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Abstract

This paper compares four methods used to approximate value at risk (VaR) from
the first four moments of a probability distribution: Cornish-Fisher (1938), Edgeworth
(1907), Gram-Charlier (1902), and Johnson distributions (1949). We apply a procedure
described by Chernozhukov et al. (2010) called the increasing rearrangement to the
Cornish-Fisher, Edgeworth, and Gram-Charlier methods. Using the increasing rear-
rangement yields a single VaR approximation for any possible combination of skewness
and kurtosis, and facilitates comparison of all four methods across the entire skewness-
kurtosis space. Simulation results suggest that with enough data, the Johnson family
yields the most accurate approximation on average.
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1 Introduction

The contribution of this paper to the VaR literature is to compare four methods used to
approximate value at risk (VaR) from the first four moments of a probability distribution:
Cornish-Fisher (1938), Edgeworth (1907), Gram-Charlier (1902), and Johnson distributions
(1949). This paper restricts its focus to approximation methods which take as inputs the
first four moments due to their intuitive appeal. Statistical experts and non-experts alike
can readily grasp how the mean, variance, skewness, and kurtosis affect the shape of a
distribution. Consequently, potential users of these methods have a direct translation of
what the inputs mean in terms of evaluating and managing risk.

Simulation work done by Simonato (2011) compares Cornish-Fisher, Gram-Charlier, and
Johnson distributions. As described by Simonato, a difficulty in making meaningful compar-
isons between the three methods is that the set of skewness and kurtosis values for which each
method yields a single VaR approximation differs across all three methods. Consequently,
his paper focuses on comparing the Gram-Charlier method with Johnson distributions and
the Cornish-Fisher method with Johnson distributions by restricting each to their respective
valid regions.

Simonato (2011) informally compares methods outside their valid regions by keeping only
the most conservative VaR approximation for cases that result in multiple solutions. This
paper applies a procedure called the increasing rearrangement described by Chernozhukov et
al. (2010) to yield a single VaR approximation across the full skewness-kurtosis space. Con-
sequently, meaningful comparisons can be made between all four methods without restricting
the range of skewness or kurtosis.

The principle findings of this paper are the following. When using the first four population
moments as inputs, or when estimating sample moments from a large sample, Johnson
distributions yield the best VaR approximations in terms of mean-square-error. This is in
agreement with the results of Simonato (2011). However, for smaller sample sizes, the other
methods may provide better approximations than Johnson distributions. Furthermore, at the
smallest sample size (n = 20), Johnson distributions yielded the worst VaR approximation
in terms of mean-square-error.

The paper is organized as follows. Section 2 provides an extensive literature review. Section
3 provides technical details of the increasing rearrangement. Section 4 details how to ap-
proximate VaR using the Gram-Charlier, Edgeworth, and Cornish-Fisher methods. Section
5 explains how to approximate VaR when using an increasing rearrangement with the Gram-
Charlier, Edgeworth, and Cornish-Fisher methods. Section 6 details Johnson distributions
and how they are used to approximate VaR. Sections 7 and 8 detail the simulation setup
and results, respectively. Section 9 concludes the paper.
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2 Literature Review

Among the earliest attempts to relax the normality assumption in calculating VaR from
historical returns are two papers by Zangari. Zangari (1996a) suggests using quickly com-
putable analytical methods which adjust for the effects of higher order moments. One sug-
gested method is to adjust the normal quantiles to accommodate skewness and kurtosis using
a Cornish-Fisher expansion. A later suggestion by Zangari (1996b) is a moment-matching
procedure by transforming a normal distribution to a member of the Johnson family.

Simulation work done by Pichler et al. (1999) compares five analytical methods used to
approximate VaR: the delta-normal approach, moment-matching to a normal distribution,
Cornish-Fisher with four moments, Cornish-Fisher with six moments, and moment-matching
to a Johnson distribution. They conclude that the latter three methods greatly outperform
both the delta-normal approach and moment-matching to a normal distribution. Among
these three methods, they find the Cornish-Fisher method with six moments to be the
most accurate. The accuracy of the Cornish-Fisher method with four moments is nearly
indistinguishable to moment-matching with a distribution from the Johnson family.

Simulation work by Lien et al. (2013) compares three analytical methods used to approxi-
mate VaR: the Cornish-Fisher method with four moments, the Liu approximation with the
first four L-moments, and the Sillitto approximation truncated to an order of 15. The au-
thors find that the Sillitto approximation yields the smallest approximation errors among
the three methods, and the Liu approximation the largest approximation errors. They at-
tribute the better performance of Sillitto to using higher order L-moments. Furthermore,
they acknowledge that Cornish-Fisher may have equal or better performance than Sillitto if
expanded out to the same order, but expressing the Cornish-Fisher expansion out to such
a high order is difficult in practice. The ease at which Sillitto can accommodate higher
order moments makes it a desirable approximation method, particularly when interest lies
in capturing the effects of high order moments.

