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Abstract

In this paper, we introduce precedence-type tests for testing the hypothesis that two

distribution functions are equal, which is an extension of the precedence life-test first

proposed by Nelson (1963), when the two samples are progressively Type-II censored. The

null distributions of the test statistics are derived. Critical values for some combination of

sample sizes and censoring schemes for the proposed tests are presented. Then, we present

the exact power functions under the Lehmann alternative, and compare the exact power

as well as simulated power (under location-shift) of the proposed precedence test based

on nonparametric estimates of CDF with other precedence-type tests. We then examine

the power properties of the proposed test procedures through Monte Carlo simulations.

Two examples are presented to illustrate all the test procedures discussed here. Finally,

we make some concluding remarks.
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1 Introduction

In many reliability and survival analysis studies, it is common to compare two or more pop-

ulations. For example, while comparing a treatment with the control, one may be interested

in assessing whether the population corresponding to the treatment has a longer life than the

control population. Similarly, in reliability studies, one may be interested in inferring whether

the components manufactured under a new design last longer than those manufactured under

the standard design. In studies where experimental units are expensive, it is desirable to make

decisions based on early failures and use the remaining units for some other purpose. The

precedence test, first proposed by Nelson (1963), is a test for comparing two populations based

on the order of early failures. It is a distribution-free test which allows a simple and robust

comparison of two distribution functions. Suppose there are two failure time distributions FX

and FY and that we are interested in testing

H0 : FX = FY against H1 : FX > FY . (1.1)

Note that some specific alternatives such as the location-shift alternative and the Lehmann

alternative are subclasses of the general alternative considered in (1.1).

Various precedence type tests such as weighted precedence and maximal precedence tests have

been developed in the literature. For a detailed discussion, see Balakrishnan and Ng (2006).

These tests are developed for the situation when one of the samples, say, the Y-sample is

progressively censored. Balakrishnan, Tripathi and Kannan (2007) developed a precedence test

for the above hypothesis when both the samples are progressively censored. In this paper, they

derived the exact null-distribution of the proposed test statistic and provided tables giving

critical values and the corresponding significance levels for certain combination of sample sizes

and censoring schemes.

In this paper we present two new precedence type tests when both the samples are progressively

censored. The first one is a Wilcoxon-type Rank-sum precedence test, and the other is a

precedence test based on the Kaplan-Meier estimator of the survival function. In section 2,

we discuss the progressive censoring and placement statistics. In section 3, we derive the joint

probability mass function (pmf) of the placement statistics under the null hypothesis. In section

4, we present the precedence statistic and its null distribution as in Balakrishnan, Tripathi and
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Kannan (2007) along with two new precedence type statistics and give their null distributions.

We also present a table which gives the critical values with significance levels close to 5% under

various sampling schemes. We also derive the exact power function of the three tests. In

section 5, we derive the joint pmf of the placements under the Lehmann alternatives and use

it to compute exact power. We also compute the power of the three tests based on Monte

Carlo simulation and compare them under various sampling and censoring schemes. Finally, in

section 6 we draw some conclusions.

2 Progressive Type-II Right Censoring and Placement

Statistic

Assume that a random sample of size n1 is from distribution FX , another independent sample

of size n2 is from distribution FY , and that all these sample units are placed simultaneously

on a life-testing experiment. We use X1, X2, . . . , Xn1 to denote the sample from FX , and

Y1, Y2, . . . , Yn2 to denote the sample from FY . A natural null hypothesis of interest is that

the two failure time distributions are equal, and we are generally concerned with the alterna-

tive models where in one distribution is stochastically larger than the other; for example, the

alternative that FY is stochastically larger than FX .

In life-testing experiments, we may not always obtain complete information on failure times

for all experimental units. Data obtained from such experiments are called censored data.

The most common censoring schemes are Type-I and Type-II censoring, but the conventional

Type-I and Type-II censoring schemes do not have the flexibility of allowing removal of units

at points other than the terminal point of the experiment. For this reason, we consider a more

general censoring scheme called progressive Type-II right censoring which can be described as

follows: consider an experiment in which n units are placed on a life-test. At the time of the

first failure, R1 units are randomly removed from the remaining n− 1 surviving units. At the

second failure, R2 units from the remaining n− 2− R1 units are randomly removed. The test

continues until the mth failure at which time, all remaining Rm = n−m−R1−R2− . . .−Rm−1

units are removed. The R,
is are fixed prior to the study. For more details about the theory and

applications of progressive censoring, one can refer to Balakrishnan and Aggarwala (2000) and
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Balakrishnan (2007).

