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ABSTRACT 

Eukaryotic gene expression must be coordinated for the proper functioning of 
biological processes. This coordination can be achieved both at the transcriptional 
and post-transcriptional levels. In both cases, regulatory sequences placed at 
either promoter regions or on UTRs function as markers recognized by regulators 
that can then activate or repress different groups of genes according to necessity. 
While regulatory sequences involved in transcription are quite well documented, 
there is a lack of information on sequence elements involved in post-
transcriptional regulation. We used a statistical over-representation method to 
identify novel regulatory elements located on UTRs. An exhaustive search 
approach was used to calculate the frequency of all possible n-mers (short 
nucleotide sequences) in 16,160 human genes of NCBI RefSeq sequences and to 
identify any peculiar usage of n-mers on UTRs. After a stringent filtering process, 
we identified circa 4,000 highly over-represented n-mers on UTRs. We provide 
evidence that these n-mers are potentially involved in regulatory functions. 
Identified n-mers overlap with previously identified binding sites for HuR and 
Tia1 and, AU-rich and GU-rich sequences. We determined also that over-
represented n-mers are particularly enriched in a group of 159 genes directly 
involved in tumor formation. Finally, a method to cluster n-mer groups allowed 
the identification of putative gene networks. 
 
 
JEL Code:  C10 
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INTRODUCTION 

Post-transcriptional regulation plays a very important role in many biological processes such as 

embryogenesis, stem cell proliferation, spermatogenesis, sex determination, neurogenesis, 

erythropoiesis, etc (reviewed in Kuersten and Goodwin, 2003 (1)). The impact it has on the final 

protein outcome of a cell can be appreciated through studies that compare the steady state levels 

of mRNAs (transcriptome) and proteins (proteome) in the same cell population (2-6). In the case 

of some genes, substantial differences were found with accumulated levels of the protein and its 

corresponding message varying by as much as 30-fold (2). Unfortunately, despite its importance, 

post-transcriptional regulation continues to be a poorly understood subject. 

There are essentially four cytoplasmic processes that can be modulated in eukaryotic cells, 

ultimately leading to changes in protein production: RNA transport/localization, 

degradation/stability and RNA translation. Most of the elements necessary for proper regulation 

of the former three processes are located in the 5’ and 3’ untranslated regions (UTR) of mRNAs. 

UTR sequences involved in regulation can be grouped into different categories. The most 

common are short sequence motifs that function as binding sites for RNA binding proteins 

and/or non-coding RNAs. Repetitive sequence elements, such as CUG repeats, have also been 

documented to function as a target of RNA binding proteins. Finally, some UTR sequences 

interfere with gene expression independently of the action of a regulator; their structural features 

pose a barrier, potentially influencing the translation of mRNAs. This is the case of moderately 

stable secondary structures that are typically located in the 5’ UTR relatively close to the AUG 

start codon (reviewed in Mignone et al., 2002 (7)). 

There are several examples of UTR mediated regulation in connection to health related issues. 

For instance, Iron Regulatory Protein (IRP) controls the expression of several mRNAs (ferritin, 
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transferrin, mitochondrial aconitase, etc) that have a regulatory element named iron responsive 

element (IRE). IRPs bind to IREs in situations of iron deprivation and inhibit mRNA translation. 

Mutations that affect the IRE can lead to human disease such as hereditary hyperferritinemia-

cataract (reviewed in Rouault, 2006 (8)). Another good example is the amyloid-β precurson 

protein (APP) implicated in Alzheimer’s and Down syndrome. Translation of APP mRNA is up-

regulated by interleukin-1 through 5’ UTR sequences (reviewed in Pickering and Willis, 2005 

(9)). UTR-mediated regulation is also associated with cancer. For instance, approximately 10% 

of all mRNAs have atypically long 5’ UTRs, in many cases containing a variety of regulatory 

elements. 75% of genes with long 5’ UTRs encode oncogenes and genes implicated in cell 

growth, death and proliferation (9). 

Only a small fraction of the regulatory elements located on human UTRs are currently known. In 

most cases, the described elements were derived from studies of individual genes and their 

specific regulators. Unfortunately, current engines that predict putative UTR regulatory elements 

do not produce the expected results in high throughput searches; there are not sufficient labeled 

instances to allow the employment of machine learning techniques (for example, neural network 

or Markov models) to construct predictive models. Current UTR search/prediction tools are very 

rudimentary and cannot be compared to the sophisticated ones that predict transcription factor 

binding sites (e.g. TRANSFAC) (10). Therefore, novel alternative computational approaches that 

do not rely exclusively on previously described elements are needed. 

