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A Mixed Integer Programming Model for 

Multiple-Class Discriminant Analysis 
 

Abstract 

A mixed integer programming model is proposed for multiple-class discriminant and classification 

analysis.  When multiple discriminant functions, one for each class, are constructed with the mixed integer 

programming model, the number of misclassified observations in the sample is minimized.  Although having its own 

right, this model may be considered as a generalization of mixed integer programming formulations for two-class 

classification analysis.  Properties of the model are studied.  The model is immune from any difficulties of many 

mathematical programming formulations for two-class classification analysis, such as nonexistence of optimal 

solutions, improper solutions and instability under linear data transformation.  In addition, meaningful discriminant 

functions can be generated under conditions other techniques fail.  Results on data sets from the literature and on 

data sets randomly generated show that this model is very effective in generating powerful discriminant functions. 

Keywords: Discriminant Analysis; Classification; Mixed Integer Programming; Optimization; 

Nonparametric Procedures 

JEL Codes: C14, C61 
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A Mixed Integer Programming Model for 

Multiple-Class Discriminant Analysis 

1.  Introduction 

Although extensive studies have been undertaken in mathematical programming (MP) approaches for 

discriminant and classification analysis, the focus has been on two-class classification techniques.  Generalizations 

to multiple-class techniques have been attempted, but researchers are not completely satisfied with these earlier 

generalizations.  A mixed integer programming (MIP) model is proposed in this study as a nonparametric procedure 

for multiple-class discriminant and classification analysis.  Although it is an extension of the linear programming 

(LP) model of Sun [2002b], this MIP model may be considered as a generalization of the MIP models for two-class 

classification analysis. 

Sun [2002b] proposed a simple but powerful LP model for this purpose.  The LP model minimizes the sum 

of deviations of misclassified observations in the sample, or the 1L -norm.  The MIP model proposed in this study 

minimizes the number of misclassified observations in the sample, or the 0L -norm.  The LP model of Sun [2002b] 

has very good properties, is immune to the pathologies of many other earlier MP models and should work well 

under all situations.  However, a MIP model is appealing because it directly minimizes the number of misclassified 

observations in the sample and some authors have reported that some MIP models for two-class classification 

outperformed other models under certain conditions.  In addition, a MIP model should be always the choice if the 

purpose of the application is discrimination rather than classification. 

Some properties of the MIP model are studied.  Like the LP model [Sun, 2002b], the MIP model is immune 

to the difficulties caused by pathologies of earlier MP models for two-class classification analysis.  For decades, 

research in MP approaches for discriminant and classification analysis has been focused on the two-class problems.  

Researchers have spent many years looking for simple but powerful generalizations from the two-class techniques to 

multiple-class techniques.  The MIP model proposed in this study provides such simple but powerful generalization 

and may make MP approaches attractive and better alternatives to other discriminant techniques. 

Discriminant and classification analysis has been fundamental scientific research and practical applications 

over many decades.  Discriminant analysis involves the study of the differences between two or more classes of 

objects that are described by measurements, or prediction variables, of different characteristics or attributes.  

Classification involves the study of assigning new observations into one of the two or more classes based on the 

measurements on the different characteristics.  Applications of discriminant and classification analysis are diverse.  

To mention a few, applications in business include financial management [Alman, 1968; Srinivasan and Kim, 1987; 

Zopounidis, 1998; Zopounidis and Dimitras, 1998], human resource management [Rulon, Tiedeman, Tatsuoka and 

Langmuir, 1967; Walker, 1974], marketing [Dutka, 1995], student recruiting [Choo and Wedley, 1985]; applications 

in biology and medicine include patient classification [Happer, 2005], disease diagnosis [Dudoit, Fridlyand and 

Speed, 2002; Sun and Xiong, 2002] and species classification [Fisher, 1936]; and applications in environment and 

geography include remote sensing image pattern classification [Shankar, Meher, Ghosh and Bruzzone, 2007; Yin 
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and Guo, 2007] and pollution control [Rossi, Slowinski and Susmanga, 1999], among others.  In fact, this study was 

motivated by the need to identify a few from many thousands of genes that can be used to classify tissue samples 

into normal and tumor tissues and to identify genes responsible for certain diseases [Sun and Xiong, 2002a, 2002b].  

Discriminant and classification analysis techniques will play a more significant role in data analysis as information 

technology advances and as huge amount of data need to be analyzed with data mining tools.  The availability of 

large sets of data collected through information technology such as the Internet, imaging and spectrome, made the 

traditional discriminant and classification techniques inadequate. 

Based on known values of the attributes or variables and known class memberships of the observations in a 

sample, usually called a training sample, mathematical discriminant functions are constructed.  The attribute values 

of an observation can be evaluated by these discriminant functions to obtain discriminant scores and the observation 

is assigned to a class based on these discriminant scores.  For many decades, statistical techniques, such as Fisher’s 

linear discriminant function (LDF) [Fisher, 1936], Smith’s quadratic discriminant function (QDF) [Smith, 1947] and 

logistics regression [Hand, 1981], have been standard tools for this discriminant and classification analysis.  

Statistical methods perform well when the data analyzed satisfy the underlying assumptions, such as multivariate 

normality and equal covariance matrices of the prediction variables, although minor deviations from these 

assumptions do not severely affect the performance of these statistical methods.  More recently, other techniques, 

such as MP [Freed and Glover, 1981a, 1981b; Hand, 1981] including support vector machines (SVM) [Vapnik, 

1995, 1998], neural networks [Stern, 1996], and classification trees [Breiman, Friedman, Olshen and Stone, 1984] 

have become alternative tools for discriminant and classification analysis.  A spectrum of techniques is needed 

because no single technique always outperforms others under all situations. 

2. MP Approaches to Discriminant Analysis 

The publication of the original LP models for two-class classification [Freed and Glover, 1981a; Hand, 

1981] inspired a series of studies.  A considerable number of publications on this topic have appeared in the 

literature.  Some of these articles reported limitations and pathologies of some of the earlier MP models, some 

provided diagnoses, and others offered remedies to improve the earlier models resulting alternative or improved MP 

models [Cavalier, Ignizio and Soyster, 1989; Freed and Glover, 1986b; Glover, 1990; Glover, Keene, and Duea 

1988; Koehler, 1989a, 1989b, 1990, 1991; Markowski and Markowski, 1985].  The different MP models introduced 

in the literature include LP, MIP, goal programming, nonlinear programming and quadratic programming (i.e., 

SVM) models [Erenguc and Koehler, 1990; Stam, 1997; Stam and Joachimsthaler, 1990].  Through these studies, 

the MP techniques, especially for the two-class discriminant and classification analysis, are maturing quickly. 

