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Summary.

This work describes a Gaussian Markov random field model that includes several previously proposed

models, and studies properties of their maximum likelihood (ML) and restricted maximum likelihood

(REML) estimators in a special case. Specifically, for models where a particular relation holds between

the regression and precision matrices of the model, we provide sufficient conditions for existence and

uniqueness of ML and REML estimators of the covariance parameters, and provide a straightforward way

to compute them. It is found that the ML estimator always exists while the REML estimator may not exist

with positive probability. A numerical comparison suggests that for this model ML estimators of covariance

parameters have, overall, better frequentist properties than REML estimators.

Keywords: Eigenvalues and eigenvectors; Profile likelihood; Restricted likelihood; Spatial data.

JEL Classifications: C11, C31

1. Introduction

Gaussian Markov random fields (GMRF) are important families of distributions for the modeling of

spatial data, which have been extensively used in different areas of spatial statistics such as remote

sensing (Chellappa and Jain, 1993), disease mapping (Cressie and Chan, 1989) and image analysis

(Besag, York and Mollié, 1991). The practical use of GMRF for modeling large scale spatial phe-

nomena has significantly increased after recent advances on the efficient simulation of GMRFs (Rue,

2001; Rue and Follestad, 2002); see Cressie (1993) and Rue and Held (2005) for detailed accounts on

GMRFs.

Two of the most commonly used approaches for parameter estimation in GMRFs have been maxi-

mum likelihood (ML) and restricted maximum likelihood (REML); the former is described in Mardia

and Marshall (1984), Cressie and Chan (1989) and Richardson, Guihenneuc and Lasserre (1992),

while the latter is described in Zimmerman and Harville (1991) and Cressie and Lahiri (1996). Most

of the known results about the behavior of ML and REML estimators are asymptotic in nature, and

little is known about their behavior in small samples. In particular, little is known about conditions

that guarantee existence and uniqueness of ML and REML estimators of GMRF parameters based

on finite samples.

This work describes a GMRF model that includes several previously proposed models, and studies

in detail properties of its ML and REML estimators in a special case. Specifically, for models where
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a particular relation holds between the regression and precision matrices of the model, we provide

sufficient conditions for existence and uniqueness of ML and REML estimators of the covariance pa-

rameters, and provide a straightforward way to compute them. It is found that the ML estimators of

covariance parameters always exist, but the REML estimators of covariance parameters do not exist

with positive probability. In addition, the existence and positivity of the ML and REML estimators

of covariance parameters depend on easy-to-check conditions involving a ratio of quadratic forms and

some eigenvalue summaries of a matrix that determines the precision matrix of the model. Demi-

denko and Massam (1999) and Birkes and Wulff (2003) provided general results on existence of ML

and REML estimators of covariance parameters for a large class of Gaussian variance components

models. Although the GMRF model we consider here can in principle be framed as an instance of

the class of models studied by Birkes and Wulff (2003), doing so is cumbersome due to the resulting

awkward parameter space and the difficulty of checking the conditions of their results. We discuss

this connection in Section 6.

We also study some (small sample) frequentist properties of ML and REML estimators of the

covariance parameters, as well as how these properties depend on the strength of spatial association.

Based on the above theoretical and empirical results it is found for this model that, overall, the ML

estimators of covariance parameters have better frequentist properties than the REML estimators.

2. The Model

Consider a collection of sites or regions indexed by the integers 1, 2, . . . , n, forming a lattice (regular

or irregular) within a geographical domain of interest. This lattice is assumed to be endowed with a

neighborhood system, {Nk : k = 1, . . . , n}, where Nk denotes the collection of sites that are neighbors

of site k. This neighborhood system satisfies that for any k, l = 1, . . . , n, k ∈ Nl if and only if l ∈ Nk

and k /∈ Nk.

For each site, k, it is observed the variable of interest, Yk, and a set of p explanatory variables,

xk = (xk1, . . . , xkp)
′. The random vector of observed responses, Y = (Y1, . . . , Yn)′, would be modeled

by the joint distribution

Y ∼ Nn(Xβ, σ2Σ(φ)) with Σ(φ)−1 = In + φH, (1)

where X = (x1 · · ·xn)′ is a known n× p design matrix of rank p, β = (β1, . . . , βp)
′ ∈ R

p are unknown

regression parameters, σ > 0 is a scale parameter and φ ≥ 0 is a ‘spatial’ parameter, In is the n × n

identity matrix and H is given by

(H)kl =











hk if k = l

−gkl if k ∈ Nl

0 otherwise.

The weight gkl > 0 is a ‘measure of similarity’ between sites k and l, gkl = glk, and hk =
∑

l∈Nk
gkl.

