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Abstract

The log-series distribution has been found useful to describe many natural phenomena such

as the data on species abundance. These types of data typically have long tails. However, the

ordinary log-series distribution does not have sufficiently long tail and is found unsuitable for

some data with extra heavy tails. There are many generalized log-series distributions available

in the literature. Following the idea of Conway and Maxwell (1962) to generalize the Poisson

distribution (COM-Poisson), we start with a COM-negative binomial distribution and use it to

generate a COM-log-series distribution. We present derivation of the new model, investigate its

various characteristics including the probability generating function, its probability function (pf).

We also present recurrence relations for probabilities and moments. We compare graphically the

pf’s for various members of this class. We also investigate the behavior of the failure rate of this

model. Finally, we develop some methods for estimating its parameters and give examples with

real data.

Key Words

COM-Poisson, COM-Negative Binomial, Generalized poly-logseries distribution, poly-hypergeometric

function, Over- and under-dispersion, failure rate, maximum likelihood estimation,

Acknowledgements: This work is supported by the College of Business Summer Grants 2009, UTSA.

JEL Classification: C16



1 Introduction

The log-series distribution was developed by Fisher to describe the species abundance data such

as the distribution of catches of moths in light traps and the distribution of tropical butterflies

(Fisher, et. al (1943), Boswell and Patil (1971)). These types of data typically have long tails. This

distribution was developed to fit such data and was obtained as the limit of a zero-truncated negative

binomial. In practice, however, there are data with even longer tails which can not be described well

by the log-series distribution. There have been many generalizations of this model in the literature

which are based on some of the extensions of the negative binomial distribution. Jain and Gupta

(1973) presented a generalized log series distribution (GLSD) based on the Lagrangian generalized

negative binomial distribution and used the method of moments to fit their model to some data.

Kempton (1975) developed a GLSD from a negative binomial type distribution which is suitable for

describing data with extra long tails. Tripathi and Gupta (1985) presented a GLSD based on the

shifted version of the generalized negative binomial distribution of Tripathi and Gurland (1977)(see

also Tripathi, Gupta and White(1987)). Recently Kemp (2004)considered a genearalization of log-

series model, called the poly-logseries, and investigated its many characteristics.

In this paper, we present an extension of the log-series distribution based on a COM-negative

binomial type distribution. We give its probability generating function (pgf), and the probability

function (pf). We also provide recurrence relations for its pf as well as its moments and investigate

its over- and under-dispersion properties graphically. We provide graphical comparisons for the

pf’s of some of its members including the ordinary log-series distribution. We also develop some

methods for estimating its parameters including the maximum likelihood estimates. The likelihood

equations are non-linear functions of the parameters, we obtain the maximum likelihood estimates

by using numerical libraries from IMSL (International mathematical and Statistical Libraries).

Finally, we include some examples for fitting this model to real data.

2 Model Development

Motivated by the COM-Poisson distribution (Conway and Maxwell (1962), Shmueli et. al. (2005)),

and the recent poly-logarithmic distribution of Kemp(2004), we develop a general class of distribu-

tions called the COM-logseries type distribution. For this, we define a generalized hypergeometric

function, called poly-hypergeometric function (phf) as follows:

pF
γ
q (a1, a2, · · · , ap; b1, b2, · · · , bq; θ) =

∞∑
j=0

(a1)j(a2)j · · · (ap)j
(b1)j(b2)j · · · (bq)j

θj

(j!)γ
,



where

(a)j = a(a+ 1)(a+ 2) · · · (a+ j − 1).

Now, consider the probability generating function (pgf) of the shifted generalized negative

binomial distribution of Tripathi and Gurland (1977) expressed in terms of the phf

H(z) =
zs 2F

γ
1 (αβ + s, 1;λ+ s;βz)

2F
γ
1 (αβ + 1, 1;λ+ 1;β)

, α > 0, λ > −s, 0 < β < 1, (1)

where s is a non-negative integer. The distribution developed here will be called the phf-generalized

logseries distribution (phf-GLSD).