Many sources document that the Gram-Charlier, Edgeworth, and Cornish-Fisher expansions
yield invalid estimated probability functions for certain values of skewness and kurtosis.
Maillard (2012) describes the set of skewness and kurtosis values for which the Cornish-Fisher
expansion yields a monotonic estimate of the quantile function. Spiring (2011) describes both
sets of skewness and kurtosis values for which the Gram-Charlier and Edgeworth expansions
yield valid estimates of the pdf.

Chernozhukov et al. (2010) present a method called the increasing rearrangement which
restores monotonicity to the Edgeworth, Cornish-Fisher, and other related asymptotic ex-
pansions when the skewness or kurtosis fall outside their valid regions. The authors prove
that the rearranged function is at least as good as the originally estimated function in Lp
norm, p ∈ (1,∞). If the originally estimated function is invalid, they go on to show that the
increasing rearrangement leads to a strictly better estimate in Lp norm.

Amédée-Manesme et al. (2012) utilize the increasing rearrangement with a Cornish-Fisher
expansion to calculate direct real estate VaR. They calculate a rolling VaR over time of
real estate returns in the UK. The authors credit the increasing rearrangement procedure as
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making a rolling calculation possible, because it overcomes the problem of sample skewness
or kurtosis falling outside the valid region.

Simonato (2011) describes in detail how to approximate VaR and expected shortfall using
Gram-Charlier, Cornish-Fisher, and Johnson distributions. For technical details of these
three methods we direct you to Simonato’s paper. Also included is a simulation study
designed to compare the accuracy of the three methods in approximating VaR and expected
shortfall. Simonato concludes that in addition to having no skewness or kurtosis restrictions,
Johnson distributions provide better VaR approximations on average than both the Gram-
Charlier method and Cornish-Fisher method.

3 The Increasing Rearrangement

Chernozhukov et al. (2010) define the increasing rearrangement as follows: Let f(x) be
a measurable function mapping [0, 1] → R, and let Ff (y) =

∫
1{f(u) ≤ y}du denote the

distribution function of f(X) when X ∼ U(0, 1). The function

f ∗(x) = inf

{
y ∈ R :

[∫
1{f(u) ≤ y}du

]
≥ x

}
is called the increasing rearrangement of the function f . The rearrangement operator trans-
forms the function f into its quantile function f ∗. The authors give the following working
definition of the increasing rearrangement; given values of the function f(x) evaluated at x
in a fine enough mesh of equidistant points, sort the values in increasing order. We use this
working definition to compute the VaR with Edgeworth, Gram-Charlier, and Cornish-Fisher.

Proposition 1 of Chernozhukov et al. (2010) states the following; Let f0 be a weakly increas-

ing measurable function that we want to approximate, and let f̂ be an initial approximation
to f0, then for any p ∈ [1,∞], the rearrangement of f̂ , denoted f̂ ∗, weakly reduces the
estimation error: (∫

X
|f̂ ∗(x)− f0(x)|pdx

) 1
p

≤
(∫
X
|f̂(x)− f0(x)|pdx

) 1
p

.

Furthermore, Corollary 1 of Chernozhukov et al. (2010) states that if f0 is strictly increasing

over X , and f̂ decreases over a subset of X with positive measure, then the improvement in
Lp norm for p ∈ (1,∞) is strict.

4 Three Expansions

In keeping with the notation used by Simonato (2011), let rh denote the continuously com-
pounded returns of a portfolio over an h year horizon. The VaR represents the unique return
such that over the next h year period, P (rh < V aR) = p. The VaR is calculated as

V aR = αh + σh × φ−1(p) (1)
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where αh and σh denote the expected value and standard deviation of the returns, respec-
tively, and φ−1(p) is the quantile function of the standardized returns.

The cdf of the standardized returns distribution can be estimated from the skewness (κ3)
and kurtosis (κ4) of the returns distribution using the Edgeworth expansion

φE(k|κ3, κ4) = φN−
κ3
6

[fN×(k2−1)]− (κ4 − 3)

24
[fN×k(k2−3)]+

(fN × κ23)
72

(k5−10k3+15k),

or the Gram-Charlier expansion,

φGC(k|κ3, κ4) = φN −
κ3
6

[fN × (k2 − 1)]− (κ4 − 3)

24
[fN × k(k2 − 3)].