Recently, a computational method was used to identify short sequence motifs (named pyknons) 

that are over-represented in the genome. After analyzing the distribution of pyknons, it was 

observed that there is a bias towards UTRs (11). Pyknons can constitute a valuable resource in 

terms of providing new lists of putative regulatory elements. Another recent study used the 
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power of evolutionary biology to map novel putative regulatory sequences via sequence 

alignment on promoters and 3’ UTRs. This study successfully predicted new miRNA target 

sequences (12) and constitutes another useful source for the identification of UTR regulatory 

elements. Finally, an over representation method was used recently to predict target sites of 

miRNAs on 3’ UTR of human genes (13). Our work goes a step beyond these analyses by using 

a method that specifically calculates over-represented sequences on human UTRs. Our 

approaches led to the identification of approximately 4000 highly over-represented sequence 

elements (n-mers). In agreement with the idea that these n-mers potentially function as 

regulatory elements, comparisons between them and mapped binding sites for the RNA binding 

proteins HuR and Tia1 and between them and AU rich sequences (ARE) and GU-Rich elements 

(GRE) showed statistically significant overlap. Very importantly, a subset of 5’ UTR n-mers was 

tested in vivo leading to the identification of a family of repressors. Moreover, we managed to 

identify putative post-transcriptional “operons” by performing a cluster analysis to group genes 

that share the same set of n-mers. In several occasions, strong biological correlation was 

observed amongst genes present in a cluster. 
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MATERIALS AND METHODS 

Preparation of mRNA sequence lists 

In order to prepare a reliable list of human mRNA sequences, we started by conducting a 

feasibility study on 40,874 sequences obtained from NCBI Human Genome FTP site 

(ftp://ftp.ncbi.nih.gov/genomes/). To ensure the quality of data used, all mRNAs were 

constructed from chromosome sequences (Build 36.2) based on gene information from RefSeq. 

Only ‘validated’ or ‘reviewed’ gene information was used for mRNA construction. 

Subsequently, coding regions were extracted from the constructed mRNAs and BLASTed 

against the entire nucleotide database to confirm that the gene information from RefSeq was 

correct. If BLAST returned the identical gene ID with a perfect sequence match for a queried 

coding region, we retained the queried gene in the valid set of mRNAs. After filtering the data, 

we were left with 20,840 human mRNA sequences corresponding to 16,160 genes. This subset 

of sequences was used in our analysis. 

 

n-mer counting 

An exhaustive search approach measured the appearance of all possible n-mers (2 ≤ n ≤ 21) in 

the mRNA data set. Appearances were counted on the 5’ UTR, coding region and 3’ UTR 

individually. In order to handle large number of possible n-mers within optimal time and space, 

we used a suffix tree counter, which is a type of data structure that allows efficient string 

matching and searching. Although there are many different flavors of suffix tree 

implementations, we used a straight forward implementation without data compression functions 

since our sole purpose is simple counting rather than string searching or matching. The counting 
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procedure collected n-mer information such as the list of associated mRNAs and locations of n-

mers on the mRNA sequences. 

To determine if a given n-mer is over-represented in a particular section of the mRNA, we first 

calculated their total lengths. We summed in each case (5’ UTRs, coding regions and 3’ UTRs) 

the individual values determined for the 20,840 transcripts present in our mRNA set. The 

numbers obtained were 4,626,913 nucleotides for 5’ UTR, 37,499,577 nucleotides for coding 

region and 22,871,121 nucleotides for 3’ UTR. We then constructed a conversion table in order 

to perform a balanced analysis that allows the comparison among n-mers of different sizes. Table 

S1 in Supplementary data shows the adjusted mathematical expected appearance value for each 

n-mer based on its length. These values were then used to determine if a particular n-mer is over-

represented in 5’ or 3 UTRs or coding region. 

 

Parameters to identify highly significant over-represented n-mers 

An over-represented n-mer was considered highly significant in the following cases. A highly 

significant over-represented 5’ UTR n-mer was defined by an adjusted P-value less than or equal 

to 0.01 and should appear in 5 or more 5’ UTRs of different genes. However, this n-mer could 

appear in other regions in small numbers – at most 4 times in coding regions and at most twice in 

3’ UTRs. These numbers are arbitrary and they were selected based on the total length of each 

section of the mRNA, as described above. This under-representation in other regions as well as 

over-representation in 5’ UTR was counted in calculating the adjusted P-values. For an over-

represented 3’ UTR n-mer, the adjusted P-value is set to less than or equal to 0.01 and 20 or 

more genes must contain it on their 3’ UTR regions. It is also allowed to appear at most 4 times 

in coding regions and at most once in 5’ UTRs. As in 5’ UTR, this under-representation in these 

 7



regions was also counted in the adjusted P-values. These values were selected based on the 

average length of 5’ UTR, coding region and 3’ UTR. 

 

Statistical analysis to identify over-represented sequences 

Under the assumption that all four nucleotides are independent and distributed in equal 

proportions in our mRNA dataset, we estimate the probability P of finding a specific pattern of 

L-mer to be P = 4-L. Hence in the data base of total length D of UTR or coding regions of length 

at least L, the expected number of the given pattern of L-mer is λL= (D-n*(L-1))* 4-L where n is 

the number of RNAs whose UTR or coding regions are of length at least L. If the motifs were 

randomly distributed over the different sections of the mRNA, the distribution of the number of 

RNAs with a specific motif would be Poisson with mean rate λL. We used the Poisson 

distribution to calculate the probability of observing k RNAs with the specific motif pattern, 

which is (λL)ke-k/k!. So with the expected number λL of the given pattern of L-mer, the 

probability of observing k or more RNAs with the L-mer is 1- P(k-1, λL ) and k or less instances 

is P(k, λL) where L
L L

1P(k, )  ( )
!

