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Summary. The elicitation of power prior distributions is based on the availability

of historical data, and is realized by raising the likelihood function of the historical

data to a fractional power. However, an arbitrary positive constant before the like-

lihood function of the historical data could change the inferential results when one

uses the original power prior. This raises a question that which likelihood function

should be used, one from raw data, or one from a sufficient-statistics. We propose

a normalized power prior that can better utilize the power parameter in quantifying

the heterogeneity between current and historical data. Furthermore, when the power

parameter is random, the optimality of the normalized power priors is shown in the

sense of maximizing Shannon’s mutual information. Some comparisons between the

original and the normalized power prior approaches are made and a water-quality

monitoring data is used to show that the normalized power prior is more sensible. .
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1 Introduction

In applying statistics to real experiments, it is common that the sample size in the

current study is often inadequate to provide necessary precision for parameter estima-

tion, while plenty of historical data or data from similar studies or research settings

are available. For example, to assess violations of water quality standards, measure-

ments of chemical constituents are typically collected on a monthly or quarterly basis

at each monitoring station, and then analyzed to evaluate the percentage of samples

exceeding the standard. Under the Clean Water Act, only observations over a two

year period are allowed to be counted as current data in the assessment. The lack

of sufficient data often leads to unacceptable levels of uncertainty. In a situation

like this, “historical” data, a data set from previous time periods or from adjacent

stations, can be very useful in interpreting the current status of water quality, if it

can be combined with current data in some way.

Due to the nature of sequential information updating, it is natural to use a

Bayesian approach with an informative prior on the model parameters to incorporate

the historical data into the current study. A traditional approach to incorporating

historical data is to construct an informative prior using the historical data and such

a prior is combined with the likelihood to yield the posterior distribution in statistical

inference. This implies a simple pooling of current data and historical data together,

since the two data sets are equally weighted. This approach can be well justified

by assuming that the current and historical data come from exactly the same pop-

ulation. However, although the current and historical data are usually assumed to

follow distributions in the same family, the population parameters may change over

time, or over different settings. If the sample size of the historical data is much larger

than that of the current data and heterogeneity exists between these data sets, his-

torical information could dominate the analysis and the data pooling may result in

misleading conclusions.

To address this issue, Ibrahim and Chen ([10], and thereafter [3], [4], [11], [12], and
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others) proposed the concept of power priors, based on the notion of the availability

of historical data. The basic idea is to let a power parameter δ (0 ≤ δ ≤ 1) tell us how

much historical data is to be used in the current study. However, in their approach,

the ways in determining the historical likelihood, e.g., using the joint density of all

the data, the joint densities of various sufficient statistic settings and so on, would

change inferential conclusions due to the fact that the posterior distributions vary

when the constants before the likelihood functions vary. Also, the power parameter

has a tendency to be close to zero, which suggests that much of a historical data set

may not be used in decision making. In this article, we propose a normalized power

prior Bayesian approach, in which the power parameter quantifies the heterogeneity

between current and historical data automatically, and hence controls the influence

of historical data on the current study in a sensible way.

The article is organized as follows. In Section 2, the general development of the

normalized power prior approach is given and certain properties of the approach

for the Bernoulli and normal families are discussed. In Section 3, optimality of the

normalized power prior approach in the sense of maximizing Shannon’s mutual in-

formation will be investigated. Section 4 contains brief comparisons of the power

parameters between the original and the normalized power prior methods. More of

such comparisons can be found in [7]. In Section 5, as an illustration, we apply the

normalized power prior to water quality data where there are clear distinction between

historical and current data sets. Finally in Section 6, we summarize the properties of

the normalized power prior, close the article with a brief discussion.

2 A Normalized Power Prior Approach

2.1 The Normalized Power Prior

Suppose that θ is the parameter of interest, for instance, concentration of a chemical

level in a water quality measurement. Assume that such a measurement follows a

distribution and L(θ|D0) is the likelihood function of θ based on the historical data,
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denoted by D0. In this article, we assume that, given θ, historical data D0 and current

data, denoted by D, are independent random samples from an exponential family.

Furthermore, denote by π(θ) the initial prior, which can be a noninformative prior.

Given δ, the power parameter, Ibrahim and Chen ([11]) defined the power prior of θ

for the current study as

π(θ|D0, δ) ∝ L(θ|D0)
δπ(θ). (1)

The power parameter δ measures the portion of historical information needed in the

current study.

The power prior π(θ|D0, δ) in (1) was initially elicited for fixed δ. However, since

δ is not necessarily pre-determined and also because it is often difficult to specify it in

practice, we may extend the case further to a random δ. A random variable δ provides

the researcher with more flexibility in weighting the historical data. A natural prior

for δ would be a Beta(α, β) distribution, or simply a uniform distribution, since

0 ≤ δ ≤ 1. The elicitation of the power prior on (θ, δ) is then completed by specifying

a prior distribution for δ. Ibrahim and Chen ([11]) constructed the joint power prior

of (θ, δ) as

π(θ, δ|D0) ∝ L(θ|D0)
δπ(θ)π(δ), (2)

with the posterior, given the current data D,

π(θ, δ|D0, D) =
L(θ|D)L(θ|D0)

δπ(θ)π(δ)∫
Θ×∆

L(θ|D)L(θ|D0)δπ(θ)π(δ)dθdδ
. (3)

In (3), any constant before L(θ|D0) cannot be canceled out on both numerator and

denominator. This could yield different posteriors if different forms of the likelihood

functions are used. For instance, one can use the joint density of the whole data, or

one can use the joint densities of the different forms of sufficient statistics. On the

other hand, another problem of this power prior approach arises as we investigate

the application of power priors on Bernoulli and normal mean models. The influence

of historical data is generally small, i.e., δ is close to 0, no matter how compatible

the current and historical data are. In such a case, the inference on θ is not much

different from the inference when the historical data is ignored (more discussion is

4



referred to Section 4). Finally, this prior could also be improper. We feel that once

the historical information is available, a prior elicited from such information would

better be proper.