For every φ ≥ 0, Σ(φ)−1 is diagonally dominant which together with the fact that all its diagonal

elements are positive imply that the matrix is positive definite (Harville, 1997 p. 279-280). The

random vector Y has then a probability density function. The matrix H, assumed known, allows

the modeling of different patterns of spatial association by the specification of different neighborhood

systems and weights {gkl}. We denote the model parameters by η = (β′, σ2, φ) ∈ R
p×(0,∞)× [0,∞).
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The parameter φ controls the strength of association between the components of Y and determines

the main properties of model (1). When φ = 0, the components of Y become independent random

variables with Yk ∼ N(x′

kβ, σ2), while when φ → ∞ model (1) approaches the intrinsic autoregressive

model (Besag et al. 1991; Besag and Kooperberg, 1995), which is an improper distribution that

has been extensively used in spatial statistics to model latent processes and spatial random effects.

In addition, φ also controls conditional correlations among neighboring sites. If ρc
kl denotes the

conditional correlation of Yk and Yl given {Yj , j 6= k, l}, with k 6= l, then for the model (1) we have

ρc
kl = φgkl/

(

(1 + φhk)(1 + φhl)
)0.5

when k ∈ Nl, and 0 otherwise.

An equivalent specification of model (1) can be stated in terms of its full conditional distributions,

which are given by

(Yk | Yl, l 6= k) ∼ N

(

x′

kβ +
φ

1 + φhk

∑

l∈Nk

gkl(Yl − x′

lβ) ,
σ2

1 + φhk

)

, k = 1, . . . , n.

Then, the full conditional mean of Yk is equal to the sum of its marginal mean x′

kβ and a correction

term depending on the deviations of the observed neighboring values from their respective marginal

means. Also, the full conditional variance of Yk decreases with the number of neighbors. These are

natural properties for many kinds of spatial data.

For the case when no explanatory variables are available, several GMRFs proposed in the literature

can be shown to be reparameterizations of model (1), for instance those in Leroux, Lei and Breslow

(1999), Sun, Tsutakawa and Speckman (1999) [their model 1A] and Dryden, Ippoliti and Romagnoli

(2002); see Ferreira and De Oliveira (2007) for details. Pettitt, Weir and Hart (2002) studied a model

slightly more general than the one considered here as it allows both positive and negative association

among the Yks. On the other hand, the model considered in Clayton and Kaldor (1987) and Cressie

and Chang (1989) has precision matrix that is not necessarily diagonally dominant, so it is not a

special case of model (1).

The matrix H is symmetric, non-negative definite and satisfies H1n = 0n. From its spectral

decomposition (Harville, 1997 p. 537), H = TDT ′ where T = (t1 · · · tn) has orthonormal columns

given by the normalized eigenvectors of H, that is t′itj = δij , and D = diag(λ1, . . . , λn) where

λ1 ≥ λ2 ≥ . . . ≥ λn−1 > λn = 0 are the ordered eigenvalues of H. Then

|In + φH| =
n−1
∏

k=1

(1 + φλk),

and the likelihood function of the parameters η based on the observed data y is given by

L(η;y) = (2πσ2)−
n
2

n−1
∏

k=1

(1 + φλk)
1

2 exp

{

−
1

2σ2
(y − Xβ)′Σ(φ)−1(y − Xβ)

}

.

Throughout the article we make the following two assumptions which hold in most practical

applications:

(A1) The matrix X has rank p ≤ n − 1 and 1n belongs to the subspace generated by the columns of

X (e.g. x1 = 1n) .

(A2) The matrix H has rank n − 1. A necessary and sufficient condition for this to hold is that 0 is

an eigenvalue of H with multiplicity 1 (Harville, 1997 Lemma 21.1.1).
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The first assumption states that the model has an overall mean. The second assumption may not

hold for matrices H that are reducible (which occurs when the neighborhood system is disconnected),

but this rarely occurs in practice.

3. Maximum Likelihood

The ML estimator of η, provided it exists, is given by η̂ = arg max log
(

L(η;y)
)

. For any fixed φ ≥ 0

the ML estimators of β and σ2 are given, respectively, by

β̂(φ) = (X ′Σ(φ)−1X)−1X ′Σ(φ)−1y,

σ̂2(φ) =
1

n
S2(φ),

where

S2(φ) = y′(In − A(φ))′Σ(φ)−1(In − A(φ))y,

and

A(φ) = X(X ′Σ(φ)−1X)−1X ′Σ(φ)−1.

