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Abstract

We study the problem of classification for multivariate repeated measures data with struc-
tured correlations on both time and spatial repeated measurements. This is a very important
problem in many biomedical as well as in engineering field. Classification rules as well as the
algorithm to compute the maximum likelihood estimates of the required parameters are given.
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1 Introduction

We develop classification rules for multivariate repeated measures data with structured corre-

lations on repeated measures on both spatial as well as over time. The available classification

rules for multivariate repeated measures data consider structured correlation only on repeated

measures over time. Nevertheless, in many biomedical applications just one variable is measured

on different parts of the body and repeatedly over time, where use of structured correlations on

repeated measures on spatial as well as over time would be natural/ beneficial. These problems

are computationally very challenging, as it is not possible to tract them analytically or find any

closed form solution.

Classification problem on multivariate repeated measures data, where measurements on a

number of variables are measured repeatedly over time, was first studied by Gupta (1980, 1986).
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Roy and Khattree (2005 a, b; 2007) considered the problem in small sample situation by assum-

ing Kronecker product structure on variance covariance matrix. They assumed equicorrelated or

compound symmetry correlation structure on the repeated measures in their 2005 b paper, and

an autoregressive of order one
(
AR(1)

)
structure on repeated measures in their other two papers.

In many clinical trial problems it is found that the measurements on a single variable is measured

on different body positions and repeatedly over time. For example positron emission tomography

(PET) imaging aids in diagnosing different types of dementia. A healthy brain shows normal

metabolism levels (measurements) throughout the scan. Low metabolism in the temporal and

parietal lobes (sides and back) on both sides (sites) of the brain is seen in Alzheimer’s disease.

Repeated measurements of PET scan may diagnosis a patient with Alzheimer’s disease. In an-

other example, for the classification of patients between two different osteoporosis drug treated

populations in two clinical trials. Osteoporosis can be detected by a test of Bone Mineral Den-

sity (BMD), the assessments of which are obtained at different anatomic locations of the body,

such as the spine, radius, femoral neck and the total hip and all the measurements were observed

at repeatedly over time. In this article we develop classification rules for these kinds of data.

Different time points as well as different sites may have different measurement variations for the

variables, and we should take these variations into account while analyzing these kinds of data. It

is well known (Hand, 1997) that the correlation structure on the repeated measurements follows

a simple pattern such as compound symmetry or a first-order autoregressive
(
AR(1)

)
structure

as opposed to the unstructured variance-covariance matrix, where the mean vectors and the vari-

ances and covariances among the pu variables are arbitrary. Therefore, for both the data sets it

is expected that measurement variation over sites as well as over time both will have patterned

covariance structures. In other words, marginal variance-covariance matrices over different sites

as well as over different time points will have patterned covariance structures. In this paper we

will develop classification rules for multivariate repeated measures data where both the marginal

variance-covariance matrices over different sites as well as over different time points have patterned

covariance structures.

Let yjr,ts be the measurement on the rth individual at the sth site (location) and at the tth

time point in the jth population; r = 1, . . . , n, s = 1, . . . , u, t = 1, . . . , p, j = 1, . . . , k. Let yjr,t be

the u-variate vector of all measurements corresponding to the rth individual at the tth time point,

that is, for each r, and t, yjr,t is obtained by stacking the response of the rth individual at the tth

time point at the first site (location), then stacking the response at the second site and so on. Let

yjr = (y′jr,1, y
′
jr,2, . . . , y

′
jr,p)

′ be the pu-variate vector of all measurements corresponding to the

rth individual. For two populations, Y j =
[
yj1,yj2, . . . ,yjn

]
be nj independent random samples

from populations Npu

(
µj ,Ωj

)
, where µj ∈ Rpu and the matrix Ωj is assumed to be pu × pu

positive definite matrix. We assume the form of the covariance matrix Ωj as

Ωj
pu×pu

= V j
p×p

⊗ ∆j
u×u

,
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where both V j and ∆j have equicorrelated structures. However, this may result in identifiability

problem. We circumvent this problem by taking V j as a equicorrelated correlation structure and

∆j as a equicorrelated covariance structure. The matrix ∆j has the form

∆j =
(
σ2

j,0 − σ2
j,1

)
Iu + σ2

j,1Ju,

where Iu is the u × u identity matrix, 1u is a u × 1 vector containing all elements as unity,

Ju = 1u1′u. It is well known that

∆−1
j =

(
σ2

j,0 − σ2
j,1

)−1 Iu +
1
u

[(
σ2

j,0 + (u− 1)σ2
j,1

)−1 − (
σ2

j,0 − σ2
j,1

)−1
]
Ju.