k
x
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=

= ∑ . For example, the probability of observing k or more 

instances in 5’ UTR and at the same time, 0 instances in both 3’ UTR and coding region is 

therefore P= (1- P(k-1, λL5 ))*P(0, λL 3)*P(0, λLC) where λL5 , λL3 , and λLC  are the expected 

numbers in 5’ UTR, 3’ UTR and coding region respectively. When several RNAs come from a 

single gene, dependence among the RNAs is expected. To achieve the conservative P-values, we 

use the number of gene-instances instead of the number of RNA-instances for the over-counting 

(k or more instances). For under-counting (k or less RNA instances), we used the number of 

RNA-instances to make P-values more conservative. Since we were testing the significance of a 

specific pattern for all the patterns, we used Bonferroni-Correction to adjust P-values for 
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multiple testing. The total number (TN) of the patterns from 2-mer through 21-mer is 

=5.864062e+12 and adjusted P value is min(TN*P, 1).  
21

2
4n

n=
∑

 

Preparation of random samples 

One thousand sets of random n-mer sequences were generated from the sequences present in our 

list of mRNAs. To construct the random sets, we took into consideration the size and the number 

of over-represented n-mers present in our final data set. 

 

Comparison between n-mers and HuR and Tia1 binding sites

The data provided by Dr. Isabel Lopez de Silanes contains binding sites for the RNA binding 

proteins HuR and Tia1 obtained via RIP-Chip and computational methods (14-16). We located 

all these binding sites on the mRNA sequences present in our list. These locations were then 

compared to the positions of the over-represented and random n-mers.  Since the length of 

binding sites obtained for HuR and Tia-1 is longer than 21 nucleotides, we only considered two 

sequences to be a ‘match’ when an over-represented n-mer or a random n-mer appears within a 

HuR or Tia1 binding site. The numbers of matches obtained for the over-represented n-mer list 

was compared to the numbers obtained for a 1,000 sets of random n-mers. 

 

Search for n-mers containing the AUUUA (UAUUUAU) motif

We searched for AUUUA and UAUUUAU motifs (ARE core sequences) in the 5’ and 3’ UTR 

over-represented n-mer sets and in random n-mer sets. Initially, the total number of AUUUA (or 

UAUUUAU) appearances in a data set was simply counted. However, it is possible that a small 

number of AU-rich n-mers in a given data set contribute to 2 or more motif counts. We counted 
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then in each data set the total number of n-mers containing one or more AUUUA (or 

UAUUUAU) motif. All the counting results were compared between the over-represented n-mer 

set and random n-mer sets. 

 

Search for n-mers containing GU-Rich elements GRE

We searched for the UGUUUGUUUGU motif (GRE consensus sequence) in the 5’ and 3’ UTR 

over-represented n-mer sets and in random n-mer sets. The total number of GRE appearances in 

a data as well as the number of n-mers containing one or more GRE motifs was counted. All the 

counting results were compared between the over-represented n-mer set and random n-mer sets. 

 

Calculation of UTR length vs n-mer number

5’ UTR and 3’ UTR length of each mRNA in the dataset were measured individually. Each UTR 

length was correlated to the number of over-represented n-mers appeared on the UTR regions to 

characterize the length effect on the number of n-mers. We also examined the lengths of UTRs 

and the number of over-represented n-mers in 159 cancer related genes. The gene list (Table S2) 

and the detailed method used can be obtained from Supplementary data as well as the supporting 

material website (http://gccri.uthscsa.edu/sequences.html). 

 

Cluster analysis on over-represented n-mers

We performed cluster analysis based on functional similarity. Functional Similarity between two 

n-mers, say n-mer 1 and n-mer 2, is defined as the number of genes that have both n-mers 

divided by the number of genes that have either one or both. The dissimilarity (distance) between 

two n-mers is defined as 1 minus the similarity. Using this dissimilarity measure and Kaufman 
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and Rousseeuw’ s Partitioning Around Medoids (PAM) algorithm (17), we organized 5’ UTR n-

mers and 3’ UTR n-mers into clusters. Average silhouette lengths were used to order the clusters. 

We represent in our supporting material website (http://gccri.uthscsa.edu/sequences.html) the top 

25 5’ UTR n-mer clusters (Table S3) and the top 100 3’ UTR clusters (Table S4).  

After grouping the over-represented n-mers into clusters, gene members in a cluster were 

analyzed by using ‘Pathway Studio 5’ (http://www.ariadnegenomics.com/) in order to identify 

known functional relationships among them. 

 

Clone preparation and luciferase assays 

A total of 30 5’ UTR n-mer sequences were cloned into the 5’ UTR of the actinβ gene present in 

the vector pSGG_5UTR (Switchgear Genomics). We determined how these sequences 

influenced gene expression using a luciferase assay. The resulting constructs as well as the 

empty vector control and two other controls containing the iron responsive element (IRE) in 

sense and anti-sense orientations in the 5’ UTR were transfected into HT1080 and HeLa cells. 

HT1080 cells were selected to be the primary source for the assays based on its consistency 

when compared to other cell lines tested by Switchgear Genomics.  ~5000 cells were plated in 

96-well plates in OPTI-MEM (Invitrogen). Cells were transfected 16 hours later with FuGene 

(Roche) following the manufacture’s protocol. 24 hours after transfection, 100µl of Steady-glo 

reagent (Promega) were added to each well. Samples were covered with foil, incubated at room 

temperature for 30 minutes and read in a luminomenter.  All the experiments were performed in 

quadruplicate.  