Here φN and fN represent the standard normal cdf and pdf evaluated at k, respectively.
The quantile k = φ−1(p), needed in equation (1), can be found through numerical search
by finding the value k such that φ(k|κ3, κ4) = p. The Gram-Charlier expansion only differs
from the Edgeworth expansion by truncation of the last term. When skewness is zero, the
Gram-Charlier and Edgeworth expansions are equal.

The quantile function of the standardized return distribution can be estimated from the
skewness and kurtosis of the returns distribution using the Cornish-Fisher expansion

φ−1CF (p|κ3, κ4) = φ−1N +
κ3
6

[
(φ−1N )2 − 1

]
+

(κ4 − 3)

24

[
(φ−1N )3 − 3φ−1N

]
− κ23

36

[
2(φ−1N )3 − 5φ−1N

]
.

Here φ−1N represents the standard normal quantile function evaluated at p. The resultant
quantile estimate φ−1CF (p) can be directly plugged into equation (1) to approximate VaR.

5 Computing VaR With an Increasing Rearrangement

We begin by describing how to approximate VaR when applying an increasing rearrangement
to the Gram-Charlier or Edgeworth estimated cdfs. To simplify notation let φ(k|κ3, κ4)
denote either φE(k|κ3, κ4) or φGC(k|κ3, κ4). If φ(k|κ3, κ4) is not monotone, then an increasing
rearrangement is applied to obtain a monotone estimate φ∗(k|κ3, κ4).

Approximating VaR with a rearranged Edgeworth or Gram-Charlier cdf can be performed
as follows. First, subdivide a large enough interval [a, b] ⊂ X of the standardized return
support X into a fine grid. Second, evaluate φ(k|κ3, κ4) for all k ∈ [a, b]. Third, sort these
values from smallest to largest to yield the monotone cdf estimate φ∗(k|κ3, κ4) = p. Fourth,
from the sorted values, the desired quantile is the value such that φ∗−1(p|κ3, κ4) = k. The
VaR of the returns is approximated by plugging φ∗−1(p) into equation (1).

Approximating VaR with a rearranged Cornish-Fisher quantile function can be performed
as follows. First, subdivide the interval p ∈ (0, 1) into a fine grid. Second, depending on the
grid size, note down which position of the grid contains to the desired VaR probability p,
say the ith position. Third, evaluate φ−1CF (p|κ3, κ4) for all p ∈ (0, 1). Fourth, sort these values
from smallest to largest to yield the monotone quantile function estimate φ∗−1(p|κ3, κ4) = k.
After sorting, the value now occupying the ith position φ∗−1(p|κ3, κ4) can be directly plugged
into equation (1) to yield the VaR approximation.
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6 Johnson Distributions

The Johnson (1949) system of distributions is made up of three translation functions. Letting
Z denote a standard normal random variable, the system considers transformations of the
form

Z = γ + δf

(
Y − µ
σ

)
,

where the function f(.) is given by

f(u) =


ln(u) Lognormal (SL)

ln
(

u
1−u

)
Bounded (SB)

sinh−1(u) Unbounded (SU).

In the above definition, µ is a location parameter, σ is a scale parameter, γ is a shape
parameter, and δ is another shape parameter. Together, the SL, SB, and SU distributions
can accommodate all possible combinations of skewness and kurtosis. Furthermore, each
distribution covers a unique region on the skewness-kurtosis space.

Both the skewness and kurtosis are nonlinear functions of the shape parameters γ and δ,
and therefore finding the Johnson distribution with desired values of skewness and kurtosis
must be done numerically. The Fortran algorithm by Hill et al. (1976) numerically finds
the Johnson distribution with the desired mean, standard deviation, skewness, and kurtosis.
This algorithm has been ported into R by McLeod et al. (2012), and is freely available for
use in their JohnsonDistribution package.

Simonato (2011) describes in detail how to approximate VaR using Johnson distributions.
With a mean of zero, standard deviation of one, and desired skewness and kurtosis, first use
the algorithm above to find the functional form f(.) and estimates (µ̂, σ̂, γ̂, δ̂). With these
values in hand, and letting φ−1N denote the standard normal quantile function evaluated at
p, the quantile needed for equation (1) is given by

φ−1J (p) = µ̂+ σ̂f−1
(
φ−1N − γ̂

δ̂

)
.

