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Abstract 

A tabu search heuristic procedure for the capacitated facility location problem is developed, 

implemented and computationally tested. The heuristic procedure uses both short term and long term memories 

to perform the main search process as well as the diversification and intensification functions. Visited solutions 

are stored in a primogenitary linked quad tree as a long term memory. The recent iteration at which a facility 

changed its status is stored for each facility site as a short memory. Lower bounds on the decreases of total cost 

are used to measure the attractiveness of switching the status of facilities and are used to select a move in the 

main search process. A specialized transportation algorithm is developed and employed to exploit the problem 

structure in solving transportation problems. The performance of the heuristic procedure is tested through 

computational experiments using test problems from the literature and new test problems randomly generated. It 

found optimal solutions for almost all test problems used. As compared to the Lagrangean and the 

surrogate/Lagrangean heuristic methods, the tabu search heuristic procedure found much better solutions using 

much less CPU time. 
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1. Introduction 

Facility location is a large area with a vast literature and numerous applications in the private and 

public sectors (Mirchandani and Francis, 1990; Daskin, 1995; Owen and Daskin, 1998; Drezner and Hamacher, 

2001). This study focuses on the capacitated facility location problem (CFLP). The CFLP involves the selection 

of sites where facilities with limited capacities are established and the assignment of clients to facilities so as to 

satisfy client demands while minimizing total operating and transportation costs. 

A CFLP consists of a set of m  potential sites where facilities can be established and n  clients whose 

demands can be satisfied from any established facility. Let I  denote the index set of all candidate facility sites, 

i.e., I = {1, , m } and J  denote the index set of all clients, i.e., {1, 2, , }J n= . Each facility i I∈  has a 

capacity ia  and each client j J∈  has a demand jb . The fixed cost of operating facility i  is represented by jf  

and the unit transportation cost from facility i  to client j  is represented by ijc . A binary variable iy  is used to 

represent the status of facility i , i.e., 1iy =  if it is open and 0iy =  if it is closed. A continuous variable ijx  is 

used to represent the quantity supplied from facility i  to client j . The CFLP is represented by the following 

mixed integer programming model. 

minz =  ij ij i i
i I j J i I

c x f y
∈ ∈ ∈

+∑∑ ∑   (1) 

s.t. ij j
i I

x b
∈

=∑  ∀ j J∈  (2) 

 ij i i
j J

x a y
∈

≤∑  ∀  i I∈  (3) 

 0ijx ≥  ∀  i I∈  and j J∈  (4) 

 {0,1}iy ∈  ∀ i I∈ . (5) 

In the model, the objective function (1) represents the total cost, including the total transportation cost 

and the total operating cost, to be minimized. Constraints (2) ensure that the demand of each client is satisfied 

and constraints (3) limit the amount of supplies to all clients from each facility i  to be within its capacity i ia y . 

Constraints (4) and (5) define the values that the variables can assume. By assigning values to the binary 

variables, iy , ∀ i I∈ , the resulting primal structure is a transportation problem. Setting 1jb =  in (2) and 

replacing the constraint in (3) for each i  with ij ix y≤ , ∀ j J∈ , a CFLP becomes a uncapacitated facility 

location problem (UFLP). 

In this study, a tabu search (TS) heuristic procedure is proposed for the CFLP. The short term memory 

structure records the recent iteration at which a facility changed status the last time. In addition to the recency 

based short term memory, a long term memory structure uses a primogenitary linked quad tree (PLQT) to store 

visited solutions. Once a solution is visited, it is memorized and its revisit is prohibited so as to prevent 
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repetition and cycling. The evaluation to find the exact total cost of a trial solution in the neighborhood of the 

current solution involves the solution of a transportation problem. Because many trial solutions need to be 

evaluated, solving these transportation problems takes too much computational time in a heuristic procedure. 

Therefore, upper bounds on the decrease of total costs are computed and used to evaluate the attractiveness of 

the trial solutions in the neighborhood. When solving transportation problems for the visited solutions, a special 

transportation algorithm is used to exploit the problem structure. The performance of the TS heuristic procedure 

is tested on test problems from the OR-Library (Beasley, 1990) and on test problems newly generated. The 

Lagrangean heuristic (LH) method and the surrogate/Lagrangean heuristic (SLH) methods, both implemented 

by Lorena and Senne (1999), are used as benchmarks to measure the effectiveness and efficiency of the TS 

procedure. The software CPLEX is used to find optimal solutions for easy problems. 

The rest of the paper is organized as follows. A brief literature review is given in Section 2. The TS 

heuristic procedure is presented in Section 3. Computational results are reported in Section 4. Concluding 

remarks are given in Section 5. 

