 Tt b bo &t o S
ro
o
—
o
—
o
>
o
[
o
=
o
—
—
)
\]
—
o
S
&0
—
o
&
o

Notes: (a) Relative mean square error with respect to the true GLS. (b) 10,000 replications. (c) o7 =5 and
oy =15, ie., 0 =0.25.
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Table 3: Relative Efficiencies of Spatial Panel Data Estimators (N = 100, T= 5)

=

N
2
=
=
=

Within- KKP Anselin General
GLS

RE 1.098 1.006 1.101 1.018 1.023 1.023
KKP -0 - 1.984 1.831 1.084 1.005 1.044 1.010
-0 - 1.299 1.195 1.089 1.005 1.034 1.006

-0 - 1.094 1.018 1.072 1.003 1.000 1.012

0 1.107 1.023 1.065 1.002 1.000 1.003

0 1.286 1.201 1.076 1.004 1.017 1.007

0 2.066 1.881 1.083 1.004 1.043 1.008

Anselin - 1.937 1.629 1.056 1.032 1.002 1.005
- 1.294 1.178 1.086 1.019 1.004  0.999

- 1.094 1.016 1.072 1.013 1.000 1.006

1.103 1.014 1.061 1.006  0.994 1.005

1.279 1.166 1.071 1.024 1.012 1.016

2.029 1.636 1.060 1.020 1.005 1.006

General -0.8 - 1.306 1.235 1.096 1.022 1.059 1.009

1 | 1 1 | 1 | 1 1 | 1 | 1 1 | 1 |
Slelalelalelalelslelalelslelslelslelolelolellelolelolelolelelelafelele
1 | 1 1 1 1

OO OO0 OO OO0 OO0 OO0 OO0

1.118  1.076  1.077  1.048  1.063  1.002
1.205 1249  1.081 1.009 1.047  1.007

00 00 00 00 00 0O LTLTITLTUTITRD DO B B 1O B B B B B I B CTEA TN &M 00 50 00 00 00 00| O © © © © S| o UTho bo U1od O
TR0 O B0 U100 00 1O O b T 00 00 U1 D U100 00 LT O T 00 00 TR O B 00 00 LT O B &1 00 &t b b &t 00| 00 Tt b bo &t o S
ro
o
et
o
—
>
)
)
[
o
&
—
—
o
=
\]
—
o
e
\]
—
o
S
\]

Notes: (a) Relative mean square error with respect to the true GLS. (b) 10,000 replications. (c¢) o2 = 15 and
oy =5, 1ie., 0=0.75.
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Table 4: Relative Efficiencies of Spatial Panel Data Estimators (N = 49, T= 10)

=

N
2
=
=
=

Within- KKP Anselin General
GLS

RE 1.091 0.995 1.098 0.997 1.003 1.008
KKP -0 - 1.968 1.765 1.133 1.014 1.071 1.012
-0 - 1.301 1.180 1.112 1.007 1.032 1.009

-0 - 1.173 1.034 1.117  0.995 1.002 1.001

0 1.123 1.021 1.101 1.005 1.003 1.015

0 1.314 1.189 1.096 0.996 1.025 1.001

0 2.099 1.908 1.113 0.998 1.055 1.002

Anselin - 1.913 1.540 1.101 1.058 1.012 1.015
- 1.280 1.148 1.093 1.025 1.006 1.013

- 1.168 1.019 1.112 0.999 0.995 1.001

1.122 1.027 1.100 1.012 1.006 1.011

1.303 1.127 1.086 1.011 1.001 0.996

2.059 1.638 1.091 1.044 1.007 1.019

General -0.8 - 1.323 1.244 1.132 1.029 1.075 1.013
1.194 1.127 1.138 1.059 1.084  0.999

1 | 1 1 | 1 | 1 1 | 1 | 1 1 | 1 |
Slelalelalelalelslelalelslelslelslelolelolellelolelolelolelelelafelele
1 | 1 1 1 1

OO OO0 OO OO0 OO0 OO0 OO0

1.131  1.091  1.108 1.046 1.074  1.017
1.329 1267 1.108 1.020 1.064  1.004

00 00 00 00 00 0O LTLTITLTUTITRD DO B B 1O B B B B B I B CTEA TN &M 00 50 00 00 00 00| O © © © © S| o UTho bo U1od O
TR0 O B0 U100 00 1O O b T 00 00 U1 D U100 00 LT O T 00 00 TR O B 00 00 LT O B &1 00 &t b b &t 00| 00 Tt b bo &t o S
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Notes: (a) Relative mean square error with respect to the true GLS. (b) 10,000 replications. (c¢) o2 = 10 and
oy =10, ie., 0 =0.5.
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Table 5: Relative Efficiencies of Spatial Panel Data Estimators (N = 49, T= 10)

=

N
2
=
=
=

Within- KKP Anselin General
GLS

RE 1.239 1.008 1.248 1.007 1.005 1.013
KKP -0 - 2.239 1.774 1.288 1.000 1.119 1.014
-0 - 1.482 1.190 1.267 1.010 1.054 1.019

