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ABSTRACT

Gamma distribution has been used with considerable success in reliability studies and life

testing experiments. This distribution assumes various forms as its shape parameter varies

which makes it suitable for analyzing a variety of lifetime data. In such studies, often interest

lies in comparing a lifetime distribution over multiple groups. In this paper, we develop

asymptotic tests for comparing shape parameters of k independent gamma distributions. We

also develop similar tests to compare both, the shape and scale parameters, simultaneously.

The tests are based on generalized minimum chi-square procedure. This procedure has been

known to produce estimators which are asymptotically efficient and the tests based on such

estimators are known to have high asymptotic power.
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1. Introduction

Gamma distribution has been widely used as a model for reliability and life testing in many

areas of applications (Nelson (1982)). It has been used to model length of life of components

in household items as well as complex systems such as the rotor blades of helicopters. It

arises as a waiting time distribution regarded as a sum of independent exponential inter

arrival times in a process with Poisson arrivals. Gamma distribution has been used in in-

dustrial engineering and quality control (Drenick (1960), Gupta and Groll (1961)), in cloud

seeding experiment (Crow(1977)), and in survival analysis (Gross and Clark (1975), Lawless

(2003), Kalbfleisch and Prentice (2002)). The failure rate of gamma distribution is flexible,

it is monotone increasing if the shape parameter is greater than 1, and monotone decreasing

if the shape parameter is less than 1. Its failure rate is constant when the shape parameter

is equal to 1.

The parameters of a gamma distribution are often estimated by the method of maximum

likelihood which are obtained as the solutions of nonlinear equations (Bowman and Shenton

(1983, 1988), Greenwood and Durand (1960)). Other estimators, such as those based on

the method of modified moments and the method of maximum likelihood have also been

developed (see for example Cohen and Whitten (1982, 1988). Dahiya and Gurland (1978)

developed minimum chi-square estimators which are obtained as solutions of linear equations.

Some procedures are available for testing hypotheses regarding parameters of a gamma

distribution. Engelhardt and Bain (1977) developed a test for the scale parameter of a

gamma distribution when its shape parameter is unknown. Grice and Bain (1980) presented

an asymptotic test regarding the mean while Keating et. al. (1990) developed a test for the

shape parameter.

Shiue and Bain (1983) developed an approximate test for comparing the scale parameters

of two gamma distributions assuming a common unknown shape parameter. This restriction
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was later relaxed in Shiue and Bain (1988). Tripathi et. al. (1993) developed asymptotic

procedures based on minimum chi-square for comparing scale parameters as well as coeffi-

cients of variation of two or more gamma populations.

Although, there are various tests available for comparing scale parameters of several

gamma populations, there are fewer alternatives available for comparing (i) the shape pa-

rameters , and (ii) the shape and scale parameters simultaneously. In this paper, we develop

asymptotic procedures based on minimum chi-square to compare shape parameters as well

as a simultaneous comparison of both the parameters for two or more gamma populations.

The paper is organized as follows. In section two, we develop the minimum chi-square

procedure for testing general linear hypothesis. We present the test statistic and its asymp-

totic distribution. In section three, we specialize the procedure for testing equality of shape

parameters, and simultaneously for testing equality of shape and scale parameters of several

gamma populations. In section 4, we compute asymptotic power of these tests for a grid of

relevant parameter values. In section five, we present an example to illustrate the procedure.

Finally, in section six, we present conclusions.

2. Formulation of the test based on Generalized Minimum chi-square procedure

Consider m(m ≥ 2) independent gamma populations with the probability density function

(pdf) given by

fi(x) =
1

Γ(αi)β
αi
i

xαi−1e
− x

βi , x > 0, αi, βi > 0

for i = 1, 2, · · · ,m. First, we develop a test based on generalized minimum chi-square for

testing general linear hypothesis regarding the parameters of these m gamma populations.