Also, the profile log–likelihood of φ is given, up to an additive constant, by

lp(φ;y) = log
(

L(β̂(φ), σ̂2(φ), φ;y)
)

=
1

2

(

n−1
∑

k=1

log(1 + φλk) − n log(S2(φ)) − n log(2π)

)

.

It then holds that the ML estimator of η exists and is unique if and only if lp(φ;y) has a unique

maximum in [0,∞), say φ̂, in which case the ML estimator of η is given by η̂ = (β̂(φ̂), σ̂2(φ̂), φ̂).

Since lp(φ;y) is continuously differentiable with respect to φ, when φ̂ exists it must hold that φ̂ is

either zero or a root of the profile likelihood equation (recall that φ ∈ [0,∞))

0 =
∂

∂φ
lp(φ;y)

=
1

2

(

n−1
∑

k=1

( λk

1 + φλk

)

− n

∂
∂φ

S2(φ)

S2(φ)

)

=
1

2

(

n−1
∑

k=1

( λk

1 + φλk

)

− n
y′(In − A(φ))′H(In − A(φ))y

S2(φ)

)

=
1

2

(

n−1
∑

k=1

( λk

1 + φλk

)

− n
( Q(φ;y)

1 + φQ(φ;y)

)

)

, (2)

where

Q(φ;y) =
y′(In − A(φ))′H(In − A(φ))y

y′(In − A(φ))′(In − A(φ))y
;

the justification for the third identity in (2) is given by Lemma 6.1 in the Appendix. The solution (in

φ) of equation (2) is usually found by iterative numerical methods. But before this is attempted it is

convenient to be able to analytically determine whether (2) has a unique solution and whether that

solution maximizes lp(φ;y), which in general are difficult tasks. In what follows we consider a special

case for which such tasks can be undertaken.
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3.1. A Special Case

We first introduce some notation. Let C(X) denote the p-dimensional subspace of R
n spanned by the

columns of X, A = A(0) = X(X ′X)−1X ′ is the orthogonal projection matrix onto C(X), and for M

a subspace of R
n and V an n× n symmetric non-negative definite matrix, V (M) = {V x : x ∈ M}.

In this section we study the problem of determination and computation of the ML estimator of η

in models for which A(φ) does not depend on φ. There are several equivalent conditions, first given

by Zyskind (1967, Theorem 2), that allow such simplification. Some of these are summarized in the

following result.

Lemma 3.1. Consider the GMRF model in (1), and let V = Σ(φ)−1. Then the following state-

ments are equivalent:

(i) C(X) coincides with the subspace spanned by some p eigenvectors of V .

(ii) V (C(X)) ⊆ C(X).

(iii) H(C(X)) ⊆ C(X).

In addition if any of the above conditions hold, then A(φ) = A for every φ ≥ 0.

Conditions (i) and (ii) in Lemma 3.1 (and many other equivalent conditions) have a long history in

the statistical literature of linear models for guaranteeing that ordinary least squares and best linear

unbiased estimators of regression parameters agree; see e.g. Zyskind (1967) and Puntanen and Styan

(1989). These conditions hold for model (1) when the mean response is constant (i.e. X = 1n) since

H1n = 0n. Other situations are considered in Section 5. Then for models in which H(C(X)) ⊆ C(X)

we have

β̂ = (X ′X)−1X ′y and σ̂2 =
1

n
S2(φ̂),

where φ̂ is the ML estimator of φ. In this case it holds that A(φ) does not depend on φ, so Q(φ;y)

does not depend on φ either and is equal to Q(0;y) = Q(y) with

Q(y) =
y′(In − A)H(In − A)y

y′(In − A)y
,

as In−A is symmetric and idempotent. In all that follows recall that λn = 0 and note that assumption

(A2) implies that C(H) ⊂/ C(X), which in turn guarantees that Q(y) > 0 with probability one.

Theorem 3.1. Consider the GMRF model in (1) where it holds that H(C(X)) ⊆ C(X), and let

λ̄ = 1

n

∑n
k=1

λk. Then:

(i) If Q(y) ≥ λ̄, then φ̂ = 0.

(ii) If Q(y) < λ̄, then φ̂ > 0 is the unique solution to the equation

n−1
∑

k=1

( λk

1 + φλk

)

− n

(

Q(y)

1 + φQ(y)

)

= 0. (3)
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Proof. As stated before, the ML estimator of η exists and is unique if and only if lp(φ;y) has a

unique maximum in [0,∞). Also note from Lemma 3.1 that ∂
∂φ

lp(φ;y) is given by (2) with Q(φ;y)

replaced by Q(y).