-0 - 1.344 1.041 1.280 1.009 1.010 1.006

0 1.265 1.029 1.240 1.017 1.025 1.025

0 1.508 1.199 1.254 1.004 1.043 1.017

0 2.382 1.895 1.262 1.005 1.091 1.010

Anselin - 2.105 1.470 1.211 1.051 1.022 1.029
- 1.427 1.123 1.218 1.035 1.008 1.013

- 1.334 1.031 1.270 1.011 1.008 1.010

1.257 1.019 1.232 1.017 1.015 1.025

1.477 1.130 1.230 1.032 1.009 1.012

2.285 1.585 1.209 1.066 1.042 1.028

General -0.8 - 1.505 1.309 1.287 1.036 1.130 1.009

1 | 1 1 | 1 | 1 1 | 1 | 1 1 | 1 |
Slelalelalelalelslelalelslelslelslelolelolellelolelolelolelelelafelele
1 | 1 1 1 1

OO OO0 OO OO0 OO0 OO0 OO0

1.246  1.132  1.256 1.143 1.150 1.016
1.282  1.160 1.255  1.096  1.143  1.022
1.517 1315  1.264  1.029 1.130  1.011

00 00 00 00 00 0O LTLTITLTUTITRD DO B B 1O B B B B B I B CTEA TN &M 00 50 00 00 00 00| O © © © © S| o UTho bo U1od O
TR0 O B0 U100 00 1O O b T 00 00 U1 D U100 00 LT O T 00 00 TR O B 00 00 LT O B &1 00 &t b b &t 00| 00 Tt b bo &t o S
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Notes: (a) Relative mean square error with respect to the true GLS. (b) 10,000 replications. (c) o7 =5 and
oy =15, ie., 0 =0.25.
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Table 6: Relative Efficiencies of Spatial Panel Data Estimators (N = 49, T= 10)

=

N
2
=
=
=

Within- KKP Anselin General
GLS

RE 1.037 1.005 1.043 1.013 1.012 1.015
KKP -0 - 1.826 1.747 1.051 1.005 1.036 1.008
-0 - 1.206 1.153 1.033 1.003 1.008 1.002

-0 - 1.109 1.033 1.056 1.005 1.009 1.012

0 1.050 1.017 1.028 1.004 1.000 1.010

0 1.242 1.194 1.038 1.007 1.016 1.009

0 1.963 1.890 1.041 0.999 1.034 1.008

Anselin - 1.800 1.651 1.036 1.019 1.007  1.000
- 1.204 1.153 1.031 1.017 1.005 1.008

- 1.101 1.024 1.049 1.003 1.000 1.007

1.053 1.023 1.031 1.007 1.003 1.009

1.244 1.171 1.039 1.011 1.006 1.012

1.957 1.769 1.037 1.033 1.001 1.012

General -0.8 - 1.215 1.185 1.041 1.010 1.023 1.004

1 | 1 1 | 1 | 1 1 | 1 | 1 1 | 1 |
Slelalelalelalelslelalelslelslelslelolelolellelolelolelolelelelafelele
1 | 1 1 1 1

OO OO0 OO OO0 OO0 OO0 OO0

1.049  1.033 1.027 1.016 1.026  1.005
1.242 1211 1.037 1.006 1.030 1.010

00 00 00 00 00 0O LTLTITLTUTITRD DO B B 1O B B B B B I B CTEA TN &M 00 50 00 00 00 00| O © © © © S| o UTho bo U1od O
TR0 O B0 U100 00 1O O b T 00 00 U1 D U100 00 LT O T 00 00 TR O B 00 00 LT O B &1 00 &t b b &t 00| 00 Tt b bo &t o S
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Notes: (a) Relative mean square error with respect to the true GLS. (b) 10,000 replications. (c¢) o2 = 15 and
oy =5, 1ie., 0=0.75.
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Table 7: Size of the Spatial Hausman Test (N = 100, T= 5)

,0E p6 KKP Anselin  General

-0 - 0.054 0.048 0.056

-0 - 0.051 0.052 0.053

0 0.048 0.047 0.049

0 0.050 0.041 0.050

0 0.050 0.023 0.050

Anselin - 0.094 0.057 0.064
- 0.069 0.055 0.059

- 0.054 0.052 0.054

0.053 0.048 0.051

0.067 0.051 0.053

0.090 0.056 0.061

General -0 - 0.037 0.037 0.055

00 00 00 00 00 00 TTELALTTTLT U DO B B B0 1O B B 1O B B O U1 Ut an 00 00 00 00 00 00 © © © © O O| 00 UTho ho Ut
|
OO OO0 OO0 OO0 CO00D OO0 OO0
TR0 O RO U100 00 b O 1O U100 00 TTO R U100 00 TR © U100 00 TTRO O 1D 00 00 TR © Ko &1 00 TThY b L1 00| 00 TTho ko Ut
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o
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&
o
o
o
S
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-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

Notes: (a) 10,000 replications. (b) o7 = 10 and o2 = 10, i.e., § = 0.5.
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Table 8: Size of the Spatial Hausman Test (N = 100, T= 5)