Three difficulties due to pathologies of some earlier MP formulations have caused concerns [Freed and 

Glover, 1986b; Koehler, 1989a, 1989b, 1990, 1991; Markowski and Markowski, 1985].  These difficulties are 

unbounded objective function, degenerate or improper solutions, and solution instability under linear data 

transformation.  The objective function of a MP formulation is unbounded if its value can be made arbitrarily large 

for a maximization problem or arbitrarily small for a minimization problem resulting in no meaningful solutions.  A 

solution is degenerate or trivial if all the estimated coefficients in the classification function or in the discriminant 
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functions are 0.  A solution is improper if all the resulting discriminant functions for different classes are the same 

and therefore none of the observations can be definitely assigned to any class.  A solution is proper if it is not 

improper.  Solution instability occurs when a MP formulation produces different sets of discriminant functions with 

different classification results when the data are linearly transformed.  As will be shown later, the MIP model 

proposed in this study is immune from these difficulties.  The diagnoses include the conditions under which these 

difficulties may occur.  The remedies and improvements include normalizations of the coefficients in classification 

functions to avoid unbounded solution, trivial solutions and improper solutions. 

The concept of a trivial solution in the context of multiple-class classification is different from that in two-

class classification.  In two-class classification analysis, a classification function representing a hyperplane 

separating the two classes is constructed.  In multiple-class classification analysis, p  discriminant functions are 

constructed, one for each class, and the hyperplane separating two classes is where the two discriminant functions 

have the same discriminant scores.  Therefore, the equation representing the hyperplane is where the difference of 

the two discriminant functions is 0.  As a result, when all discriminant functions have the same coefficients, i.e., an 

improper solution, the equations representing the boundaries of any two classes all have coefficients of 0’s, i.e., a 

degenerate solution.  In multiple-class discriminant analysis, improper solutions may occur and the trivial solution 

becomes a special case of improper solutions.   

Unlike statistical methods, the MP approaches, as nonparametric methods, do not make strict assumptions 

about the data analyzed.  Many studies comparing the performances between the more traditional statistical 

methods, such as Fisher’s LDF and Smith’s QDF, and MP approaches have been reported [Freed and Glover, 1986a; 

Nath, Jackson and Jones, 1992; Joachimsthaler and Stam, 1988].  Many computational experiments have been 

undertaken [Bajaier and Hill, 1982; Freed and Glover, 1986a; Joachimsthaler and Stam, 1988; Markowski and 

Markowski, 1987; Rubin, 1989b, 1990b; Stam and Joachimsthaler, 1990].  Some of these studies also compared the 

performances of different mathematical formulations.  Some of these studies used real data and others used 

simulated data.  In general, the conclusion is that no single technique performs the best under all conditions.  MP 

approaches outperform statistical approaches when the assumptions underlying the statistical approaches are 

seriously violated [Ragsdale and Stam, 1991; Stam and Joachimsthaler, 1990].  Being able to perform well on a 

variety of types of data is an advantage of MP approaches.  Another advantage of MP approaches over the 

traditional statistical techniques is that the fitted model is less influenced by outlier observations.  Nath and Jones 

[1988], Glen [1999, 2001] and Sun and Xiong [2002a, 2002b] have addressed the problem of variable selection in 

MP approaches for discriminant analysis. 

Although most of the research in MP approaches is around two-class classification, attempts have been 

made to extend the approaches to multiple-class discriminant and classification analysis [Choo and Wedley, 1985; 

Freed and Glover 1981b; Gehrlein, 1986; Gochet, Stam, Srinivasan and Chen, 1977; Pavur, 1997; Pavur and 

Loucopoulos, 1995; Sun, 2002].  Each of these models has its merits although each has drawbacks [Gochet, Stam, 

Srinivasan and Chen, 1977; Pavur and Loucopoulos, 1995; Stam, 1997].  In general, the research community is not 

fully satisfied with these models [Stam, 1997].  Without a simple but powerful generalization, the MP approaches 

are handicapped and will never be able to compete with other techniques.  Researchers and practitioners will be 
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more willing to accept the MP approaches as nonpapamatric procedures when simple but powerful multiple-class 

MP models are available.  Given the difficulty of multiple-class classification problems, some researchers focused 

on the three-class classification problem [Loucopoulos, 2001; Loucopoulos and Pavur, 1997a, 1997b; Pavur and 

Loucopoulos, 2001]. 

Conceiving that an extension from techniques for two-class classification to those for multiple-class 

classification was straightforward, Freed and Glover [1981b] proposed a decomposition of a p -class discriminant 

problem into ( 1) / 2p p   two-class discriminant problems.  Each problem represents a pair of classes and each is 

solved separately to determine a classification function representing the hyperplane separating the two classes.  This 

approach is later on called the one-against-one approach in the literature.  The drawback of this approach is that the 

classification functions may be sub-optimal because these functions are not estimated in an aggregate form.  As a 

result, the classification of observations in some segments of the variable space is not clear [Loucopoulos and Pavur, 

1997a; Pavur and Loucopoulos, 1995; Stam, 1997].  Furthermore, this approach is tedious because too many 

subproblems are formulated and solved and too many classification functions are estimated. 

Another extension is to decompose a p -class discriminant problem into a p  two-class problem.  In the 

k th two-class problem, the observations in class k  are treated as one class and all the rest are treated as the other.  

This approach is later on called the one-against-all approach [Vapnik, 1995, 1007].  This approach has the same 

drawbacks as those of the one-against-one approach except that p , instead of ( 1) / 2p p  , classification functions 

are estimated.  The advantage of this approach is that the p  two-class problems are computationally easier to solve 

than a multiple-class model.   