Models included in (1) as special cases

1. For s = 0, λ = γ = 1, (1) reduces to the Katz family of distributions (Katz(1965)) which

includes the Poisson distribution for β → 0; negative binomial distribution, and the binomial

distribution and their generalizations.

2. For s = 0, γ = 1, it reduces to the hyper Poisson distribution of Crow and Bardwell (19 ) as

β → 0.

3. For s = 0, γ 6= 1, the above includes COM versions of Poisson (Conway and Maxwell (1962),

Shmuelli et. al. (2005)), hyper Poisson, negative binomial and the binomial distributions

depending on various conditions on β and λ.

Now, we utilize the above model to derive the proposed phf-GLSD which is given in the following

result:

Result:

The pgf of the proposed phf-GLSD is given by

G(z) =
z 2F

γ
1 (1, 1;λ+ 1;βz)

2F
γ
1 (1, 1 : λ+ 1;β)

, α > 0, λ > −1, 0 < β < 1. (2)

The above result is obtained by expanding the phf involved in (1) and taking the limit as α → 0.

The probabilities of the new model are the coefficients of zj in the expansion of G(z). If X denotes

the corresponding random variable, it can be seen that

P1 = P (X = 1) =
1

2F
γ
1 (1, 1;λ+ 1;β)

,

and

Pj = P (X = j) =
(j − 1)!)2βj−1

P1(λ+ 1)j−1[(j − 1)!]γ
, j = 2, 3, · · · .



3 Some Characterizations of the Model

In this section we investigate some useful characterizations of this such as the recurrence relations

for its probabilities and the moments. We also present graphical characterizations involving its

over- and under-dispersion as well its failure rate which exhibits both increasing failure rate (IFR)

and decreasing failure rate (DFR) properties.

3.1 Recurrence Relations for Probabilities

The recurrence relation for the probabilities is given by

Pj+1

Pj
=

β

(λ+ j)(jγ−2)
.

This can be written as

(λ+ j)Pj+1 = βj2−γPj , j = 1, 2, · · · . (3)

This relation can be used to compute the probabilities of the model starting from P1.

3.2 Recurrence relations for moments

On multiplying both sides of (3) by (j + 1)r and summing over j, we get

∞∑
j=1

(λ+ j)(j + 1)rPj+1 = β
∞∑
j=1

(j + 1)rj2−γPj .

This can be simplified to

µ′r+1 + (λ− 1)µ′r − λP1 = β
r∑
i=0

(
r

i

)
µ′i+2−γ , r = 0, 1, 2, · · · . (4)

Closed form expressions for the mean and the variance for this distribution are not easy to derive.

3.3 Over- and under-dispersion of the phf-GLSD model

The following graph presents a comparison of the phf-GLSD for four combination of parameters.



The four curves in the above graph plot the ratios r1, r2, r3 and r4 for γ = .9, 1.0, 1.2, 1.4. respec-

tively for β = .5 for λ = −.95 to .60 in increments of .05. It can be seen that for γ > 1.0, the model

is under-dispersed regardless of the values of λ. However, for γ ≤ 1.0, the model exhibits both the

over- and under-dispersion. If γ is small, the model remains over-dispersed for larger positive values

of λ. Thus, smaller values of γ and small negative values of λ both make the model over-dispersed.

Larger values of γ and positive values of λ make the model under-dispersed.

3.4 Comparison of Log-series and Com-Log-Series Distributions

In this section we present some comparisons between the pf’s of the log-series and the proposed

phf-GLSD models. The calculations needed for the graphical comparison are in progress and the

comparisons will be presented shortly. A similar graphical comparison of the failure rate of this

model will also be presented.