(i) It follows from (2) that for any φ > 0

∂

∂φ
lp(φ;y) ≤

n

2

(

1

n

n
∑

k=1

( λk

1 + φλk

)

−
( λ̄

1 + φλ̄

)

)

< 0,

where the last relation follows from Jensen’s inequality applied to the uniform distribution supported

at {λk : k = 1, . . . , n} and the strictly concave function x(1+φx)−1, x > 0 (φ fixed). Since lp(φ;y) is

continuous at φ = 0, the profile log–likelihood of φ is strictly decreasing on [0,∞) so the ML estimator

of φ is φ̂ = 0.

(ii) Note that the equation ∂
∂φ

lp(φ;y) = 0 is equivalent to the equation m(φ,λ) = Q(y), where

m(φ,λ) is the function defined in equation (6) in the Appendix. Using parts (i), (ii) and (iv) of

Lemma 6.2 with v = λ (recall that λn = 0), we have that 0 < Q(y) < λ̄ implies that ∂
∂φ

lp(φ;y) = 0

has a unique solution on (0,∞), which is the unique ML estimator of φ. 2

4. Restricted Maximum Likelihood

It has been found for a variety of Gaussian models that the method of maximum likelihood usually

produces biased estimators for variance and covariance parameters, and this bias may be substantial

in situations involving small samples or models where the mean response is not constant. In these

situations the method of restricted maximum likelihood has been advocated by many as a better

estimation approach, at least in regard to producing less biased variance and covariance estimators.

The method consists of maximizing the likelihood function of the variance and covariance parameters

based on a set of n− p linearly independent ‘error contrasts’, which has a joint Gaussian distribution

with null mean vector (so it does not depend on β). This is called a restricted likelihood function.

As first noted by Harville (1974), log–restricted likelihoods of the variance and covariance parameters

based on any two sets of n−p linearly independent error contrasts differ only by an additive constant,

and for model (1) are equal to

lr(σ2, φ;y) = −
1

2

(

(n − p) log(σ2) − log(|Σ(φ)−1|) + log(|X ′Σ(φ)−1X|) +
1

σ2
S2(φ) + (n − p) log(2π)

)

.

The restricted maximum likelihood (REML) estimator of (σ2, φ), provided it exists, is given by

(σ̃2, φ̃) = arg max lr(σ2, φ;y). For any fixed φ ≥ 0, the REML estimator of σ2 is given by

σ̃2(φ) =
1

n − p
S2(φ).

We again consider in detail the special case when H(C(X)) ⊆ C(X), which from Lemma 3.1

amounts to assume that C(X) coincides with the subspace of R
n spanned by some p eigenvectors

of H. Let ti1 , . . . , tip
be these eigenvectors, which are orthonormal with corresponding eigenvalues

λi1 , . . . , λip
, and W = (ti1 · · · tip

). We then have that

W ′W = Ip , HW = WDw and X = WB, (4)
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where Dw = diag(λi1 , . . . , λip
) and B is some p × p non-singular matrix. From (4) follows that

X ′Σ(φ)−1X = B′W ′(In + φH)WB

= B′(Ip + φDw)B,

so the profile log–restricted likelihood of φ is given, up to an additive constant, by

lrp(φ;y) = lr(σ̃2(φ), φ;y)

=
1

2

(

n−1
∑

k=1

log(1 + φλk) − log(|X ′Σ(φ)−1X|) − (n − p) log(S2(φ)) − (n − p) log(2π)

)

=
1

2

(

∑

k∈J

log(1 + φλk) − (n − p) log(S2(φ)) − (n − p) log(2π)

)

,

where J = {1, . . . , n} − {i1, . . . , ip}. Note that because of assumption (A1), n /∈ J . It then holds

that the REML estimator of (σ2, φ) exists and is unique if and only if lrp(φ;y) has a unique maximum

on [0,∞), say φ̃, in which case the REML estimator of (σ2, φ) is given by (σ̃2(φ̃), φ̃). By convention

the REML estimator of β is β̃ = β̂(φ̃), so in this case we have β̃ = (X ′X)−1X ′y. From a similar

argument and calculation as in (2) we have that φ̃, provided it exists, must be either zero or a root

of the profile restricted likelihood equation

0 =
∂

∂φ
lrp(φ;y)

=
1

2

(

∑

k∈J

( λk

1 + φλk

)

− (n − p)
( Q(y)

1 + φQ(y)

)

)

. (5)

In what follows we assume that {λk}k∈J are not all equal.

Theorem 4.1. Consider the GMRF model (1) where it holds that H(C(X)) ⊆ C(X), and let

λ̄J = 1

n−p

∑

k∈J λk and ζ̄J =
(

1

n−p

∑

k∈J λ−1

k

)−1
[the arithmetic and harmonic means of {λk}k∈J ].