Gehrlein [1986] proposed two MIP formulations.  These MIP models set up the foundations of most of the 

later studies in this area.  One MIP model uses a single discriminant function with class specific cutoff discriminant 

scores and is referred to as the single function model.  A new observation is assigned to a specific class if its 

evaluated value, i.e., its discriminant score, falls into the interval for this class.  This model implicitly implies that 

the hyperplanes separating the classes are all in parallel and the variable space is cut into layers by these 

hyperplanes.  However, this is rarely the case for practical applications as shown by scatter plots of some of the 

prediction variables.  Therefore, this model has pathological problems as conceived by many researchers [Stam, 

1997].  Pavur and Loucopoulos [1995] modified the original single function model of Gehrlein [1986] from the 

minimization of the number of misclassified cases in the sample to the minimization of the sum of deviations of 

misclassified cases.  This modified model, as a LP model, saved computation time for one randomly generated 

example problem.  Östermark and Höglund [1998] attributed the single function multiple-class model of Gehrlein 

[1986] to Freed and Glover [1981b] and pointed out that the ordering of the classes are important for accurate 

classification because the class specific cutoff scores require that the class 1 scores be lower than class 2 scores that 

in turn be lower than class 3 scores, and so on.  Therefore, they suggested the investigation of alternative sequencing 

of the classes.  Choo and Wedley [1985] used multiple criterion decision making techniques to determine the 

coefficients in a single classification function for multiple-class discriminant problems. 
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Gehrlein [1986] also proposed a multiple discriminant function MIP model, one for each class, in a way 

analogous to statistical classification techniques.  A new observation is evaluated by each discriminant function and 

is assigned to the class with the highest discriminant score.  All the discriminant functions are estimated 

simultaneously and the model is pathologically correct.  As a drawback, this MIP model requires a considerable 

number of binary variables and is computationally infeasible for problems with medium to large samples [Stam, 

1997].  Because of its computational limitation, not many further studies on this model have been reported.  Wilson 

[1996] introduced a multiple function MIP model as an alternative to the one in Gehrlein [1986].  In this MIP model, 

each observation is represented by 2 p  constraints and is associated with p  binary variables.  Therefore, this model 

is even more complicated and difficult to solve. 

The model proposed by Bennet and Mangasarian [1994] is almost identical in structure to the multiple 

function model proposed by Gehrlein [1986].  However, instead of minimizing the 0L -norm, Bennet and 

Mangasarian [1994] minimized a weighted 1L -norm making the MP model computationally much easier to solve.  

The weight assigned to each term, representing the deviation if an observation is misclassified, in the objective 

function is the reciprocal of the sample size of the class that the observation belongs. 

Gochet, Stam, Srinivasan and Chen [1997] proposed a LP model for multiple-class discriminant analysis.  

The objective function of this model is similar to but slightly different from that in Bennet and Mangasarian [1994].  

The difference is that the terms in the objective function are not weighted.  In addition to the same set of constraints 

as in Bennet and Mangasarian [1994], a normalization constraint is used restricting the difference between the sum 

of goodness of fit and the sum of badness of fit to be positive.  Intuitively, a goodness of fit of an observation is the 

distance of the observation from the hyperplane separating the class to which the observation belongs and another 

class when the observation falls on the right side.  A badness of fit is the same distance but when the observation 

falls on the wrong side.  As in the statistical techniques, multiple discriminant functions are used, one for each class, 

and a new observation is assigned to the class with the highest discriminant score.  All the discriminant functions are 

estimated simultaneously and the model is theoretically correct.  Because no integer variables are involved in the 

formulation, the model is computationally very efficient to solve.  However, this model is hard to implement without 

a special purpose software [Stam, 1997].  Östermark and Höglund [1998] extended the model of Gochet, Stam, 

Srinivasan and Chen [1997] to include quadratic terms of the variables in the discriminant functions. 

Although it is possible to design computational experiments with randomly generated test problems with 

each class falling into layers in the variable space and to obtain good classification results, single function models 

are pathologically flawed and has very limited use in practice.  Such single function models may perform well on 

certain data sets or under certain condition, but are not general to handle actual real life problems.  Models using 

multiple discriminant functions, one for each class, are more general and flexible, are analogous to statistical 

techniques, and therefore are more preferred than single function models [Stam, 1997]. 

MIP approaches are greedier than many other methods, such as the LP approach or the Fisher’s LDF.  

Therefore, it is possible for the MIP approach to achieve higher in-sample classification rate but lower validation 

classification rate than other methods.  All MIP formulations of discriminant analysis have the major drawback of 

requiring excessive amount of computation time to solve.  Their major attractive feature is that the number of 
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misclassified cases in the sample can be directly minimized.  If the purpose of study is discrimination rather than 

classification of new observations, MIP models perform better than other models of similar structure. 

3. Model Development 

Assume there are a total of 2p   known classes and {1,..., }K p  is used to denote the index set of all 

classes.  A sample of m  observations or cases is available and the class membership of each observation is unique 

and known.  Among the m  observations, km  are form class k , for each k K , such that kk K
m m


  .  Let I  

denote the index set of all observations and kI  denote the index set of those from class k , for each k K , in the 

sample.  The observations represent the objects to be classified.  Assume n  characteristics or prediction variables 

are used to describe the observations.  The index set of all prediction variables is denoted by {1,..., }J n .  The 

value of prediction variable j J  on observation i  is denoted by ijx .  With 0 1ix   for all i I , 

0 1( , ,..., )i i i inx x x x  represents the realized values of all prediction variables of observation i . Sometimes, 

0 1( , ,..., )nx x x x is used to denote the prediction variables of a generic observation.  Some of the prediction 

variables are real and others may be nominal or categorical [Sun, 2002a].  When nonlinear discriminant functions 

are constructed, some of the jx ’s measure the characteristics of the observations and, therefore, are independent 

variables, and others may be functions, such as squares or cross products, of other independent variables.  When 

nonlinear discriminant functions are constructed, the MIP model proposed in this study is still linear because the 

functions are linear in the parameters although nonlinear in the variables. 

It is assumed that there is a vector of unknown parameters 1n
k

β  with 0 1( , , , )k k k kn  β   for each 

k K  such that kβ x  is the discriminant function for class k .  The elements of kβ  need to be estimated using the 

data in the sample in such a way that observations in the sample are optimally classified according to a certain 

criterion.  The sample estimate of kβ  is denoted by 0 1( , , , )k k k knb b bb  .  The estimated discriminant functions 

kb x  for k K  are then used to evaluate and classify observations.  For any observation represented by 1nx , 

discriminant scores are computed, i.e.,  

 ( )k k ig x b x , for k K . (1) 

The observation is assigned to a class k  with the highest discriminant score, i.e., 

 ( ) { ( ) | }k kg max g k K  x x . (2) 

Let 0M   be a constant that is sufficiently large.  For each observation ki I , there always exist ic  and 

id  such that the following p  inequalities hold 

 k i i iMd c b x   (3) 

 k i ic b x  for k k  , (4) 
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where, ic  is a cutoff point and id  is a binary variable associated with observation i .  In inequalities (3) and (4),  

max{ | }i k ic k k  b x  is sufficient for any ki I .  If these inequalities still hold with 0,id  observation ki I  is 

correctly classified into class k .  Otherwise, if 1id   has to be held for these inequalities to hold, then observation 

ki I  is incorrectly classified into a class other than k . 