Effect of λ, β and γ on the tail of the distribution

λ β γ Terms Var Mean Var/Mean

1.5 .8 1.5 11 .650 1.462 .445

1.5 .9 2.0 9 .476 1.417 .336

.8 .5 1.5 10 .443 1.353 .327

.8 .5 1.0 15 .944 1.507 .626

.8 .5 .95 17 1.108 1.544 .718

.8 .5 .9 20 1.371 1.594 .860

.8 .5 .85 27 1.908 1.671 1.142

.8 .5 .83 34 2.394 1.721 1.391

.8 .5 .82 48 3.034 1.761 1.723

The above table gives the effect of various parameters on the tail of the distribution. The

column titled “Terms” effectively represents the tail of the distribution. The larger the values of

“term”, the longer is the tail, smaller the value of “Terms”, the smaller the tail. From the table,

it can be seen that larger values of λ and/or γ both lead to a short-tailed model, whereas, smaller

values of λ and/or γ both lead to a long-tailed tailed model.

4 Estimation of Parameters

In this section, we develop methods to estimate the parameters of this model which will help in

fitting this model to real data. We consider two types of estimators: Moment type estimators and

maximum likelihood estimators.

4.1 Some useful relations in parameter estimation

Since the likelihood equations for this model are non-linear (as seen in the following section), we

need initial estimates for the parameters to start the iteration. For this, we use the following three

relations to yield initial estimates. These are

P1 = [2F
γ
1 (1, 1; (λ+ 1;β)]−1,

λ(1− P1)− βµ′2−γ = 1− µ,

and

λ(µ− 1)− βµ′3−γ = 2µ− µ′2.



The last two equations are obtained by taking r = 0, and 1 in (3).

4.2 Maximum likelihood estimation

In this section, we present likelihood equations for the parameters of this model. These equations

can be solved to give the mle’s for the parameters β, λ and γ. Suppose, that the random sample is

available as a grouped data with the frequencies n1, n2, · · · , nk at counts 1, 2, · · · , k; with k being

the largest count. Then, the likelihood functions is

L =
k∏
j=1

P
nj

j ,

and the log likelihood is

ln(L) =

k∑
j=1

njln(Pj)

=

k∑
j=1

nj ln

[
[(j − 1)!]2βj−1

P1(λ+ 1)j−1[(j − 1)!]γ

]

= 2

k∑
j=1

nj ln[(j − 1)!] + n(1− x̄)ln(β)− n ln(P1)

−
k∑
j=1

nj

[
j−1∑
i=1

ln(λ+ i)

]
− γ

k∑
j=1

nj ln(j − 1)!.

The likelihood equations are given by

∂lnL

∂γ
= − n

P1

∂P1

∂γ
−

k∑
j=1

nj ln(j − 1)!,

∂lnL

∂β
= − n

P1

∂P1

∂β
+
n

β
(x̄− 1),

and

∂lnL

∂λ
= − n

P1

∂P1

∂λ
−

k∑
j=1

nj

j−1∑
i=1

1

λ+ i
.

The partial derivatives of P1 with respect to β, λ, and γ are given in the Appendix. In order to

solve the non-linear likelihood equations given above, we need the hessian, the second order partial

derivatives of ln(L). These also appear in the Appendix.



Appendix

Partial derivatives of P1

We need the first and second order partial derivatives of P1 which are given below.

Pi = [2F
γ
1 (1, 1;λ+ 1;β)]−1 =

 k∑
j=1

(j!)2

(λ+ 1)j

βj

(j!)γ

−1 .
∂P1

∂β
= −

 k∑
j=1

(j!)2

(λ+ 1)j

βj

(j!)γ

−2  k∑
j=1

(j!)2

(λ+ 1)j

j βj−1

(j!)γ

 ,
∂P1

∂λ
=

 k∑
j=1

(j!)2

(λ+ 1)j

βj

(j!)γ

−2  k∑
j=1

(j!)2

(λ+ 1)j

j βj−1

(j!)γ

j∑
k=1

1

λ+ k

 ,
and

∂P1

∂γ
=

 k∑
j=1

(j!)2

(λ+ 1)j

βj

(j!)γ

−2  k∑
j=1

(j!)2

(λ+ 1)j

j βj−1

(j!)γ
ln(j!)