In the two-sample problem, we consider the case when the X- and Y -samples are pro-

gressively Type-II censored samples with censoring scheme R = (R1, R2, . . . , Rm1) and S =

(S1, S2, . . . , Sm2). We denote the progressively Type-II censored order statistics from the X-

sample and the Y -sample by X
(R)
1:m1:n1

≤ X
(R)
2:m1:n1

≤ . . . ≤ X(R)
m1:m1:n1

and Y
(S)

1:m2:n2
≤ Y

(S)
2:m2:n2

≤

. . . ≤ Y (S)
m2:m2:n2

, respectively.

The i-th placement from the X-sample is denoted by Ui, which is the number of observed

X-failures that fall between the (i− 1)-th and the i-th observed Y -failures, i = 1, . . . ,m2 + 1.

That is, for a fixed value of i, i = 1, . . . ,m2 + 1, Ui = number of X
(R)
j:m1:n1

such that Y
(S)
i−1:m2:n2

<

X
(R)
j:m1:n1

< Y
(S)
i:m2:n2

with Y
(S)

0:m2:n2
≡ 0 and Y

(S)
m2+1:m2:n2

≡ +∞.

For notational convenience, we further denote the total number of observed X-failures before

Y
(S)
l:m2:n2

as a partial sum U(l) =
l∑

i=1
Ui and the total number of failed and censored items from

the X-sample between the (l−1)-th and the l-th observed Y -failures as Wl =
U(l)∑

i=U(l−1)+1
(Ri+1).

Then the total number of observed failures and censored items from both X- and Y -samples

right after Y
(S)
l:m2:n2

is Vl =
l∑

k=1
(Wk +Sk +1). A schematic representation of a precedence life-test

with progressive censoring is presented in Figure 1. The quantities defined above will be used

in developing the three statistics in the next section.
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Figure 1: Schematic representation of a precedence life-test with progressive Type-II censoring
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3 Probability Mass Functions of the Placement Statis-

tics

Here, we present the joint pmf of the placement statistics U1, U2, · · · , Ul under the null hypoth-

esis.

From Balakrishnan, Tripathi and Kannan (2007), the joint probability mass function of (U1,

U2, . . ., Um2) is given by

Pr(U1 = u1, . . . , Um2 = um2) = AB
u1∑
i1=0

· · ·
um2∑
im2=0

∏m2+1
j=1 γij ,uj(Ru(j−1)+1, . . . , Ru(j)

)∏m2−1
j=0 (N − T(j) − j)

where

γij ,uj(Ru(j−1)+1, . . . , Ru(j)
) =

(−1)ij[
ij∏
g=1

uj−ij+g∑
k=uj−ij+1

(Ru(j−1)+k + 1)

] [
uj−ij∏
g=1

uj−ij∑
k=g

(Ru(j−1)+k + 1)

] ,

T(0) = 0, T(j) =
j∑

k=1

Tk, j = 1, 2, . . . ,

Tk = Sk +

u(k+1)−ik+1∑
jk=u(k)−ik+1

Rjk + (ik + uk+1 − ik+1), k = 1, . . . ,m2,

N = m2 +
m2∑
i=1

Ti,

A = n1(n1 +R1 − 1) · · · (n1 −R1 − · · · −Rm1−1 −m1 + 1),

B = n2(n2 + S1 − 1) · · · (n2 − S1 − · · · − Sm2−1 −m2 + 1).

We now use this joint pmf in developing the three precedence type tests.

4 Proposed Precedence-type Tests

4.1 Precedence Test

The precedence test statistic P(m2) is simply defined as the number of observed failures from the

X-sample that precede the r-th observed failure from the Y -sample, i.e., P(m2) = U(m2) =
m2∑
i=1

Ui.