7 Simulation Setup

We simulate asset returns using Merton’s (1976) jump-diffusion framework which specifies
that asset prices evolve continuously but may occasionally have discontinuous jumps. For-
mally, the jump-diffusion framework is defined as the sum of a Brownian motion and a
compound Poisson process, both assumed independent. Letting Rh denote the log-returns
of an asset over h years, the process can be written as

Rh =

[
α− 1

2
σ2 − λ

(
eαJ+

1
2
σ2
J − 1

)]
h+ σZ + I(Nh ≥ 1)

Nh∑
j=1

Yj .
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In the equation above, Z is a normal random variable with mean zero and variance h, Nh

is a Poisson(λh) random variable, and Yj are iid normal random variables with mean αJ
and variance σ2

J . The model parameters have the following interpretation: h denotes time
in years, α denotes the expected annual asset returns, σ2 denotes the annual variance of
returns conditional on no jumps, λ is the annual arrival rate of jumps, αJ is the mean jump
magnitude, and σ2

J is the variance of the jump magnitude.

The Merton jump-diffusion framework gives rise to a Gaussian mixture distribution with
Poisson mixture weights. Analytic forms of the pdf and the first four moments are provided
in the Appendix.

To cover a wide set of skewness and kurtosis combinations we first simulated 20,000 parameter
sets (h, α, σ, λ, αJ , σJ). Following Simonato (2011), each parameter value was independently
drawn from a uniform distribution with limits given by: h ∈ [1/250, 20/250], α ∈ [0.01, 0.1],
σ ∈ [0.1, 0.5], λ ∈ [1, 5], αJ ∈ [−0.1, 0.1], and σJ ∈ [0.01, 0.1]. These 20,000 sets of parameters
were used for the remainder of the study.

One departure of our study from that of Simonato (2011) is the probability p at which
VaR is approximated. Rather than randomly selecting the probability p from the uniform
distribution with limits p ∈ [0.001, 0.05], we approximated VaR at the four values p ∈
{0.001, 0.01, 0.05, 0.1} in each run. It is our opinion that the probability p at which VaR is
approximated is of specific interest, and predetermined by the user. Consequently, potential
users of these methods may be interested in how they compare at specific values of p.

The first part of the simulation study investigates how well each method performs when
actual population quantities are used as inputs into the four approximation methods. Using
the 20,000 parameter sets (h, α, σ, λ, αJ , σJ), we calculate 20,000 sets of the following popu-
lation quantities: mean, variance, skewness, and kurtosis (αh, σ

2
h, κ3, κ4). These population

quantities are then directly input into each of the four VaR approximation methods. Formu-
las expressing (αh, σ

2
h, κ3, κ4) as functions of the parameters (h, α, σ, λ, αJ , σJ) are provided

in the Appendix.

The second part of the simulation study investigates how well each method performs when
the sample estimates (α̂h, σ̂

2
h, κ̂3, κ̂4) are used as inputs into the four approximation methods,

across a range of sample sizes. This phase involved simulating 5 independent samples of sizes
n ∈ {20, 40, 60, 125, 250} at each of the 20,000 parameter sets. Within each of the five sam-
ples, the sample mean, sample variance, sample skewness, and sample kurtosis (α̂h, σ̂

2
h, κ̂3, κ̂4)

are estimated with their typical sample estimators. These sample estimates are then used
as the inputs into each of the four VaR approximation methods.

8 Simulation Results

Let V aRB denote the true baseline VaR under Merton’s jump-diffusion framework for param-
eter values (h, α, σ, λ, αJ , σJ), and let di = (V aREst−V aRB)2i denote the squared differences
between the estimated VaR and true baseline VaR. We explain how to find V aRB in the
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Appendix. As used in Simonato (2011), we compare the performance of the four methods
through their root-mean-square-errors (rmse) computed as:

rmse =

√√√√ 1

n

n∑
i=1

di =
√
d̄.

In addition to rmse we also provide the mean-square-error (mse) which allows for construc-
tion of approximate 99.7% Monte-Carlo error bounds. The mse is computed as:

mse =
1

n

n∑
i=1

di = d̄,

and the associated error bounds are given by:

mse± 3σ̂n√
n
, where σ̂n =

√√√√ 1

n− 1

n∑
i=1

(di − d̄)2.

Tables 1-6 provide the results. Each table is organized as follows. The second and third
columns provide the rmse and mse, respectively. The fourth and fifth columns provide
the lower and upper approximate 99.7% Monte-Carlo error bounds in estimating the mse,
respectively. The sixth column of each table ranks the four methods from best (lowest mse)
to worst (highest mse).

Ranks were assigned based on the Monte-Carlo intervals. When two intervals overlap, both
methods are assigned the same rank. A small number of cases had to be assigned two ranks
because one interval overlapped with one interval on the high end and another on the low
end, but all three had no common overlap. These represent an ambiguous result.