Therefore, we propose a normalized joint power prior distribution for (θ, δ) as

π(θ, δ|D0) ∝ L(θ|D0)
δπ(θ)π(δ)∫

Θ
L(θ|D0)δπ(θ) dθ

, (4)

in the region of δ such that the denominator in (4) is finite.

The difference in the forms between (2) and (4) is that the prior distribution of

(θ, δ) expressed in (4) is always proper given that π(δ) is proper, whereas it is not

necessarily the case for that in (2). More importantly, multiplying the likelihood

function in (2) by an arbitrary positive number may change the prior, whereas the

constant is canceled out in (4). More discussion will be given in Sections 4 and 5.

Using current data to update the prior distribution π(θ, δ|D0) in (4), we derive

the joint posterior distribution for (θ, δ) as

π(θ, δ|D0, D) ∝ L(θ|D)π(θ, δ|D0) ∝ L(θ|D)L(θ|D0)
δπ(θ)π(δ)∫

Θ
L(θ|D0)δπ(θ) dθ

.

Integrating θ out of the expression above, the marginal posterior distribution of δ can

be expressed as

π(δ|D0, D) ∝ π(δ)

∫
Θ

L(θ|D)L(θ|D0)
δπ(θ) dθ∫

Θ
L(θ|D0)δπ(θ) dθ

. (5)

Similarly, the marginal posterior distribution of θ, π(θ|D0, D), is obtained by inte-

grating δ out. If our interest is only in θ, δ may be integrated out at an earlier stage.

Then π(θ|D0, D) may also be developed in the way described below.

If we integrate δ out in π(θ, δ|D0) we obtain a new prior for θ, a prior that is

updated by the historical information,

π(θ|D0) =

∫
π(θ, δ|D0)dδ ∝ π(θ)

∫
L(θ|D0)

δπ(δ)∫
Θ

L(θ|D0)δπ(θ) dθ
dδ. (6)

With historical data appropriately incorporated, π(θ|D0) can be viewed as an

informative prior for the Bayesian analysis to the current data. Consequently, the
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posterior distribution of θ can be written as

π(θ|D0, D) ∝ π(θ|D0)L(θ|D0, D) ∝ π(θ)L(θ|D)

∫
L(θ|D0)

δπ(δ)∫
Θ

L(θ|D0)δπ(θ) dθ
dδ. (7)

Furthermore, similar to the extension given by Ibrahim and Chen ([11]), the priors

defined in (4) can easily be generalized to multiple historical data sets. Suppose

there are m historical studies. Denote by D0j the historical data for the jth study,

j = 1, ..., m and D0 = (D01, ..., D0m). Different weight parameter δj for each historical

study can be used. Assume that δj’s are i.i.d. Beta random variables with parameters

(α, β). Denote δ = (δ1, ..., δm). The normalized power prior in (4) can be generalized

as

π(θ, δ|D0) ∝

{∏m
j=1 L(θ|D0j)

δjπ(δj|α, β)

}
π(θ)

∫ { ∏m
j=1 L(θ|D0j)δj

}
π(θ) dθ

. (8)

There are actually different ways this prior can be defined, depending on the way of

normalization. Duan and Ye ([8]) find out that (8) is the most reasonable one.

Heterogeneity often exists among different studies but data collected at one study

are relatively homogeneous. The framework introduced above would accommodate

potential heterogeneity among data sets from different sources or collected at different

times. For example, in water quality assessment, we could take data observed at

neighboring sites as different “historical” data sets. Moreover, data collected over a

long period may be divided into several historical data sets to ensure the homogeneity

within each data set. In such a way, the role of historical data can be more accurately

evaluated ([9]). Examples of implementing the normalized power prior approach using

multiple sites information can be found therein.

2.2 Normalized Power Prior Approach for Exponential Fam-
ily

In this section we are interested in making inference on the parameter θ (possibly

vector-valued) of an exponential family, by incorporating both current and histori-

cal data. Denote by D = (x1, ..., xn) the current data and D0 = (x01, ..., x0n0) the

6



historical data. Suppose that current data come from an exponential family with

probability density function or probability mass function of the form (see, e.g., [5])

f(x|θ) = h(x) exp

{ k∑
i=1

wi(θ)ti(x) + τ(θ)

}
, (9)

where the dimension of θ is no larger than k. Here h(x) ≥ 0 and t1(x), ..., tk(x)

are real-valued functions of the observation x, and w1(θ), ..., wk(θ) are real-valued

functions of the parameter θ. Define w(θ) = (w1(θ), . . . , wk(θ))
′. Furthermore, define

C(x) =

(
1

n

n∑
j=1

t1(xj), ....,
1

n

n∑
j=1

tk(xj)

)′

(10)

as the compatibility statistic to measure how compatible a sample x = (x1, ...., xn)

is with other samples in providing information about θ. The density function of the

current data may be expressed as

f(D|θ) = h(D) exp [n{C(D)′w(θ) + τ(θ)}] , (11)

where h(D) =
∏n

j=1 h(xj) and C(D) stands for the compatibility statistic related to

the current data D. Accordingly, the compatibility statistic and the density function

similar to (10) and (11) respectively for the historical data D0 can be defined as well.