Large values of P(m2) lead to the rejection of H0 and in favor of H1 in (1.1). The probability
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mass function of the precedence test statistic P(m2) under the null hypothesis in (1.1) is

Pr(P(m2) = p|FX = FY ) =
m1∑

ui(i=1,2,...,m2)=0
u(m2)=p

Pr(U1 = u1, U2 = U2, . . . , Um2 = um2 |FX = FY ). (4.1)

The p-value of the test can be computed from this formula. For example, from Figure 1, with

n1 = n2 = 10, m1 = 6, m2 = 4, R = (1, 1, 0, 1, 0, 1), S = (4, 0, 0, 2) and U1 = 0, U2 = 3, U3 = 2,

U4 = 1, the precedence test statistic takes on the value P(4) =
4∑
i=1

Ui = 0 + 3 + 2 + 1 = 6 with

p-value 0.24255.

For a fixed level of significance α, the critical region for the precedence test will be {p, p +

1, . . . ,m1}, where

α = Pr(P(m2) ≥ p|FX = FY ). (4.2)

The critical values s and the exact level of significance α (as close as possible to 5%) for different

choices of the sample sizes n1 and n2, effective sample sizes m1 and m2 and censoring schemes

R and S are presented in Table 1.

4.2 Wilcoxon-type Rank-sum Precedence Test

The Wilcoxon rank-sum test is a well-known nonparametric procedure for testing the hypotheses

in (1.1) based on complete samples. For testing the hypotheses in (1.1), if complete samples

of size n1 and n2 were available from FX and FY , respectively, one can use the standard

Wilcoxon’s rank-sum statistic, proposed by Wilcoxon (1945), which is simply the sum of ranks

of X-observations in the combined sample.

Ng and Balakrishnan (2002) proposed the Wilcoxon-type rank-sum precedence tests for

testing the hypotheses in (1.1) when the Y -sample is Type-II censored. This test is a variation

of the precedence test and a generalization of the Wilcoxon rank-sum test. In order to test

the hypotheses in (1.1), one could use the sum of the ranks of those failures. The Wilcoxon’s

rank-sum test statistic is computed under the assumption that all the censored items are failed

instantaneously after the censoring occurs. For example, suppose Y
(S)
i−1:m2:n2

< X
(R)
j:m1:n1

<

Y
(S)
i:m2:n2

, the Rj censored items are assumed to fail between X
(R)
j:m1:n1

and Y
(S)
i:m2:n2

. The test

statistic in this case would be the sum of ranks of X-observations in the combined sample
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Table 1: Near 5% critical values (c.v) and exact levels of significance (l.o.s.) for P(m2), TW,m2

and Q̄(m2)

P(m2) TW,m2 Q̄(m2)

Setting n1 n2 m1 m2 R S c.v. l.o.s. c.v. l.o.s. c.v. l.o.s.