A more detailed version of the Methods section is provided in our supporting material website 

(http://gccri.uthscsa.edu/sequences.html). 
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RESULTS AND DISCUSSION 

Identification of over-represented sequences on UTRs of human genes 

We used over-representation as a strategy to map putative regulatory sequences on UTRs. Over-

represented sequences are frequently used as point of reference to identify putative regulatory 

elements (18). It assumes that an observed sequence bias can indicate the presence of a 

regulatory element. A given sequence motif (n-mer) is considered over-represented if it appears 

more frequently than its statistically expected frequency. Contrary to previous studies, we 

employed a more elaborate method specifically designed for a UTR study. First, having in mind 

that transcribed and non-transcribed sequences are under different selective pressure and that 

repetitive sequences present in intergenic regions can create a bias and alter the final results; we 

used mRNA sequences instead of genomic sequences as the sample for the counting process. 

Second, since regulatory elements can vary in size, we opted not to restrict the size of the n-mers 

to be counted. 

Our strategy to identify highly significant over-represented n-mers located on UTRs was divided 

into two steps. Initially, we calculated over-representation taking into consideration 

mathematical expected frequencies, size of the n-mer and average length of the different portions 

of the mRNA (5’ UTR, coding region and 3’ UTR) in our sample pool.  It is worth noticing that 

3’ UTRs are on average 4 times longer than 5’ UTRs. The result of this analysis led to the 

identification of approximately 43 million over-represented sequences. This number of 

sequences is too large to allow us to extract meaningful biological data. Moreover, in this first 

analysis, we did not compare the n-mers to each other. As was expected, the first list of over–

represented sequences contains a lot of redundancy. Thus we carried out a second analysis step 

to organize and reduce the data. Briefly, in this second step, we eliminated n-mers that are not 
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totally contained in UTRs and n-mers that are part of a longer one (the shorter n-mers were 

eliminated only in case the corresponding longer ones are contained in the exact same subset of 

mRNAs). Moreover, we established additional parameters: 1) we initially took into consideration 

only P-values to list a given sequence as over-represented; in this second step, we also took into 

account the number of genes in which an individual n-mer appears; 2) based on average length of 

each section of the mRNA, we established minimum and maximum appearance values for 5’ 

UTR, coding regions and 3’ UTR; in this new scenario, n-mers are selected only if they are over-

represented in either the 5’  or 3’ UTR and at the same time have low counts in the other two 

sections of the mRNA.  From these criteria, we identified 1124 and 2772 over-represented motifs 

from 5’ UTR and 3’ UTR region, respectively (see supplementary data file 4). A summary of our 

strategy to identify UTR over-represented elements is represented in Figure 1 and 2, and details 

are given in the Methods section.  

The data was organized into two n-mer sets (n-mers over-represented in 5’ UTR only and n-mers 

over-represented in 3’ UTR only). Table 1 shows examples of identified over-represented n-

mers located on 5’ or 3’ UTR. In order to facilitate future analyses, we ranked the n-mers 

according to the adjusted P-value that indicates the statistical significance of the “fold increase” 

in relation to the adjusted expected frequency. P-values are reported in log units and for P<10-200 

we set it to be 10-200.  The entire list of over-represented n-mers is present in supplementary data 

(see the supporting material website). 

 

The nature of n-mer sequences 

We performed an initial analysis with the two lists of over-represented n-mers to identify 

particular features and commonalties shared by the n-mers. First, one can notice the absence of 
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short n-mers in both 5’ and 3’ UTR lists. In the case of 5’ UTR, the n-mers range between 9 and 

32 nucleotides while in the case of 3’ UTR, they range between 9 and 38 nucleotides. The 

absence of n-mers shorter than 9 nucleotides can find its explanation in the parameters and cut-

offs we used and established to generate the lists. First, we were looking for n-mers that are over-

represented in only one section of the mRNA. A large number of n-mers were discarded because 

we determined they are over-represented also in other sections of the mRNA. Second, as 

explained above, n-mers that are part of a longer one were also eliminated. 

 We determined the GC and AU content of n-mers present in the 5’ and 3’ UTR lists. The 

detailed tables are provided in our supplementary data website. 5’ UTR n-mers are extremely 

rich in GC. Circa 20% of all n-mers identified are 100% GC; ~75% of them have a content of 

80% GC or higher. If we calculate the GC content in the entire 5’ UTR dataset, we will notice a 

slight bias. However, it is not, in any case, sufficient to justify the high number of GC-rich 

containing n-mers. We suggest that these n-mers might correspond to large families of regulatory 

elements and we discuss some possibilities. The first possibility is that a portion of these 

sequences are the target of RNA binding proteins that have preferences for GC sequences. This 

is the case for members of the CUGBP family (19). For instance, CUGBP1 binds a sequence 

with several copies of the GC dinucleotide in the 5’ UTR of the p21 mRNA and enhances its 

translation. We observed that part of the regulatory element located in the 5’ UTR of the p21 

mRNA (CTGCCGCCGCCG) is present in some n-mers of our list (20). Moreover, a substantial 

number of n-mers have the format GCN(1-3)GCN(1-3)GC…, similar to p21 regulatory element. 