Table 1 shows the results when the population quantities (αh, σ
2
h, κ3, κ4) are used as inputs

to approximate VaR. At all four probabilities, p ∈ {0.001, 0.01, 0.05, 0.1}, the Johnson class
of distributions dominates the other three methods in terms of mse.

Table 2, Table 3, and Table 4 provide the small-sample results for sample sizes n = 20, n = 40
and n = 60, respectively. When compared to Table 1, some of the more surprising results
are the following. For n = 20, Johnson distributions yield the worst VaR approximation at
every probability, p ∈ {0.001, 0.01, 0.05, 0.1}. With the exception of Johnson distributions
at n = 20, all four methods are indistinguishable in approximating VaR at p ∈ {0.1}. For
n = 20, n = 40 and n = 60, the Gram-Charlier method yields the best VaR approximation
at the lowest probabilities, p ∈ {0.001, 0.01}, and the worst approximation at p ∈ {0.05}.
For n = 20, n = 40 and n = 60, the Cornish-Fisher method is a top performer for p ∈ {0.05}.

Table 5 provides the sample results for n = 125. With a sample of this size, Johnson
distributions are as good as any other method at every probability p ∈ {0.001, 0.01, 0.05, 0.1}.
The Gram-Charlier method also continues to be a top performer at the lowest probabilities,
p ∈ {0.001, 0.01}. The Cornish-Fisher method no longer shows up as a top performer for
p ∈ {0.05}.
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Table 6 provides the sample results for n = 250. This is the largest sample size used in the
study, and the results are nearly identical to the population results of Table 1. The ranks
for p ∈ {0.001, 0.05, 0.1} of Table 6 are identical to the corresponding ranks in Table 1. For
p ∈ {0.01} the ranks are also quite similar to Table 1, except for the inability to distinguish
between the performance of the Gram-Charlier and Edgeworth methods in Table 6. The
population results of Table 1 can be interpreted in practical terms as a very large sample
where sample moments have converged to their population counterparts.

9 Conclusion

This study compares four methods used to approximate VaR from the first four moments
of a distribution. Applying the increasing rearrangement to the Gram-Charlier, Edgeworth,
and Cornish-Fisher methods yields a unique VaR approximation for any possible value of
skewness and kurtosis. This in turn facilitates more meaningful comparison among the four
methods, since they are all valid over the entire skewness-kurtosis space.

When using true population quantities, or with a large enough sample, the Johnson family
yields better approximations of VaR on average at all four probability levels considered. This
however does not in general hold for small samples, particularly when computing VaR at the
smallest probability levels.

For p ∈ {0.001, 0.01} Gram-Charlier outperformed all other methods for sample sizes n ≤ 60,
and performed equally as well as Johnson distributions at n = 125. For p ∈ {0.05} Cornish-
Fisher was at least as good as any other method for sample sizes n ≤ 60.
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Appendix

The Merton jump-diffusion framework gives rise to a mixture of normal distributions with
mixing weights governed by a Poisson distribution. The pdf of the continuously compounded
returns over h years is given by

fRh(r) =
∞∑
n=0

e−λh(λh)n

n!

1√
2π(σ2h+ nσ2

J)
e

−
[
r−
([
α− 1

2σ
2−λ

(
e
αJ+1

2σ
2
J−1

)]
h+nαJ

)]2
2(σ2h+nσ2

J
) .

Given a particular probability p, the baseline V aRB is computed by numerically solving the
following expression for q

∫ q

−∞

∞∑
n=0

e−λh(λh)n

n!

1√
2π(σ2h+ nσ2

J)
e

−
[
r−
([
α− 1

2σ
2−λ

(
e
αJ+1

2σ
2
J−1

)]
h+nαJ

)]2
2(σ2h+nσ2

J
) dr = p.

For the range of parameter values considered in this paper, much of the density is contained
in the first few terms of the infinite sum above. All computations used to compute V aRB

were done by expanding fRh(r) out 100 terms. This is many more terms than needed for an
accurate computation.