1 10 10 5 5 (5, 0, 0, 0, 0) (5, 0, 0, 0, 0) 5 0.500 75 0.045 5 0.136

2 10 10 5 5 (3, 2, 0, 0, 0) (3, 2, 0, 0, 0) 5 0.500 73 0.053 5 0.134

3 10 10 5 5 (1, 1, 1, 1, 1) (1, 1, 1, 1, 1) 5 0.500 71 0.048 5 0.167

4 10 10 5 5 (0, 3, 0, 0, 2) (0, 3, 0, 0, 2) 5 0.500 74 0.047 5 0.178

5 10 10 5 5 (3, 1, 1, 0, 0) (3, 2, 0, 0, 0) 5 0.523 73 0.049 5 0.075

6 10 10 5 5 (3, 0, 0, 0, 2) (1, 1, 1, 0, 2) 5 0.545 73 0.047 5 0.081

7 10 10 5 5 (1, 1, 1, 0, 2) (3, 0, 0, 0, 2) 5 0.455 78 0.050 5 0.148

8 10 10 5 5 (0, 3, 0, 0, 2) (1, 1, 1, 1, 1) 5 0.566 73 0.053 5 0.092

9 10 10 5 3 (3, 1, 1, 0, 0) (3, 1, 3) 5 0.050 75 0.061 5 0.030

10 10 10 5 3 (0, 3, 0, 0, 2) (3, 2, 2) 5 0.241 83 0.051 5 0.073

11 10 10 5 3 (3, 0, 0, 0, 2) (2, 2, 3) 5 0.150 79 0.046 5 0.068

12 10 10 5 3 (5, 0, 0, 0, 0) (5, 0, 2) 5 0.075 76 0.046 5 0.041

13 15 10 5 5 (10, 0, 0, 0, 0) (5, 0, 0, 0, 0) 5 0.510 140 0.055 4 0.047

14 15 10 5 5 (0, 0, 10, 0, 0) (0, 0, 5, 0, 0) 5 0.539 129 0.042 4 0.066

15 15 10 5 5 (2, 8, 0, 0, 0) (1, 4, 0, 0, 0) 5 0.522 135 0.049 4 0.062

16 15 10 5 5 (2, 2, 2, 2, 2) (1, 1, 1, 1, 1) 5 0.707 132 0.048 4 0.137

17 15 10 7 5 (8, 0, 0, 0, 0, 0, 0) (5, 0, 0, 0, 0) 7 0.409 151 0.048 6 0.037

18 15 10 7 5 (2, 2, 2, 2, 0, 0, 0) (3, 1, 1, 0, 0) 7 0.430 146 0.049 6 0.037

19 15 10 7 5 (2, 0, 2, 0, 2, 0, 2) (2, 0, 2, 0, 1) 7 0.407 147 0.048 6 0.082

20 15 10 7 5 (2, 1, 1, 1, 1, 1, 1) (1, 1, 1, 1, 1) 7 0.419 148 0.053 6 0.073

21 15 15 7 5 (8, 0, 0, 0, 0, 0, 0) (10, 0, 0, 0, 0) 7 0.400 180 0.051 7 0.027

22 15 15 7 5 (2, 2, 2, 2, 0, 0, 0) (6, 2, 2, 0, 0) 7 0.394 185 0.050 7 0.029

23 15 15 7 5 (2, 0, 2, 0, 2, 0, 2) (4, 0, 4, 0, 2) 7 0.347 194 0.051 7 0.043

24 15 15 7 5 (2, 1, 1, 1, 1, 1, 1) (2, 2, 2, 2, 2) 7 0.216 183 0.046 7 0.053

which is given by

TW,m2 =
1

2

m2+1∑
k=1

Wk(Wk + 1) +
m2+1∑
k=2

WkVk−1.

Small values of TW,m2 lead to the rejection of H0 and in favor of H1 in (1.1). The probability

mass function of the Wilcoxon-type rank-sum precedence test statistic TW,m2 under the null

hypothesis in (1.1) is

Pr(TW,m2 = w|FX = FY ) =
m1∑

ui(i=1,2,...,m2)=0

TW,m2
=w

Pr(U1 = u1, U2 = U2, . . . , Um2 = um2|FX = FY ). (4.3)

The p-value of the test can be computed from this formula. For instance, in Figure 1, we have

U(1) = 0, U(2) = 3, U(3) = 5, U(4) = 6, U(5) = 6, W1 = 0, W2 = 5, W3 = 3, W4 = 2, W5 = 0,

V1 = 5, V2 = 11, V3 = 15, V4 = 20, the ranks of the observed failures and the censored items in

the combined sample are in the parenthesis, the test statistic is given by

TW,4 = 6 + 7 + 8 + 9 + 10 + 12 + 13 + 14 + 16 + 17
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=
1

2
[0(0 + 1) + 5(5 + 1) + 3(3 + 1) + 2(2 + 1) + 0(0 + 1)]

+ [5(5) + 3(11) + 2(15) + 0(20)]

=
48

2
+ 88 = 112,

and the p-value is 0.3846.

For a fixed level of significance α, the critical region for the Wilcoxon-type rank-sum prece-

dence test will be {n1(n1 + 1)/2, . . . , w}, where

α = Pr(TW,m2 ≤ w|FX = FY ). (4.4)

The critical values w and the exact level of significance α (as close as possible to 5%) for

different choices of the sample sizes n1 and n2, effective sample sizes m1 and m2 and censoring

schemes R and S are presented in Table 1.

4.3 Precedence Test Based on the Kaplan-Meier Estimator

The proposed precedence-type test is based on the Kaplan-Meier nonparametric estimator

(Kaplan and Meier, 1958) of CDF for data with observations reported as exact failure times.

First, we will review the Kaplan-Meier nonparametric estimator of CDF based on a Type-II

progressively censored sample and a conventional Type-II censored sample as a special case.