Similar to the LP formulation in Sun [2002b], the following MIP formulation is proposed to estimate the 

parameters, i.e., the elements of kβ  for all k K , for multiple-class discriminant analysis 

min i
i I

d

   (5) 

s.t. 
k i i ic Md   b x  for ki I  and k K  (6) 

 0k i ic b x  for ki I and k K  (7) 

 
kb  unrestricted for k K  (8) 

 
ic  unrestricted for i I  (9) 

 0  or  1id   for i I . (10) 

 

Totally m  binary variables are introduced into this MIP model, one for each observation in the sample.  In 

(6), 0   is a constant that is sufficiently small such that M  .  In the implementation, it is sufficient to have 

1  .  Intuitively,   creates a classification gap for each i I .  In addition,   plays a normalization role to 

eliminate trivial solutions.   

According to (6) and (7), ) max{ | }k i i k iMd k k     (b x b x  must hold for each ki I .  If 0id   in 

the final solution, then max{ | }k i k i k k    b x b x  and observation ki I  is correctly classified into class k  with 

a clear margin greater than or equal to  .  Otherwise, if 1id   in the final solution, max{ | }k i k i k k    b x b x  

does not hold.  In this case, observation ki I  cannot be correctly classified into class k . Hence, the value of id  

indicates if the observation ki I  is correctly classified.  The objective function (5) represents the total number of 

misclassified observations, or the 0L -norm.  Because the objective function is minimized, as many as possible id  

are set to 0 in the optimal solution of the MIP model. 

For each observation i I , one constraint in (6) and 1p   constraints in (7) are in the model.  Altogether, 

there are m  constraints in (6), one for each observation i I , and ( 1)m p   constraints in (7), 1p   for each 

observation i I .  In addition to the binary variables id , the estimated parameters, i.e., the elements of kb , and the 

cutoff points ic  are the continuous variables of the model.  Altogether the model has mp  constraints, m  binary 

variables, and ( 1)n p m   continuous variables. 

The MIP formulation in (5)-(10) is different from that in Gehrlein [1986].  In the MIP model in Gehrlein 

[1986], each observation ki I  is associated with 1p   constraints, one for each 'k k .  For an observation ki I , 

each constraint is of the form 
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' 'k i k i ikMd   b x b x  for ki I , k K , k K  and 'k k . (11) 

The constraint in (11) is the difference between the constraint in (6) for the observation and a constraint in (7) for the 

same observation but for a 'k k .  As a result, 1p   binary variables of the form 'ikd  are used for each observation 

ki I , one for each 'k k , in the model in Gehrlein [1986]. Totally ( 1)m p   binary variables are in the MIP 

model of Gehrlein [1986] but only m  are in the model in (5)-(10).  Each ijx  appears 2( 1)p   times in the MIP 

model of Gehrlein [1986] but appears only p  times in the MIP model in (5)-(10).  Using the property of order 

preserving under shifting and positive rescaling sated in the next section, each ijx  appears in the MIP model only 

1p   times.  Therefore, the MIP model in (5)-(10) proposed in this study is a much sparser model than previous 

MIP formulations. 

When 2p  , each observation i I  is associated with one constraint in (6) and one constraint in (7).  The 

inequality 2 1i i iMd    b x b x  is obtained after subtracting the constraint in (6) from the constraint in (7) for 

each 1i I .  Similarly, 2 1i i iMd   b x b x  is obtained after subtracting the constraint in (7) from the constraint in 

(6) for each 2i I .  With 2 1 b b b , the MIP model in (5)-(10) for 2p   can be written as, 

 

 min i
i I

d

   (12) 

s.t. 
i iMd   bx  for 1i I  (13) 

 
i iMd  bx  for 2i I  (14) 

 b  unrestricted  (15) 

 0  or  1id   for i I . (16) 

 

The MIP model in (12)-(16) is similar to that in Stam and Joachimsthaler [1990].  The difference is that 0   is 

used in Stam and Joachimsthaler [1990].  In this sense, the MIP model in (5)-(10) may be considered as a 

generalization of the one proposed by Stam and Joachimsthaler [1990] for two-class classification. 

When 2p  , the model in (12)-(16) constructs an equation 0bx  that represents a hyperplane separating 

the two classes in the prediction variable space with one class on each side of the hyperplane.  When 2p  , the 

MIP model in (5)-(10) constructs p  discriminant functions.  The equation representing the hyperplane separating 

two classes is obtained by equating the pair of discriminant functions, or subtracting one from the other, representing 

the two classes. 

In a similar manner, other formulations for the two-class problems can be easily generalized to the 

multiple-class problems.  More formulations for the two-class problems are summarized in Erenguc and Koehler 

[1990], Joachimsthaler and Stam [1990], and Stam [1997]. 

MIP formulations for discriminant problems are NP-complete [Chen and Mangasarian, 1996] and, 

therefore, are computationally more demanding than LP formulations, especially when the classes have substantial 
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overlaps and the misclassification rate is high.  This limitation may be overcome by developing heuristic solution 

methods to tackle such MIP formulations.  The MIP model may have many alternative optimal solutions, especially 

when the classes in the sample are completely separable.  However, when the classes in the sample are not 

completely separable, the discriminant functions constructed with an optimal solution of this model always yield the 

highest classification rate of the observations in the sample among all models of similar structure.  

4. Some Properties of the MIP Model 

The MIP model in (5)-(10) possesses some properties that the LP model [Sun, 2002b] has and some others 

that the LP model does not have. These properties are around the four difficulties encountered in earlier MP models 

for discriminant and classification analysis.  In this section, some properties that the MIP model in (5)-(10) has but 

the LP model does not have are presented first and the properties that both the MIP model and the LP model have 

are discussed briefly. 

The first issue to consider is if the MIP model in (5)-(10) has an optimal solution or even has any feasible 

solution.  Theorem 1 in the following guarantees that an optimal solution can always be found. 

 

Theorem 1:  An optimal solution to the MIP model in (5)-(10) always exists if 0M   is sufficiently large and 

0   is sufficiently small such that M  . 

 

Proof: For an optimal solution to exist, the objective function must be bounded and a feasible solution must exist.  