Denote by π(θ) the initial prior distribution of θ and π(δ) denote the prior dis-

tribution of the power parameter. We write the joint posterior distribution of (θ, δ)

as

π(θ, δ|D0, D) ∝ exp [{δn0C(D0)
′ + nC(D)′}w(θ) + (δn0 + n)τ(θ)] π(θ)π(δ)∫

Θ
exp [δn0{C(D0)′w(θ) + τ(θ)}] π(θ) dθ

(12)

Integrating θ out in (12), the marginal posterior distribution of δ is given by

π(δ|D0, D) ∝ π(δ)

∫
Θ

exp [(δn0C(D0)
′ + nC(D)′)w(θ) + (δn0 + n)τ(θ)] π(θ) dθ∫

Θ
exp {δn0[C(D0)′w(θ) + τ(θ)]} π(θ) dθ

.

The behavior of the power parameter δ can be examined from this marginal posterior

distribution. Similarly, the marginal posterior distribution of θ can be derived by

integrating δ out in π(θ, δ|D0, D), but it often does not have a closed form. Instead

the posterior distribution of θ given D0, D and δ is often in a more familiar form.

Therefore we may learn the characteristic of the marginal posterior of θ by studying

the conditional posterior distribution π(θ|D0, D, δ), combined with π(δ|D0, D).
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2.2.1 Bernoulli Population

Suppose we are interested in making inference on the probability of success p from

a Bernoulli population. Define y0 =
∑n0

i=1 x0i, and y =
∑n

j=1 xj. The joint posterior

distribution of p and δ can be easily derived as the result below and the proof is

omitted.

Result 1. Assume that the initial prior distribution of p follows a Beta(αp, βp),

and the prior distribution of δ follows a Beta(αδ, βδ) distribution, where the hyper-

parameters αp, βp, αδ and βδ are all known. The joint posterior distribution of (p, δ)

is

π(p, δ|D0, D) ∝ pδy0+y(1− p)δ(n0−y0)+(n−y)δαδ−1(1− δ)βδ−1

B(δy0 + αp, δ(n0 − y0) + βp)
,

where B(a, b) = Γ(a)Γ(b)
Γ(a+b)

stands for the beta function.

Integrating p out in π(p, δ|D0, D), the marginal posterior distribution of δ is given

by

π(δ|D0, D) ∝ B(δy0 + y + αp, δ(n0 − y0) + n− y + βp)

B(δy0 + αp, δ(n0 − y0) + βp)
δαδ−1(1− δ)βδ−1.

The conditional posterior distribution of p given δ follows a Beta(δy0 + y + 1, δ(n0 −
y0) + (n− y) + 1). However, the marginal posterior distribution of p does not have a

close form . An application of the normalized power prior for Bernoulli data can be

found in [6].

2.2.2 Normal Population

Suppose we are interested in making inference on the normal mean from a normal

N(µ, σ2) population with unknown mean µ and variance σ2. Define

x̄0 =
1

n0

n0∑
i=1

x0i, x̄ =
1

n

n∑
j=1

xj, σ̂2
0 =

1

n0

n0∑
i=1

(x0i − x̄0)
2, and σ̂2 =

1

n

n∑
j=1

(xi − x̄)2.

Following (4), the normalized power prior for the normal population with unknown

variance is given in the following result.
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Result 2. Denote by π(µ, σ2) the initial prior distribution for (µ, σ2). Assume

that the prior distribution of δ follows a beta(α, β), where parameters α and β are

known. The normalized power prior distribution of (µ, σ2, δ) is

π(µ, σ2, δ|D0) ∝
(σ2)−

δn0
2 exp

[− δn0

2σ2{σ̂2
0 + (µ− x̄0)

2}] π(µ, σ2)δα−1(1− δ)β−1

∫∞
0

∫ +∞
−∞ (σ2)−

δn0
2 exp

[− δn0

2σ2{σ̂2
0 + (µ− x̄0)2}] π(µ, σ2)dµdσ2

.

When considering a special form of π(µ, σ2), we are led to Corollaries 2.1, 2.2, and

2.3 whose proofs are simple and thus omitted.

Corollary 2.1. Suppose that we use the prior π(µ, σ2) ∝ ( 1
σ2 )

a as the initial

prior of (µ, σ2), where a > 0 is a pre-determined constant. The joint power prior

distribution of (µ, σ2, δ) can be expressed as

π(µ, σ2, δ|D0) ∝ δ
δn0
2

+a+αδ−2(1− δ)βδ−1

(
2σ2

n0σ̂2
0

) δn0
2

+a
Γ
(

δn0−3
2

+ a
) exp

[
−δn0

2σ2
{σ̂2

0 + (µ− x̄0)
2}

]
.

Note that a = 1 corresponds to the reference prior ([2]), while a = 3
2

corresponds

to the Jeffreys prior ([13]).

Corollary 2.2. Assume π(µ, σ2) ∝ ( 1
σ2 )

a. The marginal posterior distribution

of δ is

π(δ|D0, D) ∝ δ
δn0
2

+a+αδ−2(1− δ)βδ−1Γ( δn0+n−3
2

+ a)
{

δn
δn0+n

(x̄0−x̄)2

σ̂2
0

+ δ + n
n0

σ̂2

σ̂2
0

} δn0+n−3
2

+a

Γ( δn0−3
2

+ a)

.