Then:

(i) If Q(y) ≤ ζ̄J , then φ̃ does not exist.

(ii) If Q(y) ≥ λ̄J , then φ̃ = 0.

(iii) If ζ̄J < Q(y) < λ̄J , then φ̃ > 0 is the unique solution to equation (5).

Proof. As stated before, the REML estimate of (σ2, φ) exists and is unique if and only if lrp(φ;y)

has a unique maximum on [0,∞).

(i) From (5) we have that for any φ ≥ 0

∂

∂φ
lrp(φ;y) ≥

1

2

(

∑

k∈J

( λk

1 + φλk

)

− (n − p)
ζ̄J

1 + φζ̄J

)

=
n − p

2

(

1

n − p

∑

k∈J

(

φ +
1

λk

)−1

−
(

φ +
1

n − p

∑

k∈J

λ−1

k

)−1

)

> 0,
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where the last relation follows from Jensen’s inequality applied to the uniform distribution supported

at {λ−1

k : k ∈ J} and the strictly convex function (φ+x)−1, x ≥ 0 (φ fixed). Hence lrp(φ;y) is strictly

increasing on [0,∞), so φ̃ does not exist.

(ii) From (5) we have that for any φ > 0

∂

∂φ
lrp(φ;y) ≤

n − p

2

(

1

n − p

∑

k∈J

( λk

1 + φλk

)

−
λ̄J

1 + φλ̄J

)

< 0,

where the last relation follows from Jensen’s inequality applied to the uniform distribution supported

at {λk : k ∈ J} and the strictly concave function x(1 + φx)−1, x > 0 (φ fixed). Since lrp(φ;y) is

continuous at φ = 0, the profile log–restricted likelihood of φ is strictly decreasing on [0,∞) and

φ̃ = 0.

(iii) Note that the equation ∂
∂φ

lrp(φ;y) = 0 is equivalent to the equation m(φ,λJ) = Q(y), where

m(φ,λJ ) is the function defined in equation (6) in the Appendix. Using parts (i), (ii) and (iii) of

Lemma 6.2 with v = λJ (recall that n /∈ J), we have that ζ̄J < Q(y) < λ̄J implies that ∂
∂φ

lrp(φ;y) = 0

has a unique solution on (0,∞), which is the unique REML estimator of φ. 2

Once model (1) has been specified with particular matrices X and H, the application of the above

results requires to determine whether or not H(C(X)) ⊆ C(X) holds, and in the case it holds, to

determine the set of indexes J . To that purpose, recall that the columns of T = (t1 · · · tn) are

eigenvectors of H forming an orthonormal basis of R
n. Hence there is an n × p matrix F such that

X = TF , and F = T ′X since T is orthogonal. If K = {k1, . . . , kq} are the indexes of the rows of F

that have at least one nonzero entry, and q (≥ p) is its cardinality, then the columns of X belong to

the subspace of R
n spanned by {tk1

, . . . , tkq
}. From this follows that H(C(X)) ⊆ C(X) holds if and

only if q = p, in which case J = {1, . . . , n} − K. Alternative, H(C(X)) ⊆ C(X) holds if and only if

(In −A)HX = On×p. Finally, it is worth pointing out that in the case the data arise as the result of

a designed experiment where the matrix X is chosen by the researcher, it may be possible to choose

X purposely in a way that H(C(X)) ⊆ C(X) holds. This is briefly discussed in Section 6.

5. Comparison

In this section we compare the behavior in small samples of ML and REML estimators of the covariance

parameters of model (1) for the case when H(C(X)) ⊆ C(X). Recall that in this case X = WB, where

W = (ti1 · · · tip
) with columns being eigenvectors of H corresponding to the eigenvalues λi1 , . . . , λip

and B is p × p non-singular. Also recall the eigenvalue summaries

λ̄ =
1

n

n
∑

k=1

λk , λ̄J =
1

n − p

∑

k∈J

λk , ζ̄J =
( 1

n − p

∑

k∈J

1

λk

)−1

,

where J = {1, . . . , n} − {i1, . . . , ip}; note that ζ̄J < λ̄J . We point out some immediate consequences

of Theorems 3.1 and 4.1. First, the ML estimators of covariance parameters always exist while the

REML estimators do not exist with positive probability. We investigate how this probability depends

on some features of the model. Second, for models where X = 1n (so p = 1 and J = {1, . . . , n − 1}),

we have that λ̄ < λ̄J and hence it holds that Pη{φ̃ = 0} < Pη{φ̂ = 0} for any η. For other models,
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both λ̄ < λ̄J and λ̄ > λ̄J are possible, so the above relation between the probabilities of the events

{φ̃ = 0} and {φ̂ = 0} may or may not hold.