From (10), the objective function (5) is bounded from below by 0.  Because of M  , the trivial solution with 

k b 0  for all k K , 0ic   for all i I  and 1id   for all i I  is a feasible solution. □ 

 

The objective function is also bound above by m .  Hence, the largest possible value that the objective 

function may have is m .  Therefore, a solution with 1id   for all i I  is the possible worst feasible solution.  Only 

an improper solution has such an objective function value.  With an improper solution, k b b  for all k K and the 

discriminant functions cannot definitely classify any observation into any class.  Although Theorem 1 insures an 

optimal solution always exists, the solution is useless if it is an improper solution.  The second issue of concern is 

whether the optimal solution is an improper solution.  Theorem 2 in the following insures that the MIP model in (5)-

(10) always has proper solutions.  The MIP model can always find proper solutions because proper solutions are 

always better than improper solutions, i.e., always have lower values for the objective function. 

 

Theorem 2:  If 0M   is sufficiently large and 0   is sufficiently small such that M  , the MIP model in (5)-

(10) always has proper solutions. 

 

Proof:  Assume an improper solution with k b b  for all k K  is optimal.  The constraints in (7) are satisfied with 

i ic  bx  for all i I .  Hence, with M  , the constraints in (6) are satisfied only with 1id   for all i I .  As a 
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result, the objective function (5) has a value ii I
d m


 .  If all the observations are classified into a single class 

k K  such that max { | }k km m k K   , the objective function (5) has a value i ki I
d m m m


   .  For any 

observation i  to be classified into a class k , k i k ib x > b x , i.e., k k b b , must hold for all k k  .  This contradicts 

the assumption that the improper solution with k b b  for all k K  is optimal.□ 

 

Because the trivial solution is a special case of improper solutions, with Theorem 2, the MIP model in (5)-

(10) never generates the trivial solution.  Many LP models for two-class classification suffer from trivial solutions 

[Freed and Glover, 1986b; Koehler, 1989a, 1989b, 1990, 1991; Markowski and Markowski, 1985].  For multiple-

class discriminant and classification analysis, the LP approaches [Bennett and Mangasarian, 1994; Gochet, Stam, 

Srinivasan and Chen, 1997; Sun, 2002b] generate improper solutions k b b  for all k K  under the special 

condition that all classes in the sample have the same class centroid and equal sample size.  The centroid of a class 

k K  is defined to be 
k

k ii I
 x x .  Hence, these LP models generate improper solutions when 1 2 ... p  x x x  

and 1 2 ... pm m m   .  However, even under this special condition, the MIP model in (5)-(10) always generates a 

proper solution with a set of discriminant functions that can separate the classes in the sample as much as possible. 

The proof of Theorem 2 assumes that the discriminant functions classify all the observations in the sample 

into the class with the largest number of observations.  In fact, better solutions can always be found if the different 

classes have different observations in the sample.  Assume all observations are classified into class k .  If there is an 

observation ki I   with k k   that appears only in class k  , then reassigning this observation to class k   will 

reduce the value of the objective function (5) by 1.  Under the extreme condition that all the classes have exactly the 

same observations, the model still generates a proper solution but the discriminant functions can only classify all the 

observations into a single class.  Under this extreme condition, the observations should not be differentiated. 

With discriminant functions constructed with LP models, some observations in the sample fall into the 

classification gap.  For such an observation ki I ,  both k i icb x  and k i ic  b x  hold.  Such observations are 

correctly classified but without a clear margin  .  Theorem 3 in the following shows that this situation does not 

exist with discriminant functions constructed with the MIP model in (5)-(10).  Hence, an observation may be either 

incorrectly classified or correctly classified with a clear margin  .  Therefore, for discrimination purpose, the 

optimal solution of the MIP model is at least as good as the optimal solution of the LP model in terms of the number 

of misclassified observations in the sample.  Therefore, the MIP model may be used to improve the solution 

obtained with the LP model. 

 

Theorem 3:  If 0M   is sufficiently large and 0   is sufficiently small such that M  , then the condition in 

(17) in the following does not hold for any ki I  in an optimal solution, 

 0 k i ic   b x .  (17) 
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Proof:  Any observation ki I  for which (17) holds must have 1id   to satisfy the constraint in (6).  Assume (17) 

holds in an optimal solution for at least one ki I , therefore, 1id  .  By (17), ( ) 1k i ic   b x .  Let ˆ
k kb b  

for all k K , where 1   .  Then ˆˆ ( )k kg x b x  for all k K  preserve the orders of ( )kg x  [Sun, 200b] and, 

therefore, ˆ ( )kg x  for k K  can also be used as discriminant functions.  Because 0M   is sufficiently large and 

0   is sufficiently small with M  , replacing kb  with ˆ
k kb b  for each k K  and replacing ic  with 

î ic c  for all i I  in (6) and (7) will not violate the feasibility of the MIP model in (5)-(10).   However, 

ˆ ˆ ( ) ( )k i i k i i k i ic c c       b x b x b x , which implies 0id   is feasible.  This contradicts the assumption that 

the solution is optimal. □ 

 

The MIP model in (5)-(10) also has other properties that the LP model [Sun, 2002b] has.  One property is 

stability or invariability under linear data transformation.  Linear data transformation is to transform each ijx  to ijy  

using ij j ij jy x    for each i I  and j J .  Both j  and j  are scalars with 0j   and may be different for 

different j J .  The transformed data ijy  instead of the original data ijx are then used to set up the MIP model and 

to construct the discriminant functions because the transformed data may be easier to analyze.  The MIP model in 

(5)-(10) is invariant under linear data transformation as long as 0M   is sufficiently large and 0   is sufficiently 

small such that M   and | |M   .  After transformation, the estimated parameters in the discriminant functions 

become 0 1 1
ˆ ( ( / ) , / ,..., / )k k kj j j k kn nj J

b b b b   


 b  for all k K .  Then ˆ
kb y  for k K  are the discriminant 

functions using the transformed data.  Being stable or invariant, ˆ
kb y  for k K  preserve the order of kb x , i.e., 

ˆ ˆ
k k b y b y  for any k k   if and only if k k b x b x  for the same k k  . With this property, the classification 

results will always be the same whether the original or the transformed data are used.  Stability or invariability under 

linear data transformation is an important desirable property because linear data transformation is a common 

technique in data preprocessing.  Some LP models proposed for two-class classification do not have this property 

[Markowski and Markowski, 1985].  Being not invariant means the resulting classification functions using the 

transformed data may give different classification results from those using the original data. 