Corollary 2.3. Assume π(µ, σ2) ∝ ( 1
σ2 )

a. The conditional posterior distribution

of µ, given δ and data (D0, D), follows a Student t-distribution with, respectively, the

location parameter and the scale parameter
(

δn0x̄0 + nx̄

δn0 + n
,

√
2

G(δ)

1

(δn0 + n + 2a− 3)(δn0 + n)

)
,

and degrees of freedom δn0 + n + 2a− 3, where

G(δ) =
2

δn0n(x̄0−x̄)2

δn0+n
+ δn0σ̂2

0 + nσ̂2
.

Furthermore, the conditional posterior distribution of σ2, given δ and the data, follows

an inverse-gamma distribution with parameters δn0+n+2a−3
2

and G(δ)−1.
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Duan, et al. ([9]) provides an example of implementing the normalized power

prior for a normal population with unknown variance.

3 Optimality Properties of the Normalized Power

Prior

The optimality properties of the normalized power prior will be investigated in two

steps. Section 3.1 shows that, given a fixed δ, the derived posterior π(θ|D0, D, δ)

minimizes the expected loss from the true posterior distribution of θ. In Section 3.2,

with δ being random, the normalized power prior yields a posterior π(δ|D0, D) that

maximizes the observed mutual information between historical and current data.

3.1 Optimality of Power Priors Conditional on δ

Assuming that the power parameter δ is fixed, the normalized power prior can be

justified as a minimizer of the expected loss. Since the Kullback-Leibler (KL) diver-

gence ([14]) is commonly used to measure the distance between two densities, here

we use the KL divergence as the loss function between the true posterior density of θ

and its estimated density. Recall the definition of the KL divergence,

K(g, f) =

∫
log

(
g(θ)

f(θ)

)
g(θ) d(θ),

where g and f are two densities with respect to Lebesgue measure.

If the historical data truly come from the population underlying the current

data, two samples should be pooled and hence the true posterior density of θ is

C1L(θ|D0)L(θ|D)π(θ), denoted by f1. Otherwise, if the historical data and current

data come from different populations so that they should not be pooled together

for inference, no historical data should be incorporated and hence the true posterior

density of θ is C0L(θ|D)π(θ), denoted by f0. Both C1 and C0 are normalization

constants. Now let g(θ) denote an arbitrary density function of θ and f(θ) denote

the true posterior distribution of θ. Then the expected loss of using the density g to
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estimate the true posterior distribution of θ can be written as

Lg ≡ E(K(g, f)) = Pr(f = f0)K(g, f0) + Pr(f = f1)K(g, f1).

Furthermore, δ can be interpreted as the probability that D0 follow the same

distribution as D, since δ is initiated to measure how much of historical data should

be used in analyzing current data’s distribution. It follows that

Lg = (1− δ)K(g, f0) + δK(g, f1).

It has been shown by Ibrahim et al. ([12]) that the unique minimizer for Lg is the

posterior distribution derived using the power prior.

π(θ|D0, D, δ) ∝ L(θ|D0)
δL(θ|D)π(θ). (13)

The π(θ|D0, D, δ) based on the normalized power prior is the same as that based on

the original approach proposed by Ibrahim and Chen ([11]). Therefore the normalized

power prior is optimal in a sense that its conditional posterior distribution of θ is

expected to be closest to the true posterior when using KL divergence as the loss

function.

In addition, π(θ|D0, D, δ) in (13) is a 100% efficient information processing rules

(IPR) in the sense that the ratio of the output to input information is equal to 1, as

showed by Ibrahim et al. ([12]).

Based on Zellner’s theory of IPR ([16] and [17]), a weighted version of the infor-

mation criterion function ∆[g(θ)] is considered in our scenario.

∆[g(θ)] = Output information− Input information

=

∫
g(θ) ln g(θ) dθ +

∫
g(θ) ln m(D,D0) dθ

−
{∫

g(θ) ln π(θ) dθ +

∫
g(θ) ln L(θ|D) dθ + δ

∫
g(θ) ln L(θ|D0) dθ

}
, (14)

where g(θ) denotes a proper posterior density π(θ|D,D0) in our setting.

Zellner defined a rule to be 100% efficient whenever ∆[g(θ)] = 0; that is, output

information equals input information. It turns out that the g∗(θ) = π(θ|D0, D, δ)

11



obtained using power prior yields ∆[g∗(θ)] = 0. To satisfy Zellner’s optimal IPR,

further results are derived below and those will contribute to next section’s discussion

on optimality of π(δ|D0, D).

Meanwhile, to achieve ∆[g∗(θ)] = 0, the m(D, D0) in (14) has to be in the form

of

m∗(D, D0) =

∫

Θ

L(θ|D)L(θ|D0)
δπ(θ) dθ.