5.1. Simulation Experiment

We use a Monte Carlo simulation experiment to compare some properties of the ML and REML

estimators of the covariance parameters and investigate how these properties depend on some features

of the model. Specifically, the quantities to be considered and compared are:

• The probability that the REML estimator φ̃ does not exist;

• The probabilities of the events {φ̂ = 0} and {φ̃ = 0};

• The root mean squared error (RMSE) of the ML and REML estimators of φ and σ2.

The model features (factors) to be varied in the simulation experiment are lattice size, strength of

spatial association and mean structure. We consider models defined over 12× 12, 20× 20 and 32× 32

regular lattices with ‘first order’ neighborhood system and gkl = 1 if k ∈ Nl. The spatial parameter φ

would vary over a fine grid in [0, 10] and σ2 = 4. For the mean structure we consider models where:

(M0) p = 1, β1 = 1 and X = 1n;

(M1) p = 5, β = 15 and X =
(

W1

...1n

)

where W1 is the n× 4 matrix whose columns are eigenvectors

of H corresponding to the four largest eigenvalues of H;

(M2) p = 5, β = 15 and X is the n× 5 matrix whose columns are eigenvectors of H corresponding to

the five smallest eigenvalues of H (so the last column of X is 1n).

For each possible combination of lattice size, spatial parameter and mean structure, 10000 datasets

were simulated from model (1) and these replicated samples were used to estimate the quantities

defined above.

5.2. Results

Results for mean structures M0, M1 and M2 were qualitatively very similar, so we only show figures

for mean structure M0. For each of the considered models the probability that the REML estimator

φ̃ does not exist is estimated by the proportion of simulated datasets, ysim, for which Q(ysim) ≤ ζ̄J

holds. Figure 1 shows how this probability varies with φ for each of considered lattice sizes. The

probability that φ̃ does not exist increases with the true value of φ and decreases with lattice size.

As pointed out by a referee, it is straightforward to prove analytically that Pφ(φ̃ does not exist) is

an increasing function of φ. Except for the smallest lattice size, this probability is quite small and

displays a similar pattern of variation with φ for mean structures M0 and M1. For mean structure

M2 this probability is considerably higher, being about 0.3 when φ = 10 for the 12 × 12 lattice (not

shown). The use of REML estimation may then be problematic in small datasets.

For each of the considered models the probabilities Pη{φ̂ = 0} and Pη{φ̃ = 0} are estimated by the

proportion of simulated datasets for which, respectively, Q(ysim) ≥ λ̄ and Q(ysim) ≥ λ̄J hold. Both

probabilities decrease quite rapidly with the true value of φ and with the lattice size (not shown).

For example, for mean structure M0 with lattice size 12 × 12, both Pη{φ̂ = 0} and Pη{φ̃ = 0} are

less than 0.01 for all φ > 0.5. Also, Pη{φ̃ = 0} is fairly insensitive to the considered mean structures,
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while Pη{φ̂ = 0} is not. Overall, both methods have a small chance of estimating φ as zero for models

with φ > 0.

Finally, for each of the considered models the RMSE of φ̂ is estimated by the square root of the

average of {(φ̂i − φ)2 : i = 1, . . . , 104}, with similar estimates for the RMSEs of σ̂2, φ̃ and σ̃2, except

that the estimation of the RMSEs of REML estimators is made conditional on their existence, so it

uses only those simulated datasets for which Q(ysim) > ζ̄J holds. Figure 2 shows, for mean structure

M0, how the RMSE of the ML (left panel) and REML (right panel) estimators of φ vary with φ for

each of the considered lattice sizes. The RMSEs of both estimators decrease with lattice size and

increase with φ. But the RMSE of φ̃ increases with φ much faster than the RMSE of φ̂, specially

for the smaller lattice sizes, to the point of being unacceptably large for most values of φ. The same

behavior holds for mean structures M1 and M2 (not shown).

Figure 3 shows how the RMSE of the ML and REML estimators of σ2 vary with φ for mean struc-

ture M0 and the considered lattice sizes. The pattern of variation of the RMSEs of these estimators

is similar to those displayed by the estimators of φ, where again the RMSE of σ̃2 is much larger than

the RMSE of σ̂2. We discuss in the next section the (possible) cause for the unexpected behavior of

REML estimators in this model.