,0E p6 KKP Anselin  General

-0 - 0.053 0.046 0.054

-0 - 0.050 0.051 0.050

0 0.048 0.046 0.049

0 0.048 0.042 0.049

0 0.049 0.022 0.048

Anselin - 0.078 0.067 0.062
- 0.060 0.052 0.054

- 0.051 0.051 0.050

0.050 0.047 0.049

0.059 0.051 0.053

0.071 0.070 0.061

General -0 - 0.043 0.034 0.054

00 00 00 00 00 00 TTELALTTTLT U DO B B B0 1O B B 1O B B O U1 Ut an 00 00 00 00 00 00 © © © © O O| 00 UTho ho Ut
|
OO OO0 OO0 OO0 CO00D OO0 OO0
TR0 O RO U100 00 b O 1O U100 00 TTO R U100 00 TR © U100 00 TTRO O 1D 00 00 TR © Ko &1 00 TThY b L1 00| 00 TTho ko Ut
o
o
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o
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o
o
&
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-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
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-0
-0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

Notes: (a) 10,000 replications. (b) ai =5 and 02 = 15, i.e., 6 = 0.25.
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Table 9: Size of the Spatial Hausman Test (N = 100, T= 5)

,0E p6 KKP Anselin  General

-0 - 0.056 0.052 0.060

-0 - 0.055 0.055 0.058

0 0.052 0.049 0.056

0 0.050 0.044 0.050

0 0.050 0.035 0.051

Anselin - 0.110 0.056 0.065
- 0.079 0.058 0.064

- 0.056 0.054 0.062

0.057 0.052 0.057

0.074 0.050 0.057

0.106 0.054 0.063

General -0 - 0.034 0.041 0.056

00 00 00 00 00 00 TTELALTTTLT U DO B B B0 1O B B 1O B B O U1 Ut an 00 00 00 00 00 00 © © © © O O| 00 UTho ho Ut
|
OO OO0 OO0 OO0 CO00D OO0 OO0
TR0 O RO U100 00 b O 1O U100 00 TTO R U100 00 TR © U100 00 TTRO O 1D 00 00 TR © Ko &1 00 TThY b L1 00| 00 TTho ko Ut
o
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-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
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-0
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-0
-0
-0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

Notes: (a) 10,000 replications. (b) ai =15and 02 =5, i.e., 0 = 0.75.
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Table 10: Size of the Spatial Hausman Test (N = 49, T= 10)

,0E p6 KKP Anselin  General

-0 - 0.059  0.048  0.065

-0 - 0.067  0.052  0.062

0 0.055  0.058  0.062

0 0.061 0.061 0.062

0 0.053  0.048  0.051

Anselin - 0.129  0.062  0.076
- 0.092  0.059  0.069

- 0.063  0.056  0.062

0.068  0.056  0.062

0.081 0.061 0.069

0.108  0.065  0.073

General -0 - 0.031 0.043  0.059

00 00 00 00 00 00 TTELALTTTLT U DO B B B0 1O B B 1O B B O U1 Ut an 00 00 00 00 00 00 © © © © O O| 00 UTho ho Ut
|
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0
0
0
0
0

Notes: (a) 10,000 replications. (b) o7 = 10 and o2 = 10, i.e., § = 0.5.
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Table 11: Size of the Spatial Hausman Test (N = 49, T= 10)

,0E p6 KKP Anselin  General

-0 - 0.056 0.044 0.059

-0 - 0.052 0.052 0.056

0 0.052 0.054 0.055

0 0.056 0.051 0.058

0 0.048 0.034 0.046

Anselin - 0.105 0.068 0.074
- 0.078 0.057 0.064

- 0.057 0.055 0.057

0.053 0.053 0.057

0.071 0.058 0.063

0.087 0.075 0.072

General -0 - 0.039 0.036 0.057

00 00 00 00 00 00 TTELALTTTLT U DO B B B0 1O B B 1O B B O U1 Ut an 00 00 00 00 00 00 © © © © O O| 00 UTho ho Ut
|
OO OO0 OO0 OO0 CO00D OO0 OO0
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0
0
0

Notes: (a) 10,000 replications. (b) ai =5 and 02 = 15, i.e., 6 = 0.25.
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Table 12: Size of the Spatial Hausman Test (N = 49, T= 10)

,0E p6 KKP Anselin  General

-0 - 0.059 0.052 0.069

-0 - 0.058 0.055 0.066

0 0.060 0.061 0.071

0 0.060 0.069 0.063

0 0.052 0.072 0.053

Anselin - 0.142 0.062 0.076
- 0.100 0.060 0.074

- 0.065 0.059 0.069

0.062 0.059 0.070

0.085 0.059 0.070

0.122 0.063 0.076

General -0 - 0.030 0.045 0.061

00 00 00 00 00 00 TTELALTTTLT U DO B B B0 1O B B 1O B B O U1 Ut an 00 00 00 00 00 00 © © © © O O| 00 UTho ho Ut
|
OO OO0 OO0 OO0 CO00D OO0 OO0
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Notes: (a) 10,000 replications. (b) ai =15and 02 =5, i.e., 0 = 0.75.
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