Refer to the Type-II progressive censoring experimental scheme on the X-sample, we ob-

served exact failures at x1:m1:n1 , x2:m1:n1 , . . ., xm1:m1:n1 . The Kaplan-Meier nonparametric esti-

mate (also called product-limit estimates) of FX(xj:m1:n1) is given by

F̂X(xj:m1:n1) = 1−
j∏

k=1

(
1− 1

n∗xk

)
, (4.5)

j = 1, . . . ,m1, where n∗xj is the risk set at xj:m1:n1 with n∗xj = n1 − j + 1 −
j−1∑
k=0

Rk. Similarly,

the Kaplan-Meier nonparametric estimate of FY (yi:m2:n2) is given by

F̂Y (yi:m2:n2) = 1−
i∏

k=1

(
1− 1

n∗yk

)
, (4.6)

i = 1, . . . ,m2, where n∗yi is the risk set at yi:m1:n1 with n∗yi = n2 − i+ 1−
i−1∑
k=0

Sk.
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Following the same idea of the precedence-type test procedures, let U1 denote the number

of observed X-failures before Y1:m2:n2 , Ui the number of observed X-failures between Yi−1:m2:n2

and Yi:m2:n2 for i = 2, · · · ,m1, and Qi the number of observed X-failures among the Ui that are

between Yi−1:m2:n2 and Yi:m2:n2 for which F̂X(xj:m1:n1) > F̂Y (yi:m2:n2) for i = 1, · · · ,m2. If the

information after the termination of the experiment at Ym2:m2:n2 is not taken into account, it

would be reasonable to consider the statistic Q(m2) =
m2∑
i=1

Qi which can be expressed in terms of

(U1, · · · , Um2) as

Q(m2)(U) =
m2∑
i=1

U(i)∑
j=U(i−1)+1

I[F̂X(xj:m1:n1) > F̂Y (yi:m2:n2)],

By assuming that all the remaining unobserved X-failures will fail before the censored items

from the Y -sample at Ym2:m2:n2 , we obtain the statistic

Q∗(m2)(U) =
m2+1∑
i=1

U(i)∑
j=U(i−1)+1

I[F̂X(xj:m1:n1) > F̂Y (yi:m2:n2)],

where ym2+1:m2:n2 is taken as the (m2 + 1)-th progressively Type-II censored order statis-

tic ym2+1:m2+1:n2 with progressive censoring scheme

(
S1, · · · , Sm2−1, 0, n2 −m2 − 1−

m2−1∑
i=1

Si

)
.

Then, the test statistic we propose is the average of the two statistics given by

Q̄(m2)(U) =
m2∑
i=1

U(i)∑
j=U(i−1)+1

I[F̂X(xj:m1:n1) > F̂Y (yi:m2:n2)]

+
1

2

m1∑
j=U(m2)+1

I[F̂X(xj:m1:n1) > F̂Y (ym2+1:m2:n2)],

with large values of Q̄(m2) leading to the rejection of H0 and in favor of H1 in (1.1). The

probability mass function of Q̄(m2)(U) under the null hypothesis in (1.1) is

Pr(Q̄(m2)(U) = q|FX = FY ) =
m1∑

ui(i=1,2,...,m2)=0

Q̄(m2)(U)=q

Pr(U1 = u1, U2 = U2, . . . , Um2 = um2|FX = FY ).(4.7)

The p-value of the test can be computed from this formula. For example, from Figure 1,

the Kaplan-Meier estimates of the CDF based on the progressively Type-II censored X- and

Y -samples are presented in Table 2, from which we observe Q1 = 0, Q2 = 1, Q3 = 2, Q4 =

1, Q5 = 0 with which we obtain Q(4) = Q∗(4) = 4 and the proposed test statistic Q̄(4) = 4. The

corresponding p-value is 0.2756.
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Table 2: Kaplan–Meier Estimates of the CDF based on the progressively Type-II censored X-

and Y -samples in Figure 1.
tj n∗xj 1/n∗xj 1− (1/n∗xj) F̂X(tj)

X1:6:10 10 0.100 0.900 0.10000

X2:6:10 8 0.125 0.875 0.21250

X3:6:10 6 0.167 0.833 0.34375

X4:6:10 5 0.200 0.800 0.47500

X5:6:10 3 0.333 0.667 0.35000

X6:6:10 2 0.500 0.500 0.82500

ti n∗i 1/n∗i 1− (1/n∗i ) F̂Y (ti)