This can be easily verified by substituting g(θ) with π(θ|D0, D, δ) in (14). Notice that

m∗(D, D0) depends on δ. However, it is not necessarily a proper probability density

function with respect to D and D0. The marginal density of (D, D0) given δ can be

derived by normalizing m∗(D, D0).

m(D,D0|δ) =

∫
Θ

L(θ|D)L(θ|D0)
δπ(θ) dθ∫ ∫ {∫

Θ
L(θ|D)L(θ|D0)δπ(θ)dθ

}
dDdD0

=

∫
Θ

L(θ|D)L(θ|D0)
δπ(θ) dθ∫ ∫

Θ
L(θ|D0)δπ(θ)dθ dD0

. (15)

If current data have not come into play in Zellner’s IPR, i.e., no
∫

g(θ) ln L(θ|D)dθ

in (14), we have

m∗(D0) =

∫

Θ

L(θ|D0)
δπ(θ) dθ.

Consequently, we obtain the marginal density of D0 given δ by normalizing m∗(D0).

m(D0|δ) =

∫
Θ

L(θ|D0)
δπ(θ) dθ∫ ∫

Θ
L(θ|D0)δπ(θ)dθ dD0

. (16)

Following (15) and (16), m(D|D0, δ) can be written as

m(D|D0, δ) =
m(D,D0|δ)
m(D0|δ) =

∫
Θ

L(θ|D)L(θ|D0)
δπ(θ) dθ∫

Θ
L(θ|D0)δπ(θ) dθ

. (17)

We will use (17) for our further investigation on optimality when δ is random.

3.2 Optimality of the Normalized Power Prior When δ Is
Random

Define ln[m(D|D0)/m(D)] as the observed mutual information between two arbitrary

samples D0 and D, where m(D) =
∫
Θ

L(θ|D)π(θ) dθ is the marginal density of D, and
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m(D|D0) is the density of D given that D0 is observed. This concept was first used

by Shannon ([15]) in his theory of mutual information to measure the dependency

between two variables X and Y . Shannon’s mutual information is defined by the

expected entropy difference,

ϑ(Y ∧X) ≡ H(Y )− Ex{H(Y |x)} = E(x,y)

{
ln

f(x|y)

f(x)

}
,

where H(Y ) is the entropy of f(y) and H(Y |x) is the entropy of the conditional

distribution f(y|x). Shannon’s mutual information is a measure of the expected

information about Y transmitted through a “noisy” channel, which is represented by

X. In our case, the observed mutual information ln m(D|D0)
m(D)

measures the amount of

information in historical data that is useful in interpreting the current data.

The true m(D|D0) and m(D) are learned through the sampling distribution of cur-

rent data as well as priors on model parameters. In addition, m(D|D0) also depends

on how historical data are incorporated, which can be recognized in the following

breakdown

ln m(D|D0) = ln
m(D|D0, δ)π(δ|D0)

π(δ|D0, D)
. (18)

Note that our discussion in this section is within the power prior framework defined

by (1). The power prior method with a fixed δ has been well justified as an optimal

method in Section 3.1. So here it is sufficient to show, among extensions to the case

in which δ is random, our proposed normalized power prior provides an optimal way

to handle the random δ.

As discussed in Section 2, we believe that historical data alone does not provide

additional information about δ, because δ is introduced to measure the compatibility

between the historical and current data. This implies that the information of δ in

π(δ|D0) should be the same as that in π(δ). Using Zellner’s definition ([16]),

the information of δ in π(δ|D0) = Eπ(δ|D,D0) ln π(δ|D0), and

the information of δ in π(δ) = Eπ(δ|D,D0) ln π(δ)

are hence interchangeable during the derivation.

13



Considering the above characteristics of the framework of power prior Bayesian

analysis, the observed mutual information between D and D0, which measures the in-

formation in historical data transmitted through a power prior model, can be written

as

$(D ∧D0) = ln
m(D|D0)

m(D)
= Eπ(δ|D,D0)

{
ln

m(D|D0)

m(D)

}

= Eπ(δ|D,D0)

{
ln

m(D|D0, δ)π(δ)

π(δ|D0, D)
− ln m(D)

}
,

where m(D|D0, δ) is defined in (17). We have the following result whose proof is

given in the Appendix.

Theorem 1: The density π(δ|D0, D) that maximizes $(D0 ∧D) is

π∗(δ|D0, D) ∝ π(δ)

∫
Θ

L(θ|D)L(θ|D0)
δπ(θ) dθ∫

Θ
L(θ|D0)δπ(θ) dθ

.

Note that π∗(δ|D0, D) is precisely the marginal posterior of δ based on the nor-

malized power prior (5). Theorem 1 states that the maximum expected information

of the current data through the “noise-channel” of historical data is achieved by using

the normalized power prior. Hence when the power parameter δ is random, the nor-

malized power prior reaches optimum when Shannon’s mutual information criterion

is of interest.

4 Behavioral Comparisons Between Two Power-

Prior Approaches

As mentioned in Section 2.1, for the original power prior, multiplying the likelihood

function L(θ|D0) by a positive constant k could change inferential results. However,

the results would not change for the normalized power prior approach.

Although the joint power priors of (θ, δ) are different, the conditional power prior

π(θ|D0, δ) in (1) and the conditional posterior π(θ|D0, D, δ) in (13) are the same for

both approaches. This feature indicates that the two approaches are equivalent for

a fixed δ, which is expected because both approaches are rooted in the same idea

14



presented by the definition of π(θ|D0, δ). This also implies that the differences in

results between two approaches come from their difference in the posterior marginal

distributions of δ. Therefore we may examine their differences in π(θ, δ|D0, D) by

comparing π(δ|D0, D) between two approaches.

The marginal posterior mode of δ represents the most likely value of δ given by the

historical and current data and it will be used to compare the posterior distributions

of the two approaches. Since π(δ|D0, D) is often asymmetric, the marginal posterior

mode of δ is an important statistic for studying the marginal posterior distribution

of δ.