That is, ∆−1
j also has the form

∆−1
j = hjIu + kjJu, (1)

where

hj =
(
σ2

j,0 − σ2
j,1

)−1
,

and

kj =
1
u

[(
σ2

j,0 + (u− 1)σ2
j,1

)−1 − (
σ2

j,0 − σ2
j,1

)−1
]

The determinant of ∆j is given by

|∆j | =
∣∣σ2

j,1 − σ2
j,0

∣∣u−1 ∣∣σ2
j,0 + (u− 1)σ2

j,1

∣∣ . (2)

The correlation matrix V j , j = 1, 2 is given by

V j = (1− ρj)Ip + ρj1p1′p.

The elements vlm
i of V −1

j is given by

vlm
j =





1 + (p− 2)ρj

(1− ρj){1 + (p− 1)ρj} , if l = m,

− ρj

(1− ρj){1 + (p− 1)ρj} , if l 6= m.

(3)

The determinant of V j is given by

|V j | =
(
1 + (p− 1)ρj

)
(1− ρj)p−1, j = 1, 2. (4)

Since V j has to be positive definite, we should have − 1
p− 1 < ρj < 1. However, we further

assume that 0 < ρj < 1.
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2 Classification Rules

Case 1: Ω1 = Ω2.

Sample classification rule is given by:

Classify an individual with response y to Population 1 if

(µ̂1 − µ̂2)
′
(
V̂
−1 ⊗ ∆̂

−1
)

y ≥ 1
2

(µ̂1 − µ̂2)
′
(
V̂
−1 ⊗ ∆̂

−1
)

(µ̂1 + µ̂2)
′ ,

and to Population 2 otherwise.

Maximum likelihood estimation of µ1, µ2, V , and ∆: Let n = n1 + n2 be the total number of

random samples Y j =
[
yj1, yj2, . . . ,yjnj

]
from Population j, j = 1, 2. Here we assume µj =

(µj,ts)
′
t=1,...,p;s=1,...,u. Using (1) and(2) the log likelihood function lnL(µ1,µ2, V ,∆; Y 1, Y 2) is

given by

ln L = −npu

2
ln (2π)− nu

2
ln |V| − np (u− 1)

2
ln

∣∣σ2
0 − σ2

1

∣∣− np

2
ln

∣∣σ2
0 + (u− 1)σ2

1

∣∣

−1
2

2∑

j=1

nj∑

r=1

p∑

m=1

m+1∑

l=m−1

u∑

s=1

hvlm (yjr,ls − µj,ls) (yjr,ms − µj,ms)

−1
2

2∑

j=1

nj∑

r=1

p∑

m=1

m+1∑

l=m−1

u∑

s=1

u∑

s∗=1

kvlm (yjr,ls − µj,ls) (yjr,ms∗ − µj,ls∗) . (5)

An alternative expression for lnL is

lnL = −npu

2
ln (2π)− n

2
ln |V ⊗∆| − 1

2
tr (V ⊗∆)−1 (S1 + S2)

−1
2
tr (V ⊗∆)−1

2∑

j=1

nj

(
yj − µj

) (
yj − µj

)′
.

where

Sj =
nj∑

r=1

(
yjr − yj

) (
yjr − yj

)′
, for j = 1, 2,

and yj is the sample mean vector for the jth group. The vector yj =
(
y′j,1, y

′
j,2, . . . , y

′
j,p

)′
, with

yj,t = 1
nj

nj∑
r=1

yjr,t =
(
yj·,t1, yj·,t2, . . . , yj·,tu

)′
, for t = 1, . . . , p. It is obvious that the MLEs of µj

are µ̂j = yj for j = 1, 2. Now, replacing µj by µ̂j the log likelihood function reduces to

lnL = −npu

2
ln (2π)− n

2
ln (|V |u |∆|p)− 1

2
tr

(
V −1 ⊗∆−1

)
S,

where S = S1 + S2. By substituting the values of |V | and V −1 in the above equation we get

lnL = −npu

2
ln 2π − n(p− 1)u

2
ln(1− ρ)− nu

2
ln{1 + (p− 1)ρ}

− np

2
ln |∆| − 1

2(1− ρ)
c∗1 +

ρ

2(1− ρ){1 + (p− 1)ρ}d∗1, (6)
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where c∗1 = tr[(Ip ⊗∆−1)S] and and d∗1 = tr[(Jp ⊗∆−1)S].