Das and Sundaram (1999) derive the following closed form formulas for the mean, variance,
skewness, and kurtosis over h years:

αh = h

[
α− λ

(
eαJ+

1
2
σ2
J − 1

)
− 1

2
σ2 + λαJ

]
σ2
h = h(σ2 + λσ2

J + λα2
J)

κ3 =
1√
h

[
λ(α3

J + 3αJσ
2
J)

(σ2 + λσ2
J + λα2

J)3/2

]
κ4 = 3 +

1

h

[
λ(α4

J + 6α2
Jσ

2
J + 3σ4

J)

(σ2 + λσ2
J + λα2

J)2

]
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Tables

Table 1: VaR Computed from Population Quantities

p = 0.001 rmse mse mse− 3σ̂n√
n

mse+ 3σ̂n√
n

rank

V aRGC − V aRB 0.0369 1.365× 10−3 1.296× 10−3 1.433× 10−3 3
V aRE − V aRB 0.0334 1.117× 10−3 1.064× 10−3 1.170× 10−3 2
V aRCF − V aRB 0.0531 2.815× 10−3 2.464× 10−3 3.167× 10−3 4
V aRJ − V aRB 0.0134 1.789× 10−4 1.627× 10−4 1.950× 10−4 1

p = 0.01 rmse mse mse− 3σ̂n√
n

mse+ 3σ̂n√
n

rank

V aRGC − V aRB 0.0121 1.454× 10−4 1.352× 10−4 1.555× 10−4 3
V aRE − V aRB 0.0107 1.137× 10−4 1.074× 10−4 1.200× 10−4 2
V aRCF − V aRB 0.0172 2.966× 10−4 2.556× 10−4 3.376× 10−4 4
V aRJ − V aRB 0.0063 4.022× 10−5 3.778× 10−5 4.266× 10−5 1

p = 0.05 rmse mse mse− 3σ̂n√
n

mse+ 3σ̂n√
n

rank

V aRGC − V aRB 0.0105 1.094× 10−4 1.034× 10−4 1.155× 10−4 4
V aRE − V aRB 0.0091 8.214× 10−5 7.677× 10−5 8.750× 10−5 3
V aRCF − V aRB 0.0058 3.356× 10−5 3.126× 10−5 3.587× 10−5 2
V aRJ − V aRB 0.0035 1.231× 10−5 1.136× 10−5 1.326× 10−5 1

p = 0.10 rmse mse mse− 3σ̂n√
n

mse+ 3σ̂n√
n

rank

V aRGC − V aRB 0.0068 4.649× 10−5 4.342× 10−5 4.956× 10−5 3
V aRE − V aRB 0.0044 1.936× 10−5 1.812× 10−5 2.060× 10−5 2
V aRCF − V aRB 0.0047 2.245× 10−5 2.047× 10−5 2.444× 10−5 2
V aRJ − V aRB 0.0027 7.477× 10−6 6.791× 10−6 8.163× 10−6 1
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Table 2: VaR Computed from Sample Estimates (n = 20)

p = 0.001 rmse mse mse− 3σ̂n√
n

mse+ 3σ̂n√
n

rank

V aRGC − V aRB 0.0855 7.306× 10−3 7.067× 10−3 7.545× 10−3 1
V aRE − V aRB 0.0873 7.623× 10−3 7.370× 10−3 7.876× 10−3 1
V aRCF − V aRB 0.1000 9.994× 10−3 9.679× 10−3 1.031× 10−2 2
V aRJ − V aRB 0.1045 1.093× 10−2 1.060× 10−2 1.126× 10−2 3

p = 0.01 rmse mse mse− 3σ̂n√
n

mse+ 3σ̂n√
n

rank

V aRGC − V aRB 0.0492 2.416× 10−3 2.316× 10−3 2.516× 10−3 1
V aRE − V aRB 0.0517 2.677× 10−3 2.556× 10−3 2.797× 10−3 2
V aRCF − V aRB 0.0526 2.765× 10−3 2.657× 10−3 2.874× 10−3 2
V aRJ − V aRB 0.0578 3.343× 10−3 3.204× 10−3 3.482× 10−3 3

p = 0.05 rmse mse mse− 3σ̂n√
n

mse+ 3σ̂n√
n

rank

V aRGC − V aRB 0.0335 1.124× 10−3 1.066× 10−3 1.181× 10−3 2
V aRE − V aRB 0.0298 8.896× 10−4 8.480× 10−4 9.311× 10−4 1
V aRCF − V aRB 0.0308 9.510× 10−4 9.070× 10−4 9.950× 10−4 1
V aRJ − V aRB 0.0331 1.097× 10−3 1.045× 10−3 1.148× 10−3 2

p = 0.10 rmse mse mse− 3σ̂n√
n

mse+ 3σ̂n√
n

rank

V aRGC − V aRB 0.0243 5.886× 10−4 5.622× 10−4 6.151× 10−4 1
V aRE − V aRB 0.0243 5.922× 10−4 5.665× 10−4 6.180× 10−4 1
V aRCF − V aRB 0.0251 6.307× 10−4 6.018× 10−4 6.597× 10−4 1,2
V aRJ − V aRB 0.0257 6.585× 10−4 6.291× 10−4 6.878× 10−4 2
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Table 3: VaR Computed from Sample Estimates (n = 40)