Another property is the freedom in selecting a value for   in (6).  Varying the value of   in (6) only 

rescales the coefficients in the resulting discriminant functions kb  for k K  and the cutoff values ic  for all i I  

but does not affect the classification results of the resulting discriminant functions as long as 0M   is sufficiently 

large and 0   is sufficiently small such that M  .  Suppose 0   in (6) is replaced with ̂   for any 0  , 

hence ˆ 0  , and M  in (6) is changed accordingly to keep ˆM  .  A new MIP model is formulated with ̂ .  Then 

ˆ
k kb b  for k K  and î ic c  for i I  are optimal in the new MIP model if and only if kb  for k K  and ic  

for i I  are optimal in the original MIP model.  The binary variables iy  for i I  will be the same in both MIP 

models.  Consequently, ˆ
kb x  for k K  preserve the order of kb x  for k K , i.e., ˆ ˆ

k k b x b x  for any k k   if and 
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only if k k b x b x  for the same k k  .  As a result, ˆ
kb x  and kb x  for k K give the same classification results.  

With this property, users can use any convenient value for  .  The value of   determines the magnitude of the 

components of kb  for k K  and the magnitude of ic  for i I . 

Sun [2002b] studied the order preserving property of the discriminant functions for the LP models under 

shifting and positive rescaling.  Shifting refers to adding to each discriminant function a constant and positive 

rescaling refers to multiplying each discriminant function by a positive constant.  Discriminant functions constructed 

with statistical methods and LP models all have this property.  If a function of the form bx  is added to each 

discriminant function ( )kg x  to obtain ˆ ( ) ( )k kg  x b b x  for each k K , the functions ˆ ( )kg x  and ( )kg x  have the 

same classification results.  If each discriminant function ( )kg x  is multiplied by the same constant 0   to obtain 

ˆ ( )kg x bx , the functions ˆ ( )kg x  and ( )kg x  also have the same classification results.  Sun [2002b] showed that 

the LP model can be simplified by using this property.  The MIP model in (5)-(10) can also be simplified by using 

this property. 

Choose a k K  such that ' { | }k km min m k K   and add k b x  to kb x  to obtain ˆ ( )k k k  b x b b x  for 

all k K .  Hence, ˆ
k  b 0 .  Using ˆ

k k k  b b b instead of kb  in the MIP model, the constraint in (6) for each 

ki I   becomes i ic Md    .  Let i ic c    for all ki I   in the MIP model.  Then ic    if 0id   and 

ic M    if 1id  . By setting 0ic  , the MIP model will not lose generality because M   can be absorbed by 

0kb  for k K .  The constraint in (7) for each ki I   and for the chosen k   becomes 0ic  .  As a result, the cutoff 

values, i.e., the ic  for ki I   and the ic  for ki I  , become nonnegative from unrestricted and all the constraints in 

(9) can be replaced with nonnegativity constraints.  The number of constraints in (7) is reduced by km m   and km   

constraints in (6) become the form of i ic Md    .  Therefore, the MIP model is simplified.  By using this property, 

the number of constraints in the MIP model (5)-(10) is reduced from mp  to ( 1) km p m    and the number of 

continuous variables is reduced from ( 1)p n m   to ( 1)( 1)p n m   .  Choosing k   such that 

{ |1 }k km min m k p     to set ˆ
k  b 0  will take full advantage of this property.  

The condition of the properties of the MIP model in (5)-(10) is that 0M   is sufficiently large and 0   

is sufficiently small such that M  .  No guidelines of determining M  were provided for two class models 

published in the literature.  The following is a rough guideline for determining M  in (6).  Solve the LP model in 

Sun [2002b] with the same  .  Suppose *
ie  for each i I  are the values of the deviation variables in an optimal 

solution of the LP model.  Then the value of M  can be determined by * *{ | }iM M = max e i I  .  For practical 

problems, the LP model may have alternative optimal solutions.  Each optimal solution may have a different *M  

and the optimal solution of the MIP model may need a M  that is larger than *M .   Because the CPU time needed to 

solve the LP model can be negligible as compared to that to solve the MIP model, this step does not cause extra 

computation burden.  Furthermore, an optimal solution of the LP model provides an initial incumbent for the 

solution of the MIP model.    
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5. Examples 

Some computational results of the MIP models in (5)-(10) are reported in this section.  The main purpose of 

these examples is to show the ways that the model work, rather than to show the performance of this approach 

relative to other discriminant methods.  

The software package CPLEX®1 was used to solve the MIP problems.  All computations were conducted 

on a SUN Enterprise 3000 computer running the UNIX operating system.  Computer programs were written to 

convert the data sets in spreadsheet format to the MPS format that CPLEX® can read. 

For the Iris Data Set and the Personnel Data Set, both in-sample results and validation results are reported.  

The in-sample results are the results obtained when all the observations in the sample are used to construct the 

discriminant functions and the resulting discriminant functions are used to classify each of the observations in the 

sample.  The validation results were obtained using the leave one out validation procedure.  With this validation 

procedure, one observation i I  is left out in turn and the other 1m   observations are used to construct the 

discriminant functions.  The resulting discriminant functions are then used to classify the observation that is left out.  

This process is repeated m  times, once for each i I . 

5.1 A Structured Example 

The purpose of this example is to demonstrate how to set up the MIP model in (5)-(10).  The example has 

9m   observations and 2n   characteristics as shown in Table 1.  The 9 observations are divided equally into 

3p   classes.  The observations in the 3 classes are not completely separable.  The objective function of this 

example problem is 

min 1 2 3 4 5 6 7 8 9d d d d d d d d d          (18) 

With 10M   and 1   and with all coefficients in the first discriminant function set to 0, the constraints 

in (6) and (7) are listed in Table 2.  The constraints in (6) are in the diagonal cells and those in (7) are in the off 

diagonal cells of the table.  In addition, kjb  are unrestricted for all 0,1,2j   and 1,2,3k  , 0ic   and 0ie   for 

1,...,9i  .  For each observation 1i I , ic  instead of '
ic  is used to simplify the notation.   

The discriminant functions obtained are, respectively, 1( ) 0g x , 2 1 2( ) 9.5 2.09 1.09g x x  x  and 

3 1 2( ) 24.56 9.02 15.70g x x   x .  With this set of discriminant functions, observation 1 is misclassified into class 

2 and observation 6 is misclassified into class 1, and all other observations are correctly classified.  The equations 

representing the hyperplanes separating the three classes obtained from this set of discriminant functions are 

1 22.09 1.09 9.5x x   between classes 1 and 2, 1 29.02 15.70 24.56x x    between classes 1 and 3, and 

1 26.93 16.80 34.06x x    between classes 2 and 3.  