Differentiating (6) with respect to ρ, equating it to zero and simplifying we get,

(p− 1)k0ρ
3 + {k0 − (p− 1)k0 + (p− 1)2c∗1 − (p− 1)d∗1}ρ2

+ {2(p− 1)c∗1 − k0}ρ + (c∗1 − d∗1) = 0, (7)

where k0 = nu(p− 1)p. Alternatively, from (5) we get

ln L = −npu

2
ln (2π)− nu

2
|V | − np (u− 1)

2
ln

∣∣h−1
∣∣− np

2
ln

∣∣m−1
∣∣

−1
2
h

(
b∗1,1 −

1
u

b∗1,2

)
− 1

2u
mb∗1,2,

where

h =
1

σ2
0 − σ2

1

,

m =
1

σ2
0 + (u− 1)σ2

1

,

b∗1,1 =
2∑

j=1

nj∑

r=1

p∑

m=1

p∑

l=1

u∑

s=1

vlm
(
yjr,ls − yj·,ls

) (
yjr,ms − yj·,ms

)′
,

and b∗1,2 =
2∑

j=1

nj∑

r=1

p∑

m=1

p∑

l=1

u∑

s=1

u∑

s∗=1

vlm
(
yjr,ls − yj·,ls

) (
yjr,ms∗ − yj·,ms∗

)
.

Differentiating (Harville, 1997) the above equation with respect to h−1 and m−1 separately and

then equating them to zero we get

ĥ−1 =
1

np (u− 1)

(
b∗1,1 −

1
u

b∗1,2

)
,

and m̂−1 =
1
np

b∗1,2.

After some simplifications we get

σ̂2
0 =

b∗1,1

npu
, (8)

and σ̂2
1 =

b∗1,2 − b∗1,1

npu (u− 1)
. (9)

The MLEs ρ̂, σ̂2
0 and σ̂2

1 are obtained by simultaneously and iteratively solving (7), (8) and (9)

by substituting the values of vlm; l, m = 1, 2, . . . , p, from equation (3). The computations can be

carried out by the following algorithm. The MLE of V is obtained from

V̂ = (1− ρ̂)Ip + ρ̂1p1′p, (10)
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and the MLE of ∆ is obtained from

∆̂ = Iu

(
σ̂2

0 − σ̂2
1

)
+ Juσ̂2

1. (11)

Algorithm Outline:

Step 1: Get the pooled sample variance covariance matrix G for the repeated measures. Then

obtain an initial estimate of ρ as ρ̂o = (1′pG1p − trG)/p(p− 1).

Step 2: Compute σ̂2
0 and σ̂2

1 from (8) and (9), and then compute ∆̂ from (11).

Step 3: Compute c∗1 and d∗1 using ∆̂ obtained in Step 2.

Step 4: Compute ρ̂ by solving the cubic equation (7). Ensure that 0 < ρ̂ < 1. Truncate ρ̂ to 0 or

1, if it is outside this range.

Step 5: Compute the revised estimate V̂ from ρ̂ by using (10).

Step 6: Repeat Steps 2 to 5 until convergence is attained. This is ensured by verifying that the

maximum of the absolute difference between two successive values of ρ̂, σ̂2
0 and σ̂2

1 is less than ε.

Even though ρ is always between − 1
p− 1 and 1, we have assumed 0 < ρ < 1. Still, ρ̂ may fall at

the boundary ρ = 1, in which case the standard asymptotic theory may not be directly applicable.

See, Self and Liang, (1987) for more details.

Case 2: Ω1 6= Ω2 (V 1 6= V 2,∆1 6= ∆2).

Sample classification rule is given by:

Classify an individual with response y to Population 1 if

2∑

j=1

(−1)j−1

[
y′j

(
V̂
−1

j ⊗ ∆̂
−1

j

)
y − 1

2
y′

(
V̂
−1

j ⊗ ∆̂
−1

j

)
y

]

≥ 1
2

2∑

j=1

(−1)j−1
[
ln

∣∣∣V̂ j

∣∣∣
u ∣∣∣∆̂j

∣∣∣
p
+ y′j

(
V̂
−1

j ⊗ ∆̂
−1

j

)
yj

]
,

and to Population 2 otherwise.