Another possibility is that some n-mers with high GC content could be part of highly complex 

secondary structure that could interfere with translation (21). In this particular case, it is worth 

mentioning the recently described RNA G-quadruplex. This element initially identified in the 
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NRAS proto oncogene functions as a translator repressor (22). The authors observed that 2,992 

mRNAs contain one ore more G-quadruplex similar to the one of the NRAS 5’ UTR. In our 

dataset, we also identified over-represented n-mers containing a G-quadruplex or part of it, for 

instance:  GGGCCGGGCCGGGCCGGG, GGCGGGCGGGCGGGC and 

CGGGCGGGGCGGGGC.  Finally, we should mention a family of elements named Simple 

Sequence Repeats (SSRs); they are tandem repeats of sequences between 1 and 6 nucleotides. In 

a recent study, it was observed that they are present in great number in 5’ UTRs, especially 

amongst house-keeping genes (23). The most frequent repeat is CGG. We checked our data set 

and identified several n-mers containing (CGG)N sequences. The function of SSRs in 5’ UTRs 

still needs to be determined, but there is data showing that in some cases they play a role in gene 

expression (24). The situation regarding the 3’UTR n-mers is the opposite; we observed that n-

mers are rich in AU sequences. ~5% of 3’ UTR n-mers are 100% AU; ~39% of them have a 

content of 80% AU or higher. The strong presence of AU rich sequences in our 3’ UTR n-mer 

set did not come as a surprise. ARE sequences (AU rich) are probably the most relevant group of 

regulatory elements located on 3’ UTRs (reviewed in Lopez de Silanes et al., 2007 (25)). 

Numerous mRNAs have been identified to be regulated at the post-transcriptional level by RNA 

binding proteins that recognize these sequences. We describe below an analysis that establishes a 

correlation between the identified 3’ UTR n-mers and ARE. 

   

n-mer sequences overlap with previously identified regulatory motifs

If over-represented n-mers are indicative of the presence of regulatory sequences, one would 

expect to see an overlap between them and already mapped RNA binding protein recognition 

sites. In order to test this hypothesis, we compared our n-mer list to binding sites of the RNA 

 15



binding proteins HuR and Tia1 obtained via RIP-Chip analysis. These binding sites were 

deduced with computational methods based on commonalities at the level of RNA sequence and 

structure and information from previously characterized HuR and Tia1 sites (14,15). Detailed 

information was kindly provided by Dr. Isabel Lopez de Silanes. To determine if our results are 

statistically significant, we generated a total of 1000 random sequence sets from actual human 

UTR sequences; the length of individual sequences present in the over-represented n-mer lists 

was considered when preparing those lists. Finally, we compared the lists of Tia1 and HuR 

binding sites to the lists of random sequences to determine the number of overlaps. The results 

we obtained are summarized in Table 2. In agreement with the idea that there is a correlation 

between over-representation and biological function, the number of over-represented sequences 

(n-mers) in 3’ UTRs matching either HuR or Tia1 binding sites is significantly higher than the 

numbers obtained from the comparison with the random sets (P-values < 0.001). The list of n-

mers match to HuR and Tia1 binding sites are shown in Table S5 and S6, respectively. 

We employed another approach to determine if over-represented n-mers coincide with 

previously described UTR regulatory elements. We compared our dataset to ARE sequences 

(described in the previous section) and to the recently identified GU-Rich elements (GRE) (26). 

The AUUUA and the UAUUUAU motifs have been described as the basic core of ARE 

sequences. We expected to see a large portion of the 3’ UTR n-mers that contained the core 

sequence as well as a bias towards the 3’ UTR since ARE sequences have not been assigned for 

5’ UTRs. Indeed, the number of over-represented sequences (n-mers) that have core ARE 

sequences is significantly higher than that obtained from random sets. Moreover, a 3’ UTR bias 

was observed (P-values < 0.001) - Table 3. The GU-rich element (GRE), whose consensus is 

UGUUUGUUUGU, was identified via computational methods to find conserved sequences in 
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the 3’ UTR of genes that exhibited rapid decay in primary human T-cells. These sequences were 

determined to be involved in mRNA stability and to be regulated by the CUG-binding protein 1 

(26). Identically to what was observed for the ARE sequences, we determined that the number of 

over- n-mers containing a GRE is significantly higher than that obtained from random sets; a 3’ 

UTR bias (P-values < 0.001) was observed as well - Table 4. In conclusion, the results of this 

section indicate that n-mers do overlap with regulatory elements. The lists of n-mers containing 

ARE and GRE sequences are in Table S7, S8 and S9. Detailed results of both analyses of this 

section are provided as supporting materials. 

 

In vivo analysis of 5’ UTR n-mers identifies a highly conserved negative regulator 

associated with uORFs   

The top ranked 30 5’ UTR n-mers (corresponding to those with higher gene counts) were cloned 

into a 5’ UTR luciferase-reporter vector (pSGG-5UTR from Switchgear Genomics) and used in 

transient transfections; their impact on gene expression was measured via luciferase activity. The 

use of this vector to evaluate 5’ UTR regulatory sequences was tested successfully with a 

characterized iron responsive element (IRE) cloned in sense and anti-sense orientation (data not 

shown). Experiments were primary done in HT1080 cells and results confirmed in HeLa cells. 