To discuss how well the marginal posterior mode of δ responses to the compatibility

between the current and historical data, the notion of “compatibility statistic” is

defined in (10) for the exponential family with density (9).

Clearly, T (x) = (
∑n

j=1 t1(xj), ....,
∑n

j=1 tk(xj)) is a sufficient statistic for θ ([5]).

One underlying assumption of this sufficiency is that the sample size n is fixed when

the experiment is performed repeatedly. However, the current and historical data

often have different sample sizes. This then raises the question of how to measure

the difference between two samples with unequal sizes in terms of their information

about θ.

Using (10) as the compatibility statistic of a sample x = (x1, ...., xn) for θ, we note

that C(x) = y
n

= x̄ for the Bernoulli case, and C(x) = (x̄, σ̂2) for the normal case,

where σ̂2 = 1
n

∑n
i=1(xi − x̄)2 is the maximum likelihood estimator of σ2.

Applying the concept of the compatibility statistic on our investigation of power

priors, we have the following result whose proof is in the Appendix.

Theorem 2: Suppose that historical data D0 and current data D are two indepen-
dent random samples from an exponential family given in (9). Define the compati-
bility statistic for the historical data and current data are C(D0) and C(D) respec-
tively.Then the marginal posterior mode of δ is always 1 under the normalized power
prior approach, if

d

dδ
ln π(δ) + h1(D0, D, δ) + n0{C(D0)− C(D)}′h2(D0, D, δ) ≥ 0, (19)
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for all 0 ≤ δ ≤ 1, where

h1(D0, D, δ) =
n0

n

∫

Θ

ln L(θ|D){π(θ|D0, D, δ)− π(θ|D0, δ)}dθ,

and

h2(D0, D, δ) =

∫

Θ

w(θ){π(θ|D0, D, δ)− π(θ|D0, δ)}dθ.

The first term in (19) is always non-negative if the prior density of δ is a non-

decreasing function. The second term, h1(D0, D, δ), is always non-negative by using

the property of Kullback-Liebler divergence (see proof in the Appendix), and it is

0 if and only if π(θ|D0, D, δ) = π(θ|D0, δ) of which the current data, D, does not

contribute to any information about θ, given δ. This could be a rare case. The values

in third term depends on how closely the compatibility statistics C(D0) and C(D)

are to each other. In a special case that when C(D0)=C(D) (historical and current

data are fully compatible), the posterior mode of δ is always 1. This is rational since

when the historical data contribute necessary information into the current study, it

should be used as much as possible to achieve higher precision.

Although the probability of being fully compatible between D0 and D is theoret-

ically impossible in continuous distribution cases, as long as the difference between

C(D0) and C(D) is negligible from a practical point of view, it is appropriate to

view the historical and current samples as fully compatible, and hence the marginal

posterior mode of δ would be 1 or very close to 1 under the normalized power prior

approach.

On the other hand, in the original power prior approach, the posterior mode of δ

changes if we multiply the likelihood function by a constant. We have the following

result.

Theorem 3: Suppose that current data D are from a population with a density
function f(x|θ), and D0 is a related historical data set. Furthermore, suppose that
the prior π(δ) is a non-increasing function and the conditional posterior distribution
of θ on δ is proper for any δ. Then for any D0 and D, if

max
0≤δ≤1

∫
π(θ)f(D|θ)f(D0|θ)δ ln f(D0|θ)dθ∫

π(θ)f(D|θ)f(D0|θ)δdθ
< ∞, (20)
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then there exists at least one positive constant k0 such that π(δ|D0, D) has mode at
δ = 0 under the original power prior approach, where L(θ|x) = k0f(x|θ).

The assumption in (20) is valid in the case that all the integrals in the numerator

as well as denominator are finite positive values when δ is either 0 or 1. Usually

this condition satisfies when π(θ) is smooth. The proof of this result is also given

in the Appendix. For a normal or a Bernoulli population, our research reveals that

π(δ|D0, D) has mode at δ = 0 in many scenarios. This strong tendency of δ towards

0 in the original approach compromises the flexibility of using a random δ. Also,

the role of historical data is underestimated. In Section 5, we illustrate this in an

example.

5 Applying Normalized Power Prior to a Water-

Quality Data

When applying Bayesian analysis with power priors to water quality data, past in-

formation could be utilized. In this example, we use measurements of pH to evaluate

impairment of four sites in Virginia individually. Of interest in these data sets is

the determination of whether the pH values at a site indicate that the site violates a

(lower) standard of 6.0 more than 10% of the time. For each site, larger sample size

is associated with the historical and smaller with the current data. We compare the

normalized power prior approach with a traditional Bayesian approach using the ref-

erence prior, and the original power prior approach. Suppose that the measurements

of water quality follow a normal distribution, and for ease of comparison, the normal

model with a simple mean is considered. Note that there are many other things,

such as spatial and temporal features of the data and so on, may be considered in

this data, we only use it as an illustration to implement our normalized power prior

method.

In this example, pH data collected over a two-year or three-year period are treated

as the current data, while pH data collected over the previous nine years represents
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one single historical data set. The current data and historical data are plotted side

by side for each site in Figure 1. In the power prior approach, a violation is evaluated

using a Bayesian test of

H0 : L ≥ 6.0 (no impairment, don’t list),

H1 : L < 6.0 (impairment, list),

where L is the lower 10th percentile of the distribution for pH. Comparison of results

from different methods is presented in Table 1.