                                                           
1 CPLEX Optimization, Inc., Using the CPLEX® Callable Library Including Using the CPLEX®  Base 

System with CPLEX® Barrier and Mixed Integer Solver Options, 1989-1995. 
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5.2 The Wine Recognition Data Set 

This data set was originally used by Aeberhard, Coomans and de Vel [1992].  The data are the results of a 

chemical analysis of wines grown in the same region in Italy but derived from 3p   different cultivars.  The 

analysis determined the quantities of 13n   constituents, i.e., prediction variables, found in each of the 3p   types 

of wines.  The data set itself with more information is available at the UCI Repository of Machine Learning 

Databases [Merz and Murphy, 1998].  Because the observations of the three classes in the sample are completely 

separable, the problem is computationally easy to solve.  The MIP formulation in (5)-(10) for this example took 

CPLEX 0.15 seconds to solve.   

The discriminant functions obtained are 1 2 7 8 10 13( ) 346.25 1766.04 2128.27 492.58 0.70g x x x x x     x , 

2 2 5 7 8 9 10 12 13( ) 1591.52 382.30 1.44 1766.04 1681.39 85.58 653.51 37.56 1.85g x x x x x x x x        x , and 

3 ( ) 0g x  for the three classes respectively.  The classification results are presented in Table 3.  This data set has 

been used by other researchers to test different discriminant methods, e.g., by Bennett and Mangasarian [1994].  The 

results obtained with the MIP approach are comparable with those published in the literature. 

5.3   The Iris Data Set 

This example was originally used by Fisher [1936] and was used as a standard test data set by many 

authors, such as Kendall [1966], Gehrlein [1986] and Bennet and Mangasarian [1994] and as a standard example in 

many commercial software packages, such as NeuralWorks [NeuralWare, 1993] and BMDP [Jennrich and Sampson, 

1983].  The data set contains 4 prediction variables and 150 observations on 3 species of iris plants, Iris setosa, Iris 

versicolor, and Iris virginica.  The 4 prediction variables measure 4 plant characteristics, sepal length ( 1x ), sepal 

width ( 2x ), petal length ( 3x ) and petal width ( 4x ).  The 150 observations are evenly divided into the 3 classes with 

km  50 in each.  The data set is available in Kendall [1966] and Gehrlein [1986].  The LP model for this problem 

took CPLEX less than 0.1 seconds to solve.  Because the 3 classes are nearly completely separable, the MIP model 

for this problem is not difficult to solve.  It took CPLEX a little over 1 second. 

With a 10M   and an 1  , the discriminant functions obtained with the MIP model in (5)-(10) are 

1 0.00g   for Iris setosa, 2 1 2 4( ) 169.84 8.36 103.37 97.59g x x x   x  for Iris versicolor, and 

3 2 3 4( ) 117.55 39.64 138.82g x x x   x  for Iris virginica.  The coefficients in the discriminant functions were 

rounded to the second decimal digit and those in the first function were all set to 0.  The classification results are 

given in Table 4.  These results are comparable with those obtained with other methods as published in the literature. 

With different values of M  in (6), the same in-sample classification rate was obtained each time with 149 

out of the 150 observations correctly classified.  Sometimes one observation in Iris versicolor was incorrectly 

classified into Iris virginica and sometimes one observation in Iris virginica was incorrectly classified into Iris 

versicolor, but not both.  The discriminant functions of both the single function and multiple function MIP models of 

Gehrlein [1986] classified 149 observations to their correct classes with one observation from Iris versicolor 

misclassified into Iris virginica.  Gehrlein [1986] misclassified the same observation in Iris versicolor.  With the 
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leave one out validation procedure, 143 out of 150 observations were correctly classified.  Fisher’s LDF resulted in 

3 observations misclassified on this data set [Jennrich and Sampson, 1983]. 

It is not a surprise for the discriminant functions generated by the MIP models to achieve a better in-sample 

classification rate but a worse validation classification rate because the objectives of these MIP models are to 

minimize the number of misclassifications in the sample and the objective of the LP model is to minimize the sum 

of deviations from the cutting points of the misclassified observations. 

5.4 The MBA Admission Data Set 

Johnson and Wichern [1988] provided a MBA Admission Data Set as an example for multiple-class 

discriminant analysis.  There are a total of 85 observations divided into 3 classes of applicants, “Admit” (Class 1), 

“Not admit” (Class 2) and “Borderline” (Class 3), of a business school.  Two variables, undergraduate GPA ( 1x ) 

and GMAT score ( 2x ), are used to measure each observation.  Among the 85 applicants in the sample, 31 are in the 

class “Admit”, 28 are in the class “Not admit” and the other 26 are in the class “Borderline”.  The details of the data 

set are described and the data set itself is available in the book [Johnson and Wichern, 1988]. 

Because the observations in the three classes are nearly separable, the MIP model is easy to solve.  It took 

CPLEX less than 0.1 second of CPU time to solve.  With 10M   and 1   in the MIP model in (5)-(10), the 

discriminant functions obtained are 1 1 2( ) 303.8947 56.3158 0.2632g x x   x  for the class “admit”, 

2 1 2( ) 4441.7742 1199.5526 2.5054g x x  x  for the class “Not admit” and 3 ( ) 0g x  for the class “Borderline” 

after the parameters are rounded to the fourth decimal digit and those in the third discriminant function are set to 0. 

The classification results are summarized in Table 5.  This data set has been used to test other MP models 

for discriminant analysis in different studies, such as in Loucopoulos [2001].  The results obtained by the MIP 

model in (5)-(10) are in line with those published in the literature. 

5.4 Another Structured Example 

The data of this example are presented in Table 6.  The samples of this data set have the same class 

centroid and equal sample size, i.e., 1 2 3 (7.126,17.389,12.960)  x x x  and 1 2 3 10m m m   .  Therefore, this 

data set meets the conditions for improper solutions of LP models [Bennett and Mangasarian, 1994; Gochet, Stam, 

Srinivasan and Chen, 1997; Sun, 2002b].  As a result, these LP models cannot generate any meaningful discriminant 

functions for this data set.  Fisher’s LDF also generated an improper solution for this data set. 