Y1:4:10 10 0.100 0.900 0.10000

Y2:4:10 5 0.200 0.800 0.28000

Y3:4:10 4 0.250 0.750 0.46000

Y4:4:10 3 0.333 0.667 0.64000

Y5:4:10 2 0.500 0.500 0.82000

For a fixed level of significance α, the critical region for the precedence test based on will

be {q, q + 1 . . . ,m1}, where

α = Pr(Q̄(m2) ≥ q|FX = FY ). (4.8)

The critical values q and the exact level of significance α (as close as possible to 5%) for different

choices of the sample sizes n1 and n2, effective sample sizes m1 and m2 and censoring schemes

R and S are presented in Table 1.

It can be seen from Table 1 that for the schemes selected in the table, the support of the

distribution of the test statistic P(m2) is small and hence there is a limited choice for the level of

significance, and the values are much larger than the nominal level of significance 0.05. Of the

three statistics considered, the test based on Tw,m2 has the closest agreement with the nominal

level of 0.05. followed by the test based on Qm2 .

5 Exact Power Under Lehmann Alternative

There are two ways to define the Lehmann alternative.

1. The Lehmann alternative H1 : (1−FX)δ = (1−FY ) for some δ, which was first proposed
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by Lehmann (1953), is a subclass of the alternative H1 : FX > FY when δ ∈ (0, 1) (see

Gibbons and Chakraborti, 2003, Sect. 6.1).

Table 3: Power comparison under Lehmann alternative for P(m2), TW,m2 and Q̄(m2) with 1/δ =

2(1)5

Exact l.o.s. δ = 1/2 δ = 1/3 δ = 1/4 δ = 1/5

Setting P(m2) TW,m2 Q̄m2 P(m2) TW,m2 Q̄m2 P(m2) TW,m2 Q̄m2 P(m2) TW,m2 Q̄m2 P(m2) TW,m2 Q̄m2

1 0.500 0.045 0.136 0.814 0.168 0.402 0.921 0.293 0.578 0.962 0.396 0.685 0.835 0.773 0.790

2 0.500 0.053 0.134 0.808 0.194 0.400 0.916 0.328 0.580 0.958 0.435 0.688 0.837 0.819 0.799

3 0.500 0.048 0.167 0.823 0.209 0.452 0.928 0.371 0.623 0.967 0.497 0.721 0.943 0.851 0.932

4 0.500 0.047 0.178 0.837 0.208 0.464 0.939 0.372 0.631 0.973 0.501 0.725 0.967 0.838 0.955

5 0.523 0.049 0.075 0.821 0.169 0.278 0.922 0.285 0.451 0.962 0.383 0.574 0.851 0.818 0.755

6 0.545 0.047 0.081 0.811 0.212 0.422 0.927 0.378 0.595 0.968 0.507 0.698 0.958 0.825 0.940

7 0.455 0.050 0.148 0.865 0.189 0.277 0.952 0.316 0.433 0.980 0.414 0.540 0.974 0.870 0.907

8 0.566 0.053 0.092 0.869 0.227 0.306 0.952 0.395 0.469 0.980 0.523 0.576 0.973 0.854 0.905

9 0.050 0.061 0.030 0.208 0.196 0.150 0.372 0.327 0.292 0.505 0.434 0.416 0.474 0.855 0.473

10 0.241 0.051 0.073 0.560 0.205 0.258 0.736 0.352 0.414 0.832 0.466 0.526 0.895 0.876 0.852

11 0.150 0.046 0.068 0.441 0.204 0.264 0.639 0.362 0.438 0.759 0.487 0.563 0.848 0.815 0.834

12 0.075 0.046 0.041 0.274 0.169 0.188 0.455 0.294 0.344 0.589 0.399 0.472 0.490 0.766 0.487

13 0.510 0.055 0.047 0.819 0.189 0.189 0.923 0.320 0.324 0.963 0.424 0.430 0.840 0.794 0.696

14 0.539 0.042 0.066 0.808 0.176 0.239 0.907 0.315 0.392 0.950 0.430 0.505 0.862 0.725 0.788