p = 0.001 rmse mse mse− 3σ̂n√
n

mse+ 3σ̂n√
n

rank

V aRGC − V aRB 0.0702 4.929× 10−3 4.765× 10−3 5.094× 10−3 1
V aRE − V aRB 0.0711 5.054× 10−3 4.885× 10−3 5.223× 10−3 1
V aRCF − V aRB 0.0842 7.097× 10−3 6.803× 10−3 7.390× 10−3 2
V aRJ − V aRB 0.0824 6.783× 10−3 6.554× 10−3 7.012× 10−3 2

p = 0.01 rmse mse mse− 3σ̂n√
n

mse+ 3σ̂n√
n

rank

V aRGC − V aRB 0.0381 1.449× 10−3 1.387× 10−3 1.511× 10−3 1
V aRE − V aRB 0.0405 1.644× 10−3 1.572× 10−3 1.717× 10−3 2
V aRCF − V aRB 0.0415 1.724× 10−3 1.650× 10−3 1.797× 10−3 2,3
V aRJ − V aRB 0.0424 1.797× 10−3 1.723× 10−3 1.872× 10−3 3

p = 0.05 rmse mse mse− 3σ̂n√
n

mse+ 3σ̂n√
n

rank

V aRGC − V aRB 0.0256 6.568× 10−4 6.198× 10−4 6.937× 10−4 2
V aRE − V aRB 0.0232 5.370× 10−4 5.114× 10−4 5.626× 10−4 1
V aRCF − V aRB 0.0227 5.159× 10−4 4.920× 10−4 5.397× 10−4 1
V aRJ − V aRB 0.0230 5.279× 10−4 5.033× 10−4 5.526× 10−4 1

p = 0.10 rmse mse mse− 3σ̂n√
n

mse+ 3σ̂n√
n

rank

V aRGC − V aRB 0.0175 3.056× 10−4 2.920× 10−4 3.192× 10−4 1
V aRE − V aRB 0.0173 2.987× 10−4 2.848× 10−4 3.126× 10−4 1
V aRCF − V aRB 0.0179 3.215× 10−4 3.064× 10−4 3.366× 10−4 1
V aRJ − V aRB 0.0178 3.157× 10−4 3.014× 10−4 3.300× 10−4 1
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Table 4: VaR Computed from Sample Estimates (n = 60)

p = 0.001 rmse mse mse− 3σ̂n√
n

mse+ 3σ̂n√
n

rank

V aRGC − V aRB 0.0630 3.975× 10−3 3.838× 10−3 4.111× 10−3 1
V aRE − V aRB 0.0631 3.983× 10−3 3.846× 10−3 4.120× 10−3 1
V aRCF − V aRB 0.0759 5.764× 10−3 5.493× 10−3 6.034× 10−3 3
V aRJ − V aRB 0.0705 4.973× 10−3 4.800× 10−3 5.146× 10−3 2

p = 0.01 rmse mse mse− 3σ̂n√
n

mse+ 3σ̂n√
n

rank

V aRGC − V aRB 0.0327 1.072× 10−3 1.027× 10−3 1.117× 10−3 1
V aRE − V aRB 0.0347 1.203× 10−3 1.152× 10−3 1.253× 10−3 2
V aRCF − V aRB 0.0359 1.291× 10−3 1.233× 10−3 1.349× 10−3 2
V aRJ − V aRB 0.0349 1.219× 10−3 1.171× 10−3 1.267× 10−3 2

p = 0.05 rmse mse mse− 3σ̂n√
n

mse+ 3σ̂n√
n

rank

V aRGC − V aRB 0.0219 4.799× 10−4 4.544× 10−4 5.054× 10−4 3
V aRE − V aRB 0.0199 3.972× 10−4 3.777× 10−4 4.167× 10−4 2
V aRCF − V aRB 0.0190 3.596× 10−4 3.436× 10−4 3.755× 10−4 1
V aRJ − V aRB 0.0187 3.496× 10−3 3.341× 10−4 3.651× 10−4 1

p = 0.10 rmse mse mse− 3σ̂n√
n

mse+ 3σ̂n√
n

rank

V aRGC − V aRB 0.0146 2.145× 10−4 2.051× 10−4 2.239× 10−4 1
V aRE − V aRB 0.0143 2.057× 10−4 1.962× 10−4 2.151× 10−4 1
V aRCF − V aRB 0.0148 2.181× 10−4 2.081× 10−4 2.280× 10−4 1
V aRJ − V aRB 0.0145 2.108× 10−4 2.013× 10−4 2.203× 10−4 1
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Table 5: VaR Computed from Sample Estimates (n = 125)