Our results indicate that the n-mer sequences we selected repress gene expression at different 

levels – Figure 3A and B. A group of very similar n-mers stood out among the ones that caused 

a very strong negative effect. These are five n-mer sequences (5, 12, 13, 16, 21) containing the 

core element AUGGCGG – Figure 3A. We examined our dataset to encounter other n-mers with 

the same core sequence; a total of 67 n-mers covering 101 genes were identified. The 5’ UTRs of 

these genes were compared and a larger consensus sequence was determined: an AUG placed 

 17



within a GC-rich sequence - Figure 3C. A closer look at all implicated genes pointed out that the 

n-mers always overlap with the start codon of a uORF (Table S10). In agreement with our 

results, uORFs have been shown to affect mRNA translation in a negative fashion. 31% of 

uORFs contained in human genes are also present in rodents, highlighting its importance as 

regulatory elements (27). Based on its high conservation, we suggest that the GC-rich context in 

which the uAUGs are located contributes substantially to the observed regulatory effect. Further 

experiments are necessary to dissect this conserved element and check how the GC-rich 

component contributes to regulation.  

 A second group of n-mers that produced strong negative effect (10, 11, 15, 25) has in 

common a high G content. When examining the results of all constructs as a whole, we observed 

that comparatively, n-mers rich in Gs tend to produce a stronger regulatory effect. We discussed 

in the previous section the participation of G and GC rich elements in 5’ UTR mediated 

regulation. The four n-mer sequences listed above are very similar and could be the target of a 

RBP with preferential binding for G rich sequences. 

 

Cancer related genes and n-mer frequency

We calculated the number of n-mers located on the 5’ and 3’ UTRs for each gene present in our 

list.  Although a certain variation was observed, we can affirm that there is a direct correlation 

between the length of the UTR and the number of n-mers identified (Figure 4). We expect that 

genes with a high number of UTR regulatory sequences to be tightly regulated and/or to present 

a restricted pattern of expression. Assuming that the number of n-mers correlates with the 

number of regulatory sequences, we anticipate that genes falling into this category contain more 

n-mers than the average. This should be the case of genes directly involved in tumor formation, 
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whose expression has to be tightly regulated and, in the case of oncogenes, restricted to 

particular developmental stages. Mapping UTR regulatory elements in cancer related genes is a 

very important issue, since it can lead to the discovery of novel pathways involved in 

tumorigenesis as well as novel alternatives for cancer therapy. To test our hypothesis, we used a 

Poisson regression model and compared the number of n-mers present in the 5’ and 3’ UTRs of 

159 genes that were directly implicated in tumor formation, mainly oncogenes, to the number of 

the n-mers present in the UTRs of the entire mRNA list we generated – see Figure 5 for results. 

In both cases (5’ and 3’ UTRs), cancer related genes generally have more n-mers than other 

genes. These differences are statistically significant in both the 3’ UTR and 5’ UTR (P<0.001). 

The difference appears more dramatic in the case of the 5’ UTR than in the case of 3’ UTR. This 

data is in agreement with the fact that 5’ UTR regulatory elements have been reported for 

numerous oncogenes (28). Moreover, several oncogenes are known to have their translation 

initiated by internal ribosome entry sites (IRES) in a cap-independent mechanism. These IREs 

are in general contained in long 5’ UTRs with high GC content (29,30). Regarding cap-

dependent translation, it is known that the P13K/AKT/mTOR signaling pathway regulates the 

translation of genes involved in cell proliferation and growth, among them several oncogenes 

(31,32). 

 

Cluster analysis and identification of putative gene networks regulated at the post-

transcriptional level

All biological processes depend on the coordinated activity of a selected group of proteins. 

Before a given biological process like cell division takes place, it is necessary to synchronize the 

expression of genes that code for the set of implicated proteins. This synchronization can be 
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achieved at the post-transcriptional level through the action of specific RNA binding proteins 

and non-coding RNAs that recognize UTR sequences shared by the gene group. Regulators and 

their corresponding target mRNAs form the so-called post-transcriptional operons (33,34).  

In order to identify genes that could be potentially co-regulated, forming a functional post-

transcriptional operon, we employed a method to identify gene clusters that share sets of n-mers. 

Briefly, we considered that two n-mers are ‘similar’ if these n-mers are frequently appearing in 

the same genes. Unlike a clustering method based on the sequence similarity, a good cluster is 

defined as a group of n-mers sharing nearly identical gene lists. Figure 6 illustrates the clustering 

analysis procedure. A more detailed explanation about the cluster is described in the Methods 

section. We generated 25 5’ UTR clusters and 100 3’ UTR clusters. We observed that in general 

the n-mers present in a cluster have similarities in terms of sequence. This is an agreement with 

the idea that they constitute variations of a functional element recognized by the same gene 

regulator. We then performed multiple sequence alignments for each set of similar n-mers 

present in a given cluster to identify a core element. If our cluster analysis functions as a method 

to identify gene networks, we should be able to identify strong biological associations among 

genes in the same cluster at least in some of the cases. To identify these possible associations, we 

analyzed the gene clusters using ‘Pathway Studio 5’. This analysis indicated that several sets of 

gene clusters share commonalities in terms of pathway and function. Moreover, interacting 

proteins turned out to be present in numerous clusters. Figure 7 shows examples of strong 

biological associations as well as core sequence elements identified in two different gene 

clusters. The 5’ UTR cluster represented in the figure shows a group of genes linked to the TGFβ 

signaling pathway while the represented 3’ UTR cluster shows a group of genes implicated in the 