6. Conclusions and Discussion

This work provides results on existence and uniqueness of ML and REML estimators of covariance

parameter for GMRF model (1) when a particular relation holds between the regression and precision

matrices. For the case when these estimators exist, the results also provide a simple way to compute

them. The findings of this work can be potentially useful for the design and analysis of experiments

when the available experimental units are grid-cells of a regular grid. For instance, a common goal

in agricultural experiments is to estimate the effects on yield of different treatments, and model (1)

could be used for that purpose. If the assignment of treatments and levels to the experimental units

is done in a way that any of the conditions in Lemma 3.1 hold, then inference about the treatment

effects based on ML or REML would be greatly simplified. This is currently being investigated.

The results of a small simulation experiment suggest that (some of) the frequentist properties of

the ML estimators of the covariance parameters are much better that those of the REML estimators.

This observation is both interesting and intriguing since in the statistical literature abound examples

of Gaussian models where REML estimators of variance and covariance parameters have overall similar

or better frequentist properties than ML estimators, but the opposite is the case for model (1).

The poor behavior of REML estimators seems to be due to fact that these estimators do not exist

with positive probability, so there is an “abrupt change” in RMSE behavior between datasets for

which REML do not exist and those for which they exist. We have empirically found that for datasets

with Q(y) just slightly larger than ζ̄J , φ̃ exists but is very large. For small samples, this may indicate

that the distribution of φ̃ is heavy-tailed, perhaps to the extent that RMSEs do not exist (i.e becomes

infinity). It is also worth noting that for datasets on a 32×32 lattice the RMSEs of REML estimators

are not as large and are somewhat comparable to those of ML estimators, at least for models M0 and

M1 considered in Section 5. This suggest that the extremely poor behavior of REML estimators may

be ameliorated when the sample size grows. This issue requires further investigation.

On related work, Demidenko and Massam (1999) and Birkes and Wulff (2003) provided general

results on existence of ML and REML estimators for a large class of Gaussian variance components
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models. We note that there are qualitative differences between our results and those in Demidenko

and Massam (1999). The conditions for existence of ML estimators in Demidenko and Massam

(1999) are more stringent than the respective conditions for existence of REML estimators. That

is, existence of ML estimators of variance components parameters implies existence of the respective

REML estimators, while there are cases when REML estimators exist but ML estimators do not. For

the GMRF model (1) the situation is the opposite since ML estimators always exist, while REML

estimators do not exist with positive probability.

Finally, as pointed out by a referee, model (1) can be framed within the class of models studied

by Birkes and Wulff (2003). To see this, let ι1 > . . . > ιd−1 > ιd = 0 be the distinct eigenvalues of

H. From the spectral decomposition we have H =
∑d

j=1
ιjEj , where {Ej}

d
j=1 are n × n orthogonal

projection matrices which are also mutually orthogonal and
∑d

j=1
Ej = In. This implies that

var{Y} = σ2(In + φH)−1 =

d
∑

j=1

γjEj ,

where γj = σ2/(1+φιj), j = 1, . . . , d. Now note that the parameter space of the covariance parameters,

say Γ, can be written as

Γ =
{( σ2

1 + φι1
, . . . ,

σ2

1 + φιd−1

, σ2

)

∈ R
d : σ2 ≥ 0, φ ≥ 0}

= {γ ∈ R
d : γj > 0 for all j

}

∩ G,

where

G =
{( δτ

1 + φι1
, . . . ,

δτ

1 + φιd−1

, τ
)

∈ R
d : φ ≥ 0, τ ≥ 0, δ = 0, 1

}

,

is a closed subset of R
d. Then var{Y} is of the form given in equation (3.2) of Birkes and Wulff

(2003), so their Theorem 3.1(a) guarantees existence of the ML estimator of (σ2, φ) in model (1).

Nevertheless, the non-standard parameter space given above and the difficulty of checking the con-

ditions of their result (given in terms of subspace relations) make applying this result cumbersome.

In contrast, the approach we use is more natural for models that explicitly parametrize the precision

matrix (rather than the covariance matrix) of the data, and our results involve easy-to-check condi-

tions in terms of eigenvalue summaries.
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Appendix

Lemma 6.1. Let Σ(φ) be an arbitrary n×n positive definite matrix whose entries are differentiable

with respect to φ. Then

∂

∂φ
S2(φ) = y′

(

In − A(φ)
)′( ∂

∂φ
Σ(φ)−1

)(

In − A(φ)
)

y,

where ∂
∂φ

M(φ) denotes element-wise differentiation of the matrix M(φ).

Proof. To simplify differentiation we rewrite S2(φ) as

S2(φ) = y′
(

Σ(φ)−1 − Σ(φ)−1X(X ′Σ(φ)−1X)−1X ′Σ(φ)−1
)

y.