p = 0.001 rmse mse mse− 3σ̂n√
n

mse+ 3σ̂n√
n

rank

V aRGC − V aRB 0.0528 2.785× 10−3 2.687× 10−3 2.884× 10−3 1
V aRE − V aRB 0.0517 2.668× 10−3 2.576× 10−3 2.761× 10−3 1
V aRCF − V aRB 0.0670 4.494× 10−3 4.120× 10−3 4.868× 10−3 2
V aRJ − V aRB 0.0534 2.853× 10−3 2.739× 10−3 2.968× 10−3 1

p = 0.01 rmse mse mse− 3σ̂n√
n

mse+ 3σ̂n√
n

rank

V aRGC − V aRB 0.0255 6.507× 10−4 6.221× 10−4 6.792× 10−4 1
V aRE − V aRB 0.0267 7.113× 10−4 6.802× 10−4 7.423× 10−4 2
V aRCF − V aRB 0.0291 8.471× 10−4 7.908× 10−4 9.033× 10−4 3
V aRJ − V aRB 0.0252 6.368× 10−4 6.095× 10−4 6.641× 10−4 1

p = 0.05 rmse mse mse− 3σ̂n√
n

mse+ 3σ̂n√
n

rank

V aRGC − V aRB 0.0174 3.044× 10−4 2.880× 10−4 3.208× 10−4 4
V aRE − V aRB 0.0160 2.549× 10−4 2.411× 10−4 2.686× 10−4 3
V aRCF − V aRB 0.0142 2.005× 10−4 1.915× 10−4 2.096× 10−4 2
V aRJ − V aRB 0.0132 1.751× 10−3 1.674× 10−4 1.828× 10−4 1

p = 0.10 rmse mse mse− 3σ̂n√
n

mse+ 3σ̂n√
n

rank

V aRGC − V aRB 0.0114 1.289× 10−4 1.232× 10−4 1.345× 10−4 3
V aRE − V aRB 0.0106 1.120× 10−4 1.069× 10−4 1.170× 10−4 1,2
V aRCF − V aRB 0.0108 1.171× 10−4 1.120× 10−4 1.223× 10−4 2
V aRJ − V aRB 0.0103 1.058× 10−4 1.012× 10−4 1.103× 10−4 1
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Table 6: VaR Computed from Sample Estimates (n = 250)

p = 0.001 rmse mse mse− 3σ̂n√
n

mse+ 3σ̂n√
n

rank

V aRGC − V aRB 0.0459 2.105× 10−3 2.026× 10−3 2.185× 10−3 3
V aRE − V aRB 0.0437 1.911× 10−3 1.843× 10−3 1.979× 10−3 2
V aRCF − V aRB 0.0614 3.766× 10−3 3.370× 10−3 4.162× 10−3 4
V aRJ − V aRB 0.0400 1.604× 10−3 1.538× 10−3 1.670× 10−3 1

p = 0.01 rmse mse mse− 3σ̂n√
n

mse+ 3σ̂n√
n

rank

V aRGC − V aRB 0.0205 4.204× 10−4 4.017× 10−4 4.391× 10−4 2
V aRE − V aRB 0.0209 4.370× 10−4 4.180× 10−4 4.560× 10−4 2
V aRCF − V aRB 0.0242 5.847× 10−4 5.379× 10−4 6.316× 10−4 3
V aRJ − V aRB 0.0184 3.383× 10−4 3.241× 10−4 3.525× 10−4 1

p = 0.05 rmse mse mse− 3σ̂n√
n

mse+ 3σ̂n√
n

rank

V aRGC − V aRB 0.0146 2.132× 10−4 2.013× 10−4 2.251× 10−4 4
V aRE − V aRB 0.0131 1.729× 10−4 1.627× 10−4 1.830× 10−4 3
V aRCF − V aRB 0.0109 1.183× 10−4 1.127× 10−4 1.239× 10−4 2
V aRJ − V aRB 0.0096 9.168× 10−5 8.771× 10−5 9.565× 10−5 1

p = 0.10 rmse mse mse− 3σ̂n√
n

mse+ 3σ̂n√
n

rank

V aRGC − V aRB 0.0093 8.634× 10−5 8.218× 10−5 9.050× 10−5 3
V aRE − V aRB 0.0081 6.509× 10−5 6.214× 10−5 6.804× 10−5 2
V aRCF − V aRB 0.0084 6.978× 10−5 6.633× 10−5 7.323× 10−5 2
V aRJ − V aRB 0.0075 5.559× 10−5 5.319× 10−5 5.799× 10−5 1
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