With 10M   and 1  , the MIP model generated the discriminant functions 1( ) 0g x  for class 1, 

2 1 2 3( ) 125.45 28.68 14.91 14.58g x x x   x  for class 2, and 3 1 2 3( ) 2641.33 49.71 139.11 35.68g x x x    x  for 

class 3, respectively.  The coefficients are all rounded to the second decimal digit and those in the first discriminant 

function are all set to 0.  The in-sample classification results are presented in Table 7.  The in-sample classification 

rate is 63.33%.  Given the small sample size, no meaningful validation results were obtained for this example. 
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6.  Conclusions 

A MIP formulation for multiple-class discriminant and classification analysis is proposed, that directly 

minimizes the number of misclassifications in the sample.  The formulation is simple, easy to understand and easy to 

use.  Properties of the model are discussed.  The model does not suffer from any difficulties caused by pathologies 

of some of the MP formulations for two-class classification analysis. With this MIP approach, practitioners have one 

more technique in analyzing their discriminant problems. 

In general, LP models are preferred to MIP models because LP models are much easier to solve and the 

resulting discriminant functions may have better generalization capabilities for new observation classification.  

Under some conditions the MIP approach may be preferable.  For example, the MIP approach may be preferred to 

the LP approach if the purpose of the application is discrimination rather than classification.  Although MIP models 

are generally much more difficult to solve, they can be solved within reasonable computation time under certain 

conditions.  For example, the MIP models are not difficult to solve when the sample sizes are small and when the 

observations of the different classes in the sample are completely or nearly completely separable. 

One direction of future research in this area is computational experiments to test the performance of the 

MIP model proposed in this study relative to other approaches under different data conditions.  It is also necessary to 

determine the effect of the relative values of M  and   in (6) on the computational complexity of the MIP model 

through computational experiments.  One direction is to address the issue of variable selection when observations on 

a large number of variables are available [Sun and Xiong, 2002a, 2002b].  Using the MIP formulation, one more set 

of binary variables will be involved in the variable selection model and, therefore, the model will demand more 

computation time.  Another direction is to develop heuristic methods to solve the MIP models, possibly with 

variable selection capability, especially for applications with large data sets.  With effective heuristics, the 

disadvantage of demanding too much computation time is at least partially overcome.  One more direction is 

software implementations.  The MP approaches will be much easier for the practitioners to use if user friendly 

software is available, possibly with variable selection features and with heuristic procedures to solve MIP models.  If 

the observations in the sample are completely or nearly completely separable, the MIP model may not take much 

more time than LP models. 
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Table 1.  Data in Example 1 

Class 1 Class 2 Class 3 
Variables Variables Variables Observation 
1 2 

Observation
1 2

Observation
1 2 

1 2.0 2.0 4 2.5 3.0 7 1.0 2.5 
2 5.5 4.5 5 2.0 1.5 8 5.0 4.5 
3 4.5 1.0 6 6.5 4.5 9 2.5 4.0 

 

 

 

Discriminant Function 
Class Obs.

1k   2k   3k   

 1 1c  10 1d  1.0 20b  2.0 21b  2.0 22b  1c  0.0 30b  2.0 31b  2.0 32b  1c  0.0 

1k   2 2c  10 2d  1.0 20b  5.5 21b  4.5 22b  2c  0.0 30b  5.5 31b  4.5 32b  2c  0.0 

 3 3c  10 3d  1.0 20b  5.5 21b  1.0 22b  3c  0.0 30b  4.5 31b  1.0 32b  3c  0.0 

 4  20b  2.5 21b  3.0 22b  4c  10 4d  1.0 30b  2.5 31b  3.0 32b  4c  0.0 

2k   5  20b  2.0 21b  1.5 22b  5c  10 5d  1.0 30b  2.0 31b  1.5 32b  5c  0.0 

 6  20b  6.5 21b  4.5 22b  6c  10 6d  1.0 30b  6.5 31b  4.5 32b  6c  0.0 

 7  20b  1.0 21b  2.5 22b  7c  0.0 30b  1.0 31b  2.5 32b  7c  10 7d  1.0 

3k   8  20b  5.0 21b  4.5 22b  8c  0.0 30b  5.0 31b  4.5 32b  8c  10 8d  1.0 

 9  20b  2.5 21b  4.0 22b  9c  0.0  30b  2.5 31b  4.0 32b  9c  10 9d  1.0 

 

 

Table 3.  Classification Results for the Wine Recognition Data Set 

Classified into (in-Sample) Classified into (Validation) From 
Class 1 Class 2 Class 3 Class 1 Class 2 Class 3 

Total 

Class 1 59 0 0 57 2 0 59 
Class 2 0 71 0 1 68 2 71 
Class 3 0 0 48 1 1 46 48 

 

 

Table 4.  Classification Results for the Iris Data Set 

Classified into (in-Sample) Classified into (Validation) From 
Iris setosa Iris versicolor Iris virginica Iris setosa Iris versicolor Iris virginica 

Total 

Iris setosa  50 0 0 49 1 0 50 
Iris versicolor 0 49 1 0 46 4 50 
Iris virginica 0 0 50 0 2 48 50 
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Table 5.  Classification Results for the MBA Admission Data Set 

Classified into (in-Sample) Classified into (Validation) From 
Admit Not Admit Borderline Admit Not Admit Borderline 

Total 

Admit 30 0 1 30 0 1 31 
Not admit 0 28 0 0 26 2 28 
Borderline 0 0 26 1 1 24 26 

 

 

Table 6.  Data in Example 5 

1k   1k   1k   
i  1j   2j   3j   i  1j   2j   3j   i  1j   2j   3j   

1 6.26 17.02 11.25 11 5.64 16.10 10.80 21 5.86 18.39 13.87
2 5.81 18.57 14.19 12 8.44 16.37 15.07 22 6.37 18.43 12.27
3 9.81 19.30 12.42 13 6.33 17.55 14.03 23 6.14 15.51 13.11
4 8.06 17.69 11.26 14 7.39 19.43 11.74 24 6.32 18.07 16.07
5 8.15 15.60 11.63 15 7.81 19.97 15.34 25 8.30 18.60 14.32
6 6.42 17.45 14.91 16 6.89 15.64 14.77 26 10.19 18.95 14.37
7 6.78 17.86 13.63 17 8.33 16.50 12.60 27 5.36 18.66 11.20
8 6.40 17.39 14.63 18 6.45 18.22 12.16 28 7.59 15.25 11.16
9 6.19 15.57 13.69 19 8.47 18.80 11.10 29 8.87 15.87 12.07

10 7.38 17.44 11.99 20 5.51 15.31 11.99 30 6.26 16.16 11.16
 

 

Table 7.  Classification Results for Example 5 

Classified into (in-Sample) From 
Class 1 Class 2 Class 3 

Total 

Class 1 8 1 1 10 
Class 2 3 5 2 10 
Class 3 3 1 6 10 
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