VEGF signaling pathway. The remaining clusters that turned out to show positive results and n-
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mer comparisons are described in the supporting material website. To check that the identified 

relations in Figure 7 are not a random incident, we performed 100 cluster analyses with sets of 

random genes. We concluded that the same type of direct correlations as exemplified in Figure 7 

cannot be obtained by chance alone (P < 0.01) (see the supporting materials website for details). 
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CONCLUSION 

We designed a specific method based on over-representation to map putative regulatory 

sequences present on UTRs. A very strict filter consisting of minimum and maximum 

values of appearances for each region of the mRNA (5’ UTR, coding region and 3’ UTR) 

was used to select a group of approximately 4,000 highly relevant over-represented 

sequences (n-mers). The evidence strongly indicates a correlation between over-

representation and function. The identified n-mers overlap with previously identified 

binding sites for HuR and Tia1 and AU-rich and GU-rich sequences. Moreover, a group 

of selected 5’ UTR n-mers proved to affect gene expression. In particular, we identified a 

set of n-mers containing a highly conserved sequence that that turned out to be part of 

uORFs and functions as a negative regulator. We also determined that over-represented 

n-mers are particularly enriched in a group of 159 cancer related genes. Finally, a method 

to cluster n-mer groups allowed the identification of putative post-transcriptional gene 

networks. 

The method we employed differs from previous analysis of UTR motifs in several ways. 

First, the choice of sequence data for UTR analysis is different from others’ published 

efforts. Most previous UTR analyses dealt with the entire chromosome sequences to 

construct their models while we used only transcript sequences for our analysis in order 

to build a more accurate background model. It is also notable that we explicitly handled 

the number of n-mer appearances in non-target regions with the consideration of length 

effects. Moreover, our clustering approach was based on functional relations, not 

sequence similarities, which has more biological sense. Last, the compilation of n-mers 

present in a given identified cluster allowed us to construct ‘core n-mers’. The sequence 
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variation observed among members of a “core n-mer” resembles what is observed for 

actual binding sites targeted by the same regulator. When all the evidence is combined, 

we believe this dataset contains information that will guide the discovery of novel 

functional elements. All data is available online to the scientific community. 
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FIGURES LEGENDS 

Figure 1. Summary of experimental procedures to identify short sequence elements 

(n-mers) that are over-represented in either 5’ or 3’ UTRs. mRNA sequences were 

generated after a filtering process where mRNA and genomic sequence data from the 

NCBI website were compared. A total of 20,840 mRNA sequences were used in our 

counting process. Individual n-mer counts were performed for the coding region (CR), 5’ 

and 3’ UTRs. In this first step, the adjusted mathematical expected appearance value for 

each n-mer based on its size was used to determine if a given sequence is over-

represented in either the 5’ or 3’ UTRs. A total of ~43 million over-represented n-mers 

were identified.  

Figure 2. Schematic representation of the filtering process to identify highly over-

represented n-mers in either 5’ or 3’ UTRs. We employed a two step process. In filter 

1, we established minimum and maximum counts for the different sections of the mRNA 

[5’ UTR, coding region (CR) and 3’ UTR], the counting process was done with 

transcripts rather than genes. In filter 2, we established a minimum number of 

appearances in different genes to consider an n-mer over-represented. 

Figure 3. In vivo analysis of the top 30 5’ UTR n-mers. A) List of n-mers cloned into 

the 5’ UTR of pSGG_5UTR. B) Resulting clones were transfected into HT1080 cells and 

the luciferase activity was measured. Values reflect the results of 4 independent 

experiments done for the 30 different constructs and the empty vector control. C) 

Consensus sequence determined for the initiation codon of uORFs associated with n-mers 

containing the conserved sequence AUGGCGG. 
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Figure 4. UTR length vs number of n-mers. In this figure, the average number of n-

mers identified per gene is plotted as a function of the length of their 5’ or 3’ UTR. To 

facilitate visualization, we created groups; for instance one group contains all genes 

containing between 1 and 5 n-mers in their 5’ UTR. Yellow bars indicate variation 

observed in each “n-mer group”. 

Figure 5. Cancer related genes and n-mers. The graphs illustrate comparisons between 

the average numbers of n-mers encountered for the 5’ and 3’ of UTRs of 159 cancer 

related genes and the average numbers of n-mers encountered for the 5’ and 3’ UTRs of 

the entire population of mRNAs used in our analysis. 

Figure 6. Schematic representation of the cluster analysis used to identify putative 

post-transcriptional operons. First, a dissimilarity score matrix was constructed by 

comparing gene lists associated with each over-represented n-mer to all the others. Next, 

Partitioning Around Medoids (PAM) clustering algorithm starts with randomly selected 

arbitrary number of n-mers that serve as medoids (centers of clusters). The rest of the 

non-medoid n-mers are assigned to the nearest medoids according to their dissimilarity 

scores. After the initial partitioning, the algorithm swaps the current medoids with non-

medoid n-mers and updates cluster memberships for non-medoid n-mers to check if new 

medoids lead to a better partition in term of the average dissimilarities in clusters. These 

steps are repeated until the average dissimilarities of clusters cannot be reduced further.  