4

5

6

7

8

9

10

11

SITE

PH

A B C D

n=16 n=12

n=24

n=21

n0=62

n0=31

n0=84

n0=75

reference line

Figure 1: pH data collected at four stations. For each site, historical data are on the
left (circle) and current data on the right (diamond).

In Table 1, the summarization of the current and historical data are given. The

test results using the reference prior analysis (without incorporating historical data)

and both normalized and original power prior analyses (with reference prior as the

initial prior for (µ, σ2), i.e, a = 1 in Section 2.2.2) are presented. As shown in Theorem

3, the posterior mode of δ changes in the original power prior approach if we multiply

the likelihood function by a constant. Therefore, results from the original power prior

are calculated using three different likelihood functions: (1) use the joint density of
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Table 1: Comparison of the power prior method with alternative methods in evaluating
site impairment when one historical data set is available. In the table, n and n0 are
sample sizes, mean (s.d.) refers to sample mean (sample standard deviation), and
s.d. of L is the posterior standard deviation of L.

Site Current Historical Posterior probability of H0

data data (s.d. of L)
n mean n0 mean Reference Normalized Original power prior

(s.d.) (s.d.) prior power prior (1) (2) (3)
A 16 6.91 62 7.05 0.2074 0.6027 0.996 0.9982 0.2362

(0.90) (0.47) (0.27) (0.21) (0.01) (0.01) (0.26)
B 12 6.78 31 6.73 0.0627 0.0294 0.0252 0.024 0.0609

(1.03) (0.71) (0.34) (0.19) (0.03) (0.01) (0.33)
C 24 6.43 84 6.95 0.0003 0.0017 0.0003 0.4601 0.0002

(0.88) (0.49) (0.26) (0.24) (0.26) (0.18) (0.26)
D 21 7.87 75 7.88 0.8673 0.9831 0.8879 0.9199 0.8759

(1.11) (0.67) (0.36) (0.25) (0.34) (0.32) (0.35)

sufficient statistics, i.e. L(µ, σ2|D0) = f(x̄0, S
2
0 |µ, σ2), where x̄0 and S2

0 are the sample

mean and variance of historical data, respectively; (2) use the likelihood function

without constant, i.e., L(µ, σ2|D0) = 1
(σ2)n0/2 exp [−{n0(x̄0 − µ)2 + (n− 1)s2

0}/2σ2];

(3) use an arbitrary constant, L(µ, σ2|D0) = e−200(2π)n0/2f(x0|µ, σ2).

If the 0.05 significance level is used, the reference prior Bayesian test using the

reference prior would only indicate site C as impaired. Here we use the posterior

probability of H0 as equivalent to the p-value (see [1]) for testing a one-sided hy-

pothesis. Using historical data does lead to different conclusions for site B. The test

using either normalized or original power prior with density of sufficient statistics as

likelihood results in significance for sites B & C. In the case of site B, there are around

10% of historical observations below 6.0. Hence our prior opinion of the site is sug-

gestive of impairment. Less information is therefore required to declare impairment

relative to a reference prior and the result is a smaller p-value. However, if one use

the likelihood function in case (2) of the original power prior method, the test result is

ambiguous. Furthermore, if we use an arbitrary constant as in case (3) of the original

power prior situations, the marginal posterior modes of δ are always 0 and the results

can be different from the others. Hence, this example shows that inference results are
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sensitive to which likelihood form one would like to use in employing original power

prior approach.

Another notable advantage of the power prior method is that it improves the

estimation of L by using past information. This can be shown by the consistently

smaller posterior standard deviation of L with the power prior than with the reference

prior for all four sites.

6 Discussion

The power prior method provides a framework to incorporate data from alternative

sources, whose influence on inference is automatically adjusted according to its avail-

ability and discrepancy from current data. As consequence of using more data, the

power prior method has advantages in terms of power and estimation precision for

decisions with small sample sizes (see [9] for more discussion).

On one hand, the power prior method can be used to solve the problems with

small sample size. On the other hand, the power prior may be viewed as a general

class of informative priors in Bayesian inference. The power prior is elicited to take

into account the heterogeneity between historical and current data when we are not

able to describe or adequately model the heterogeneity explicitly. The power priors

are semi-automatic, in the sense that they take the form of raising the likelihood

function based on the historical data to a fractional power regardless of the specific

form of heterogeneity. The fact that we often do not have enough knowledge to model

such heterogeneity or to specify a fixed power makes this power prior with a random

power parameter δ especially attractive in practice.

The normalized power prior with a random power parameter is very flexible in

determining the role of historical data. The subjective information about the differ-

ence in two populations is incorporated by adjusting the hyperparameters in the prior

for δ; and the discrepancy between two samples is automatically taken into account

through a random δ.
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The normalized and original power prior approaches are essentially the same when

the power parameter is fixed. Therefore the normalized power prior shares all the

nice properties of the original one discussed in a series of papers by Ibrahim and

Chen ([11], [12]), such as the generality of this methodology, the optimality from the

aspect of information processing, the flexibility in expressing the uncertainty about

the power parameter, and the wide applications. In addition, the controlling role of

the power parameter in the normalized power prior approach is adjusted automati-

cally based on the compatibility between the historical and current samples, and also

based on their sample sizes. With the normalized power prior, the power parameter

behaves in a sensible and desirable way. However, the original power prior approach

underestimates the influence of historical data on the current study in general and

therefore little benefits are gained from incorporation of historical data. Furthermore,

empirical evidences show that the normalized power prior leads to smaller MSE for

estimated θ than the original one, when the divergency between historical and current

populations is small to moderate (see [7]).
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Appendix: Proofs of Theorems