Then, we will specialize this test for testing equality of the m shape parameters. For this,

let us consider testing the general linear hypothesis

H0 : Cθ = Φ0 against H1 : Cθ 6= Φ0.

where θ′ = (θ1
∗′, θ∗′2 , · · · ,θ∗′m) with θ∗′i = (αi, βi), C is an r × 2m matrix of rank r and Φ
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is an r × 1 vector of known constants. Let κil = (l − 1)!αiβ
l
i be the lth cumulant of the ith

gamma population for i = 1, 2, · · · ,m, and l = 1, 2, 3, · · · . Define

ηi0 = κi1 = αiβi

ηil =
κi,l+1

κil

= lβi

τil =
κil

ηl
il

=
(l − 1)!

ll
αi,

for i = 1, 2, · · · ,m, and l = 1, 2, 3, 4, · · · .
We formulate the following two GMC methods depending on the number of η and τ functions

utilized.

Method 1: Based on two pairs of τ and η functions

Let

ηi =




τi1

ηi1

τi2

ηi2




=




αi

βi

1
4
αi

2βi




=




1 0

0 1

1
4

0

0 2





 αi

βi




= w∗θ∗i

with

w∗′ =


 1 0 1

4
0

0 1 0 2




Now, let

η′ = (η′1,η
′
2, · · · ,η′m)

and

w = diag(w∗,w∗, · · · ,w∗).
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This gives us a linear relationship η = wθ, where η is a 4m × 1 vector, w is a 4m × 2m

matrix of known constants and θ is a 2m × 1 vector of parameters. Utilizing this we will

develop the GMC estimators of the parameters and develop a test for the general linear

hypothesis which will be used to test hypotheses about the shape and scale parameters.

Method 2: Based on three pairs of τ and η functions

Let

ηi =




τi1

ηi1

τi2

ηi2

τi3

ηi3




=




αi

βi

1
4
αi

2βi

2
27

αi

3βi




=




1 0

0 1

1
4

0

0 2

2
27

0

0 3





 αi

βi




= w∗θ∗i

with

w∗′ =


 1 0 1

4
0 2

27
0

0 1 0 2 0 3




Now, let

η′ = (η′1,η
′
2, · · · ,η′m)

and

w = diag(w∗,w∗, · · · ,w∗).

This gives us a linear relationship η = wθ, where η is a 6m×1 vector, w is a 6m×2m matrix

of known constants and θ is a 2m × 1 vector of parameters. We utilize these relationships

to obtain the GMC estimators of the parameters and to develop asymptotic tests regarding

the shape and scale parameters.
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Development of the GMC estimators and the test for the shape parameters

Let Xi1, Xi2, · · · , Xini
, for i = 1, 2, · · · ,m be independent random samples from the m

gamma populations. Let kij denote the jth cumulant of the ith sample. Let hi be the sample

counter part of ηi and h be the sample counterpart of η. To develop the GMC estimators,

we need the asymptotic covariance matrix of h, which we denote by Σ. It can be seen

that Σ = (J1J2)
′V (J1J2) where V = diag(V 1,V 2, · · · ,V m), and J1, J2 are the Jacobians

defined as follows:

J1 = diag(J11,J12, · · · , J1m)

and

J2 = diag(J21, J22, · · · ,J2m).

Next, we present the elements of V i, J1i and J2i for the two methods presented above.

Asymptotic covariance matrix for Method 1

Since Method 1 depends on first three sample cumulants, and hence, on the first three sample

moments, we have

V i =
1

ni




µ′i2 − µ′2i1

µ′i3 − µ′i1µ
′
i2 µ′i4 − µ′2i2

µ′i4 − µ′i1µ
′
i3 µ′i5 − µ′i2µ

′
i3 µ′i6 − µ′2i3




where µ′ij is the jth raw moment of the ith gamma population. The jacobians J1i and J2i

correspond to the following transformations

J1i : (µ′i1, µ
′
i2, µ

′
i3, µ

′
i4) → (κi1, κi2, κi3)

and

J i2 : (κi1, κi2, κi3) → (τi1, ηi1, τi2, ηi2).
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The elements of J i1 and J i2 are as follows:

J i1 =
∂(κi1, κi2, κi3)

∂(µ′i1, µ
′
i2, µ

′
i3, µ

′
i4)

=




1 0 0

−2µ′i1 1 0

−3µ′2i + 6µ′2i1 −3µ′i1 1




J i2 =
∂((τi1, ηi1, τi2, ηi2)

∂(κi1, κi2, κi3)
=




2κi1

κi2
−κ2

i1

κ2
i2

0

−κi2

κ2
i1

1
κi1

0

0 3
κ2

i2

κ2
i3

−κ3
i2

κ3
i3

0 −κi3

κ2
i2

1
κi2




.