15 0.522 0.049 0.062 0.816 0.147 0.237 0.918 0.269 0.396 0.959 0.374 0.514 0.849 0.763 0.744

16 0.707 0.048 0.137 0.928 0.192 0.385 0.976 0.332 0.548 0.991 0.442 0.649 0.991 0.885 0.961

17 0.409 0.048 0.037 0.764 0.194 0.192 0.896 0.334 0.348 0.949 0.444 0.467 0.778 0.849 0.667

18 0.430 0.049 0.037 0.764 0.188 0.193 0.891 0.319 0.350 0.945 0.424 0.469 0.799 0.890 0.723

19 0.407 0.048 0.082 0.873 0.169 0.218 0.955 0.318 0.378 0.981 0.437 0.496 0.973 0.872 0.879

20 0.419 0.053 0.073 0.780 0.254 0.299 0.908 0.441 0.479 0.957 0.575 0.597 0.923 0.926 0.899

21 0.400 0.051 0.027 0.754 0.192 0.152 0.889 0.327 0.289 0.944 0.432 0.399 0.771 0.902 0.665

22 0.394 0.050 0.029 0.726 0.184 0.172 0.864 0.312 0.332 0.927 0.415 0.459 0.776 0.949 0.695

23 0.347 0.051 0.043 0.732 0.246 0.219 0.884 0.432 0.387 0.944 0.568 0.509 0.943 0.967 0.915

24 0.216 0.046 0.053 0.581 0.248 0.268 0.780 0.454 0.466 0.879 0.604 0.601 0.858 0.959 0.852

2. The Lehmann alternative H1 : [FX ]γ = FY for some γ, which was first proposed by

Lehmann (1953). We can see that H1 : [FX ]γ = FY is a subclass of the alternative

H1 : FX > FY when γ > 1.

Joint Non-null Distribution of the Placement Statistics Under the Lehmann

Alternative (1):

The joint pmf of the placement statistics U1, U2, · · · , Ul under the Lehmann alternative

hypothesis H1 : 1− FY (x) = (1− FX(x))δ, δ ≤ 1 is given by

Pr(U1 = u1, . . . , Ul = ul) =
AB

C

u1∑
i1=0

· · ·
ul∑
il=0

l+1∏
j=1

γij ,uj(Ru(j−1)+1, . . . , Ru(j)
)

where
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C =
m2−1∏
j=0

(N∗ − T(j) − j)

with T(j) = 0 if j = 0, and T(j) = T1 + T2 + · · ·+ Tj otherwise, and N∗ = T1 + T2 + · · ·+

Tm2 +m2.

The joint non-null pmf of U1, U2, · · · , Ul under the Lehmann alternative (2): H1 : [FX ]γ =

FY for γ > 1, can be derived similarly.

Table 4: Power comparison under Lehmann alternative for P(m2), TW,m2 and Q̄(m2) with γ =

2(1)5

Exact l.o.s. γ = 2 γ = 3 γ = 4 γ = 5

Setting P(m2) TW,m2 Q̄m2 P(m2) TW,m2 Q̄m2 P(m2) TW,m2 Q̄m2 P(m2) TW,m2 Q̄m2 P(m2) TW,m2 Q̄m2

1 0.500 0.045 0.136 0.668 0.283 0.456 0.751 0.514 0.638 0.802 0.672 0.734 0.835 0.773 0.790

2 0.500 0.053 0.134 0.670 0.326 0.465 0.754 0.572 0.649 0.804 0.727 0.744 0.837 0.819 0.799

3 0.500 0.048 0.167 0.764 0.334 0.596 0.868 0.600 0.805 0.917 0.761 0.891 0.943 0.851 0.932

4 0.500 0.047 0.178 0.796 0.321 0.627 0.901 0.582 0.837 0.946 0.744 0.919 0.967 0.838 0.955

5 0.523 0.049 0.075 0.691 0.308 0.351 0.773 0.557 0.557 0.820 0.720 0.680 0.851 0.818 0.755

6 0.545 0.047 0.081 0.762 0.317 0.572 0.881 0.571 0.797 0.933 0.731 0.895 0.958 0.825 0.940

7 0.455 0.050 0.148 0.825 0.342 0.440 0.919 0.615 0.704 0.956 0.779 0.839 0.974 0.870 0.907