Using (1) and (2) the the log likelihood function lnL(µ1, µ2, V 1,V 2,∆1,∆2; Y 1, Y 2) is given by

ln L = −npu

2
ln 2π − n1(p− 1)u

2
ln(1− ρ1)

−n2(p− 1)u
2

ln(1− ρ2)− n1u

2
ln{1 + (p− 1)ρ1}

−n2u

2
ln{1 + (p− 1)ρ2} − n1p

2
ln |∆1|

−n2p

2
ln |∆2| − 1

2(1− ρ1)
c1 − 1

2(1− ρ2)
c2

+
ρ1

2(1− ρ1){1 + (p− 1)ρ1}d1 +
ρ2

2(1− ρ2){1 + (p− 1)ρ2}d2, (12)
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where cj = tr[(Ip ⊗∆−1
j )Sj ] and and dj = tr[(Jp ⊗∆−1

j )Sj ]. Differentiating (12) with respect to

ρj , j = 1, 2, equating it to zero and simplifying, results in the following equation

(p− 1)kj0ρ
3
j + {kj0 − (p− 1)kj0 + (p− 1)2cj − (p− 1)dj}ρ2

j

+ {2(p− 1)cj − kj0}ρj + (cj − dj) = 0, (13)

where kj0 = nju(p− 1)p. Alternatively from (12) we get

ln L = −npu

2
ln (2π)− n1u

2
ln |V 1| − n2u

2
ln |V 2| − n1p (u− 1)

2
ln

∣∣h−1
1

∣∣

−n2p (u− 1)
2

ln
∣∣h−1

2

∣∣− n1p

2
ln

∣∣m−1
1

∣∣− n2p

2
ln

∣∣m−1
2

∣∣

−1
2
h1b1,1 − 1

2
k1b1,2 − 1

2
h2b2,1 − 1

2
k2b2,2, (14)

where

hj =
1

σ2
j,0 − σ2

j,1

,

mj =
1

σ2
j,0 + (u− 1)σ2

j,1

bj,1 =
nj∑

r=1

p∑

m=1

p∑

l=1

u∑

s=1

vlm
j

(
yjr,ls − yj·,ls

) (
yjr,ms − yj·,ms

)

and bj,2 =
nj∑

r=1

p∑

m=1

p∑

l=1

u∑

s=1

u∑

s∗=1

vlm
j

(
yjr,ls − yj·,ls

) (
yjr,ms∗ − yj·,ms∗

)
.

After some algebraic simplification from (14) we get

lnL = −npu

2
ln (2π)− n1u

2
ln |V 1| − n2u

2
ln |V 2| − n1p (u− 1)

2
ln

∣∣h−1
1

∣∣

−n2p (u− 1)
2

ln
∣∣h−1

2

∣∣− n1p

2
ln

∣∣m−1
1

∣∣− n2p

2
ln

∣∣m−1
2

∣∣

−1
2
h1

(
b1,1 − 1

u
b1,2

)
− 1

2
h2

(
b2,1 − 1

u
b2,2

)
− 1

2u
m1b1,2 − 1

2u
m2b2,2.

Differentiating (Harville, 1997) the above equation with respect to h−1
j and m−1

j separately and

then equating them to zero we get

ĥ−1
j =

1
njp (u− 1)

(
bj,1 − 1

u
bj,2

)
,

and

m̂−1
j =

1
njpu

bj,2.

After simplification we get

σ̂2
j,0 =

bj,1

njpu
, j = 1, 2, (15)
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and σ̂2
j,1 =

bj,2 − bj,1

njpu (u− 1)
, j = 1, 2. (16)

The maximum likelihood estimates ρ̂1, ρ̂2, σ̂
2
10, σ̂

2
11, σ̂2

20 and σ̂2
21 are obtained by simultaneously

and iteratively solving (13), (15) and (16). The computations can be carried out by a similar

algorithm presented in Case 1. The MLEs of V j and ∆j are obtained as

V̂ j = (1− ρ̂j)Ip + ρ̂j1p1′p.

and ∆̂j = Iu

(
σ̂2

j,0 − σ̂2
j,1

)
+ Juσ̂2

j,1.
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