Asymptotic covariance matrix for Method 2

Since Method 2 depends on first four sample cumulants, and hence, on the first four sample

moments, we have

V i =
1

ni




µ′i2 − µ′2i1

µ′i3 − µ′i1µ
′
i2 µ′i4 − µ′2i2

µ′i4 − µ′i1µ
′
i3 µ′i5 − µ′i2µ

′
i3 µ′i6 − µ′2i3

µ′i5 − µ′i1µ
′
i4 µ′i6 − µ′i2µ

′
i4 µ′i7 − µ′i3µ

′
i4 µ′i8 − µ′2i4




where µ′ij is the jth raw moment of the ith gamma population. The jacobians J1i and J2i

correspond to the following transformations

J1i : (µ′i1, µ
′
i2, µ

′
i3, µ

′
i4) → (κi1, κi2, κi3, κi4)

and

J i2 : (κi1, κi2, κi3, , κi4) → (τi1, ηi1, τi2, ηi2, τi3, ηi3).
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The elements of J i1 and J i2 are as follows:

J i1 =
∂(κi1, κi2, κi3, κi4)

∂(µ′i1, µ
′
i2, µ

′
i3, µ

′
i4)

=




1 0 0 0

−2µ′i1 1 0 0

−3µ′2i + 6µ′2i1 −3µ′i1 1 0

−4µ′i3 + 24µ′i2µ
′
i1 − 24µ′3i1 −6µ′i2 + 12µ′i1 −4µ′i1 1




J i2 =
∂((τi1, ηi1, τi2, ηi2, τi3, ηi3)

∂(κi1, κi2, κi3), κi4

=




2κi1

κi2
−κ2

i1

κ2
i2

0 0

−κi2

κ2
i1

1
κi1

0

0
3κ2

i2

κ2
i3

−2κ3
i2

κ3
i3

0

0 −κi3

κ2
i2

1
κi2

0

0 0
4κ3

i3

κ3
i4

−3κ4
i3

κ3
i4

0 0 κi4

κ2
i3

1
κi3




.

Test Statistics for testing H0 and its asymptotic distribution

To develop the test statistic based on the GMC procedure, we consider the quadratic form

Q = (h−wθ)′(Σ̂)−1(h−wθ)

and minimize it under no restrictions and under H0. Let θ̂ be the estimator of θ under no

restriction and θ̃ be its estimator under H0. Then, it can be seen that

θ̂ = (w′Σ̂
−1

w)−1(w′Σ̂
−1

h),

and

θ̃ = θ̂ − (w′Σ̂
−1

w)−1C ′(C(w′Σ̂
−1

w)−1C ′)−1(Cθ̂ −Φ0).

Let Q0 be the minimum value of Q onder H0 and Q1 be its value under no restrictions. Then,

the test statistics for testing H0 is T = Q0−Q1 and, asymptotically under H0, T ∼ χ2
r where

r = rank(C).
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3. Tests for parameters of three gamma populations based on Method 1

Here, we specialize the above general test to test (i) equality of the shape parameters, and

(ii) equality of the shape as well as the scale parameters of three gamma populations based

on Method 1 where we use two pairs of τ and η functions.

(i) Equality of Shape parameters

To test the equality of the shape parameters of three gamma populations using Method 1,

we choose the coefficient matrix C as

C =


 1 0 0 0 −1 0

0 0 1 0 −1 0


 .

With this choice of C, we can compute the test statistic T = Q0 − Q1 which will have an

asymptotic χ2
2 distribution.

(ii) Equality of Shape and Scale parameters

To test the hypothesis of equality of the shape and the scale parameters of three gamma

populations using Method 1, we choose the C matrix as

C =




1 0 0 0 −1 0

0 0 1 0 −1 0

0 1 0 0 0 −1

0 0 0 1 0 −1




.

With this choice of C, we can compute the test statistic T = Q0 − Q1 which will have an

asymptotic χ2
4 distribution.
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