8 0.566 0.053 0.092 0.829 0.349 0.461 0.919 0.612 0.715 0.956 0.767 0.842 0.973 0.854 0.905

9 0.050 0.061 0.030 0.180 0.352 0.163 0.301 0.609 0.294 0.398 0.765 0.395 0.474 0.855 0.473

10 0.241 0.051 0.073 0.562 0.341 0.404 0.743 0.604 0.661 0.840 0.763 0.801 0.895 0.876 0.852

11 0.150 0.046 0.068 0.451 0.311 0.367 0.655 0.561 0.608 0.775 0.720 0.751 0.848 0.815 0.834

12 0.075 0.046 0.041 0.211 0.279 0.188 0.328 0.508 0.317 0.419 0.664 0.414 0.490 0.766 0.487

13 0.510 0.055 0.047 0.676 0.313 0.269 0.758 0.547 0.471 0.807 0.699 0.607 0.840 0.794 0.696

14 0.539 0.042 0.066 0.708 0.281 0.369 0.787 0.502 0.596 0.832 0.640 0.719 0.862 0.725 0.788

15 0.522 0.049 0.062 0.689 0.302 0.332 0.770 0.529 0.543 0.817 0.673 0.668 0.849 0.763 0.744

16 0.707 0.048 0.137 0.915 0.353 0.596 0.966 0.636 0.834 0.983 0.799 0.924 0.991 0.885 0.961

17 0.409 0.048 0.037 0.582 0.324 0.241 0.677 0.589 0.441 0.736 0.754 0.577 0.778 0.849 0.667

18 0.430 0.049 0.037 0.608 0.352 0.273 0.702 0.636 0.499 0.760 0.802 0.639 0.799 0.890 0.723

19 0.407 0.048 0.082 0.824 0.295 0.353 0.916 0.589 0.637 0.955 0.772 0.796 0.973 0.872 0.879

20 0.419 0.053 0.073 0.702 0.400 0.441 0.827 0.700 0.707 0.889 0.854 0.836 0.923 0.926 0.899

21 0.400 0.051 0.027 0.573 0.381 0.228 0.668 0.667 0.435 0.729 0.823 0.575 0.771 0.902 0.665

22 0.394 0.050 0.029 0.573 0.428 0.260 0.671 0.739 0.478 0.733 0.887 0.613 0.776 0.949 0.695

23 0.347 0.051 0.043 0.685 0.466 0.402 0.837 0.786 0.703 0.907 0.918 0.848 0.943 0.967 0.915

24 0.216 0.046 0.053 0.522 0.445 0.399 0.700 0.766 0.655 0.800 0.905 0.784 0.858 0.959 0.852

6 Discussion

Table 3 provides a comparison of simulated power for the three tests P , T , and Q̄ each with

the level of significance listed under the column “Exact l. o. s”. The power is computed under

the Lehmann alternative (1 − FX)δ = 1 − FX for δ = 1/2, 1/3, 1/4, and 1/5 for the schemes

described in Table 1. We generated 10,000,000 sets of data in order to obtain the estimated
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rejection rates under Lehmann alternatives with 1/δ = 2(1)5. It can be seen that the power

of each test increases as the value of δ gets smaller. As δ gets smaller, the shapes of the cdf

under the null and the alternative hypotheses deviate substantially from each other, and the

three tests can distinguish well between the null and the alternative cdf’s. The test based on

P has high power even for large δ. The powers of T and Q̄ tests are small for large δ and

increase as δ decreases. For smaller sample sizes n1 and n2, the power of the P test dominates

the powers of the other two tests, it may be because this test has much larger l.o.s. and hence

a larger rejection region as compared to the other two tests. For n1,m1 and n2,m2 both large

and smaller δ, the power of T test is higher than those of the other two tests.

Table 4 provides simulated power of the three tests P , T , and Q̄ under the same sampling and

censoring schemes as in Table 3 for the Lehmann alternatives H1 : (FX)γ = FY for various

values of γ. We generated 10,000,000 sets of data in order to obtain the estimated rejection

rates under Lehmann alternatives with γ = 2(1)5. A similar behavior of the power function

is seen from this table. The P test has higher power for smaller sample sizes and for smaller

values of γ. As the sample sizes increase, the power of the T test dominates the power of the

other two tests.
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