Figure 7. Examples of gene clusters that show strong biological associations.  Most 

relevant gene clusters identified in our study were analyzed with the Pathway Studio 

software to identify possible biological interactions amongst the genes present in them. 

Only direct associations/interactions are illustrated in the figure. The results from 
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multiple sequence alignments represent possible ‘core n-mers’ that were built with n-

mers present in the cluster. Multiple sequences alignments were performed by using 

Clustal X. The 5’ UTR cluster represented in the figure shows a group of genes linked to 

the TGFβ signaling pathway while the represented 3’ UTR cluster shows a group of 

genes implicated in the VEGF signaling pathway. 
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TABLES 

Table 1. Example of over-represented n-mers for 5’ UTR (A) and 3’ UTR (B) 

identified after very stringent criteria. 

5’ UTR n-mers adj. P value Gene count 
CTCCCGCGCGC -200 19 
GCGCCCCCTCCCC -200 18 
GCCCGGCTCGGC -200 15 
CCCCGCGCTCCC -200 15 
CGGGCGCCCGCG -200 15 
CCCGGCCCGCCCG -200 15 
GCGGCGCTCGGG -200 14 
TCTCCACAGAGGAG -200 9 
ACCTGCAGGTATTG -200 9 
GCAGGTATTGGGAGAT -200 9 
AGAGGAAGAGGAAAG -200 8 
AAGGAGAAGATCTGCC -200 7 
ACCACTCAGGGTCCTGTGGACAGCTCACCTAG -200 5 

 

3’ UTR n-mers adj. P value Gene count 
CTGGCCAACATGGTGAAACCC -200 169 
AGCCTGGCCAACATGGTGAAA -200 144 
AACTCCTGACCTCAGGTGATC -200 125 
AACCCCGTCTCTACTAAAAAT -200 122 
GATCACCTGAGGTCAGGAGTT -200 116 
CTGGCCAACATGGTGAAACCCC -200 115 
GTGGCTCACACCTGTAATCCC -200 113 
TCCCAGCTACTCAGGAGGCTG -200 102 
TGGCTCACACCTGTAATCCCAG -200 101 
ACTGCACTCCAGCCTGGGTGA -200 100 
ACCTGTAATCCCAGCACTTTG -200 98 
CACTGCACTCCAGCCTGGGTG -200 93 
TTTTTTTTTTTTTTGAGACAG -200 88 
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Table 2. n-mer comparison to HuR and Tia1 binding sites. Each comparison is 

represented in two columns. In the first column, the numbers reflect perfect overlaps 

between described HuR or Tia1 binding sites and over-represented n-mers. In the second 

column, the numbers reflect average values obtained from 1000 comparisons between 

described HuR or Tia1 binding sites and random n-mer sets generated from sequences 

present in our mRNA set. (SD: Standard Deviation) 

Comparison to HuR binding sites Comparison to Tia1 binding sites   
Over-
represented n-
mers 

Mean (SD) of 
random n-mer 
samples 

Over-represented 
n-mers 

Mean (SD) of 
random n-mer 
samples 

in 5’ UTR 0 0 0 0 Number of 
RNAs with at 
least one mapped 
HuR/Tia1 
binding site 
matching a n-mer 

in 3’ UTR 839 101.6 (27.7) 314 41.8 (24.5) 

5’ UTR 0 0 0 0 Total number of 
mapped Hur/Tia1 
binding site 
matching a n-mer 

3’ UTR 1078 108.1 (47.5) 377 57.5 (83.2) 

 

 

Table 3. n-mer comparison to ARE sequences. The table contains the number of over-

represented n-mers containing AUUUA and UAUUUAU sequences as well as average 

values obtained for 1000 comparisons with random n-mer sets generated from sequences 

present in our mRNA set. (SD: Standard Deviation) 

 Over-represented n-mer Mean (SD) of  
Random Samples  

5’ UTR 0      6.5  (2.6)  Number of appearances of the 
AUUUA motif in a n-mer set 3’ UTR 122  70.5 (8.3) 

5’ UTR 0      0.4 (0.6) Number of appearances of the 
UAUUUAU motif in a n-mer set 3’ UTR 35 9.0 (2.9) 

5’ UTR 0  6.4 (2.5)  Number of n-mers containing 
one or more AUUUA motif 3’ UTR 116  67.1 (7.8)  

5’ UTR 0 0.4 (0.7) Number of n-mers containing 
one or more UAUUUAU motif 3’ UTR 35 8.7 (3.0) 
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Table 4. n-mer comparison to GRE sequences. The table contains the number of over-

represented n-mers containing GRE sequences as well as average values obtained for 

1000 comparisons with random n-mer sets generated from sequences present in our 

mRNA set. (SD: Standard Deviation) 

 

 Over-represented n-mer Mean (SD) of  
Random Samples  

5’ UTR 0      0 (0)  Number of appearances of the 
UGUUUGUUUGU motif in a n-
mer set 

3’ UTR 12  0.29 (0.79) 

5’ UTR 0  0 (0)  Number of n-mers containing one 
or more UGUUUGUUUGU motif 3’ UTR 5 0.15 (0.39)  
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