Proof of Theorem 1:

It is known that

$(D0 ∧D) ≡ Eπ(δ|D,D0)

{
ln

m(D|D0, δ)π(δ)

π(δ|D0, D)
− ln m(D)

}

=

∫
π(δ|D0, D) ln

m(D|D0, δ)π(δ)

π(δ|D0, D)
dδ − ln m(D)

= −K

{
π(δ|D0, D),

m(D|D0, δ)π(δ)

M

}
+ ln M − ln m(D),

where M =
∫

m(D|D0, δ)π(δ) dδ is the normalizing constant of m(D|D0, δ)π(δ). Now

clearly −K
{

π∗(δ|D0, D), m(D|D0,δ)π(δ)
M

}
is maximized and equal to 0 when

π∗(δ|D0, D) =
m(D|D0, δ)π(δ)

M
∝ m(D|D0, δ)π(δ).

Combined with (17), it leads to

π∗(δ|D0, D) ∝ π(δ)

∫
Θ

L(θ|D)L(θ|D0)
δπ(θ) dθ∫

Θ
L(θ|D0)δπ(θ) dθ

.

Proof of Theorem 2:

Applying the property of the Kullback-Leibler divergence between two distributions,

K(f1, f2) =

∫
f1(x) ln

f1(x)

f2(x)
dx ≥ 0,
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with equality held if and only if f1(x) = f2(x), we conclude that

n

n0

h1(D0, D, δ) =

∫

Θ

ln L(θ|D){π(θ|D0, D, δ)− π(θ|D0, δ)}dθ

=

∫

Θ

ln

{
π(θ|D0, D, δ)

π(θ|D0, δ)
M(D0, D|δ)

}
{π(θ|D0, D, δ)− π(θ|D0, δ)}dθ

=

∫
ln

π(θ|D0, D, δ)

π(θ|D0, δ)
π(θ|D0, D, δ) dθ +

∫
ln

π(θ|D0, δ)

π(θ|D0, D, δ)
π(θ|D0, δ) dθ ≥ 0, (21)

with equality held if and only if π(θ|D0, D, δ) = π(θ|D0, δ). In (21), M(D0, D|δ) is

a marginal density that does not depend on θ and hence its related term is 0 since

both π(θ|D0, D, δ) and π(θ|D0, δ) are proper.

In order to show that the marginal posterior mode of δ is 1, it is sufficient to show

that the derivative of π(δ|D0, D) in (5) is non-negative. Using certain algebra, we

obtain

d

dδ
π(δ|D0, D) =

d

dδ
{ln π(δ)}π(δ|D0, D)

+ π(δ|D0, D)

∫

Θ

ln L(θ|D0){π(θ|D0, D, δ)− π(θ|D0, δ)}dθ. (22)

Since we are dealing with the exponential family with form (9) and (11), the

likelihood ratio

ln L(θ|D0) = ln h(D0) + n0{C(D0)
′w(θ) + τ(θ)}

=
{

lnh(D0)− n0

n
ln h(D)

}
+

n0

n
ln L(θ|D) + n0{C(D0)− C(D)}′w(θ). (23)

Combining (21) and (23) into (22), we prove Theorem 2 by showing the condition

(19).

Proof of Theorem 3:

Suppose that k is an arbitrary positive constant. We take the likelihood function of

the form L(θ|x) = kf(x|θ), then L(θ|D) = knf(D|θ) and L(θ|D0) = kn0f(D0|θ). For

the original power prior approach, the marginal posterior distribution of δ can be

rewritten as

π(δ|D0, D) ∝ π(δ)

∫
L(θ|D)L(θ|D0)

δπ(θ) dθ

∝ π(δ)

∫
f(D|θ)[kn0f(D0|θ)]δπ(θ) dθ. (24)

24



To prove that the marginal posterior mode of δ is 0, it is sufficient to show that

∂π(δ|D0,D)
∂δ

≤ 0 for any δ ∈ [0, 1].

The derivative of π(δ|D0, D) contains two parts. The first part is the derivative on

π(δ). If π(δ) is non-increasing as described in the theorem, this part is non-positive.

The second part is the derivative in the integral part in (24). This part is non-positive

is equivalent to

∫
f(D|θ)∂[kn0f(D0|θ)]δ

∂δ
π(θ) dθ ≤ 0

⇐⇒ kn0δ

∫
π(θ)f(D|θ)f(D0|θ)δ{n0 ln k + ln f(D0|θ)}dθ ≤ 0

⇐⇒
∫

π(θ)f(D|θ)f(D0|θ)δ ln f(D0|θ)dθ∫
π(θ)f(D|θ)f(D0|θ)δdθ

≤ n0 ln
1

k
, (25)

assuming that the derivative and integral are interchangeable.

If we take

k0 = exp

{
− 1

n0

max
0≤δ≤1

∫
π(θ)f(D|θ)f(D0|θ)δ ln f(D0|θ)dθ∫

π(θ)f(D|θ)f(D0|θ)δdθ

}
> 0,

then the sufficient condition in (25) for the marginal posterior mode of δ being 0 is

met for any δ.
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