Then

∂

∂φ
S2(φ) = y′

( ∂

∂φ
Σ(φ)−1 −

∂

∂φ

[

Σ(φ)−1X(X ′Σ(φ)−1X)−1X ′Σ(φ)−1
])

y

= y′
( ∂

∂φ
Σ(φ)−1 −

[( ∂

∂φ
Σ(φ)−1X

)

(X ′Σ(φ)−1X)−1
(

X ′Σ(φ)−1
)

+
(

Σ(φ)−1X
)( ∂

∂φ
(X ′Σ(φ)−1X)−1

)(

X ′Σ(φ)−1
)

+ Σ(φ)−1X(X ′Σ(φ)−1X)−1
( ∂

∂φ
(X ′Σ(φ)−1)

)])

y

= y′
( ∂

∂φ
Σ(φ)−1 −

( ∂

∂φ
Σ(φ)−1

)

A(φ) + A′(φ)
( ∂

∂φ
Σ(φ)−1

)

A(φ) − A′(φ)
( ∂

∂φ
Σ(φ)−1

)

y

= y′
(

In − A(φ)
)′( ∂

∂φ
Σ(φ)−1

)(

In − A(φ)
)

y,

where the next to the last identity is obtained by using the definition of A(φ) and the standard identity

∂

∂φ
M(φ)−1 = −M(φ)−1

( ∂

∂φ
M(φ)

)

M(φ)−1.

2

Lemma 6.2. For φ ≥ 0 and v ∈ R
r, with v ≥ 0, consider the function m(·, ·) defined as

m(φ,v) =

1

r

∑r
k=1

(

vk

1+φvk

)

1 − φ
r

∑r
k=1

(

vk

1+φvk

) , (6)

and assume that v /∈ C(1r). Then:

(i) For every fixed v, m(·,v) is continuous and strictly decreasing on [0,∞).

(ii) m(0,v) = 1

r

∑r
k=1

vk.

(iii) If vk > 0 for all k, then lim
φ→∞

m(φ,v) =
(1

r

r
∑

k=1

1

vk

)−1

.

(iv) If vk = 0 for some k, then lim
φ→∞

m(φ,v) = 0.
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Proof. (i) The continuity of m(·,v) is clear. To show strict monotonicity we rewrite m(φ,v) as

m(φ,v) = −

(

φ −
(1

r

r
∑

k=1

( vk

1 + φvk

))−1

)−1

,

from which we have

∂

∂φ
m(φ,v) =

(

φ −
(1

r

r
∑

k=1

( vk

1 + φvk

))−1

)−2






1 −

1

r

∑r
k=1

(

vk

1+φvk

)2

(

1

r

∑r
k=1

(

vk

1+φvk

))2







< 0 for all φ ≥ 0,

where the last inequality follows from Jensen’s inequality and v /∈ C(1r).

(ii) Straightforward.

(iii) For any φ > 0, m(φ,v) can be rewritten as

m(φ,v) =

1

rφ

∑r
k=1

vk

vk+φ−1

1 − 1

r

∑r
k=1

vk

vk+φ−1

=

∑r
k=1

vk

vk+φ−1

∑r
k=1

1

vk+φ−1

. (7)

From this follows that when vk > 0 for all k, m(φ,v) →
(

1

r

∑r
k=1

1

vk

)−1
as φ → ∞.

(iv) Without lost of generality let 1 ≤ s ≤ r such that vk > 0 for k = 1, . . . , r − s and vk = 0 for

k = r − s + 1, . . . , r. Using (7) we have that for any φ > 0

m(φ,v) =

∑r−s
k=1

vk

vk+φ−1

(

∑r−s
k=1

1

vk+φ−1

)

+ sφ
,

from which follows that m(φ,v) → 0 as φ → ∞. 2
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Fig. 1. Probability that the REML estimator φ̃ does not exist as a function of φ for mean structure M0 and lattice

sizes 12× 12 (dotted), 20× 20 (dashed), and 32× 32 (solid).



ML and REML Estimation for a Class of Gaussian MRFs 15

0 2 4 6 8 10

0
20

40
60

80
10

0

0 2 4 6 8 10
0

20
40

60
80

10
0

Fig. 2. Root mean squared error of the ML estimator φ̂ (left panel) and the REML estimator φ̃ (right panel) for

mean structure M0 and lattice sizes 12× 12 (dotted), 20× 20 (dashed) and 32× 32 (solid).
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Fig. 3. Root mean squared error of the ML estimator σ̂2 (left panel) and the REML estimator σ̃2 (right panel) for

mean structure M0 and lattice sizes 12× 12 (dotted), 20× 20 (dashed) and 32× 32 (solid).
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