 .
The second order partial derivatives of ln(L) are as follows;

∂2ln(L)

∂β2
= −n(x̄− 1)

β2
+

n

P 2
1

(
∂P1

∂β

)2

− n

P1

(
∂2P1

∂β2

)
,

∂2ln(L)

∂γ∂β
=

n

P 2
1

(
∂P1

∂β

)(
∂P1

∂γ

)
− n

P1

(
∂2P1

∂γ∂β

)
,

∂2ln(L)

∂λ∂β
=

n

P 2
1

(
∂P1

∂β

)(
∂P1

∂λ

)
− n

P1

(
∂2P1

∂λ∂β

)
,

∂2ln(L)

∂λ2
=

n

P 2
1

(
∂P1

∂λ

)2

− n

P1

(
∂2P1

∂λ2

)
+

k∑
j=1

nj

j−1∑
i=1

(λ+ i)−2,

∂2ln(L)

∂γ∂λ
=

n

P 2
1

(
∂P1

∂γ

)(
∂P1

∂λ

)
− n

P1

(
∂2P1

∂γ∂λ

)
.

∂2ln(L)

∂γ2
=

n

P 2
1

(
∂P1

∂γ

)2

− n

P1

(
∂2P1

∂γ2

)
.



The second partial derivatives of P1 needed in the above expressions are given below.

∂2P1

∂β2
= 2 [2F

γ
1 (1, 1;λ+ 1;β)]

−3

 k∑
j=1

(j!)2

(λ+ 1)j

jβj−1

(j!)γ

2

− [2F
γ
1 (1, 1;λ+ 1;β)]

−2

 k∑
j=1

(j!)2

(λ+ 1)j

j(j − 1)βj−2

(j!)γ

 ,
∂2P1

∂λ∂β
= −2 [2F

γ
1 (1, 1;λ+ 1;β)]

−3

 k∑
j=1

(j!)2

(λ+ 1)j

jβj−1

(j!)γ

 k∑
j=1

(j!)2

(λ+ 1)j

jβj−1

(j!)γ

j∑
k=1

1

λ+ k


+ [2F

γ
1 (1, 1;λ+ 1;β)]

−2

 k∑
j=1

(j!)2

(λ+ 1)j

jβj−1

(j!)γ

j∑
k=1

1

λ+ k

 ,
∂2P1

∂γ∂β
= 2 [2F

γ
1 (1, 1;λ+ 1;β)]

−3

 k∑
j=1

(j!)2

(λ+ 1)j

jβj−1

(j!)γ

 k∑
j=1

(j!)2

(λ+ 1)j

jβj−1

(j!)γ
ln(j!)


+ [2F

γ
1 (1, 1;λ+ 1;β)]

−2

 k∑
j=1

(j!)2

(λ+ 1)j

jβj−1

(j!)γ
ln(j!)

 ,
∂2P1

∂λ2
= −2 [2F

γ
1 (1, 1;λ+ 1;β)]

−3

 k∑
j=1

(j!)2

(λ+ 1)j

βj

(j!)γ

j∑
k=1

1

λ+ k

2

− [2F
γ
1 (1, 1;λ+ 1;β)]

−2

 k∑
j=1

(j!)2

(λ+ 1)j

βj

(j!)γ

(
j∑

k=1

1

λ+ k

)2

+

j∑
k=1

1

(λ+ k)2

 ,
∂2P1

∂γ∂λ
= 2 [2F

γ
1 (1, 1;λ+ 1;β)]

−3

 k∑
j=0

(j!)2

(λ+ 1)j

βj

(j!)γ
ln(j!)

 k∑
j=0

(j!)2

(λ+ 1)j

βj

(j!)γ

j∑
k=1

1

λ+ k


+ [2F

γ
1 (1, 1;λ+ 1;β)]

−2

 k∑
j=0

(j!)2

(λ+ 1)j

βj

(j!)γ
ln(j!)

j∑
k=1

1

λ+ k

 ,
∂2P1

∂γ2
= 2 [2F

γ
1 (1, 1;λ+ 1;β)]

−3

 k∑
j=1

(j!)2

(λ+ 1)j

βj

(j!)γ
[ln(j!)]2


− [2F

γ
1 (1, 1;λ+ 1;β)]

−2

 k∑
j=1

(j!)2

(λ+ 1)j

βj

(j!)γ
(ln(j!))2

 .
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