2. Previous Work 

The CFLP has been studied extensively. Many exact algorithms and heuristic methods have been 

developed to solve it in the last 40 years. Because UFLP and CFLP are closely related, many heuristic methods 

developed for the UFLP are also extended to the CFLP. 

Kuehn and Hamburger (1963) developed the first heuristic method for the UFLP, which was later 

extended to the CFLP by Jacobsen (1983). This heuristic method consists of two phases. The first phase, called 

ADD, starts with all facilities closed and then the facility that causes the maximum total cost reduction is 

opened. This phase ends when no more facilities can be opened to further reduce the total cost. The second 

phase is a local search procedure in which an open facility and a closed facility exchange their status if this 

exchange reduces the total cost. Domschke and Drexl (1985) proposed priority rules for the ADD procedure to 

improve its performance in cases where the facilities have distinct capacities and/or distinct fixed operating 

costs. Feldman et al. (1966) proposed a different strategy for the first phase, named DROP, that was also 

extended to the CFLP by Jacobsen (1983). In DROP, all facilities are initially open and a facility is closed if 

closing it results in the maximum reduction in the total cost. This phase ends when closing a facility does not 

result in any further reduction in the total cost. 

Lagrangean relaxation has been applied to several facility location problems. Cornuejols et al. (1991) 

presented an excellent theoretical analysis of all possible Lagrangean relaxations and the linear programming 

relaxation for the CFLP, and showed that only 7 relaxations yield distinct bounds. Dominance relations among 

the relaxations were also discussed. Beasley (1993) presented a unified framework of using the lagrangean 

Heuristic (LH) method to solve different facility location problems. In the proposed framework for the CFLP, 

constraints (2) and (3) are relaxed and the solution of the relaxed problem is trivial. Lorena and Senne (1999) 

proposed a LH method for the UFLP and the CFLP. Constraints (2) are relaxed and the resulting relaxed 
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problem decomposes into a continuous knapsack problem, which is solved in linear time (Martelo and Toth, 

1990). In this LH method, local information from surrogate constraints is used to accelerate convergence of the 

subgradient method. Barahona and Chudak (2001) also proposed a LH method for the UFLP and the CFLP. 

Initially they considered the linear programming relaxation of the CFLP and then suggested the Lagrangean 

relaxation relative to constraints (2) for solving the linear programming problem. They used the volume 

algorithm (Barahona and Anbil, 2000) in order to maximize the dual objective function. The volume algorithm 

is an extension of the subgradient method and aims at generating good primal solutions. The name of the 

method comes from a theorem stating that a primal solution can be obtained from the volume under the faces of 

the piecewise linear and concave dual objective function. 

Several exact algorithms based on branch-and-bound have been proposed. The major differences 

among these algorithms are in the types of relaxation, the methods of solving the relaxed problem and the 

strategies to improve the lower bound. Sa (1969) replaced the binary variable iy  with (1/ )i ijj Ja x
∈∑ and the 

resulting relaxed problem became a transportation problem. Akinc and Khumawala (1977) applied the same 

relaxation and defined a “maximum useful capacity” in order to obtain tighter bounds. Geoffrion and McBride 

(1978) used the Lagrangean relaxation by relaxing constraints (2). Nauss (1978) used the same relaxation and 

included the inequality i i ji I j Ja y b
∈ ∈

≥∑ ∑  in order to obtain tighter bounds. Christofides and Beasley (1983) 

also used this relaxation and introduced penalties for opening or closing a facility, also with the intent of 

improving the lower bound. Van Roy (1986) implemented the cross decomposition method that combines 

Benders decomposition and Lagrangean relaxation in order to exploit the primal and dual structures of the 

CFLP. Leung and Magnanti (1989) introduced a family of facets and valid inequalities for solving the CFLP 

with equal capacities. Aardal (1998) proposed new valid inequalities and implemented two branch-and-cut 

algorithms that are tested on small and medium test problems from the literature. 

The TS metaheuristic has been successfully applied to a variety of combinatorial optimization 

problems, but not much research has been reported in using this metaheuristic to solve the CFLP. The TS 

heuristic procedure proposed by Grolimund and Ganascia (1997) was applied to the CFLP and limited 

computational results were reported. However, TS procedures have been developed for more complicated 

facility location problems, such as those by Delmaire et al. (1998), Ferreira Filho and Galvão (1998), França et 

al. (1999), and Tuzun and Burke (1999). Al-Sultan and Al-Fawzan (1999), Ghosh (2003), Hoefer (2003), 

Michel and Van Hentenryck (2004) and Sun (2005, 2006a) have applied TS to the UFLP. 

3. The Tabu Search Heuristic Procedure 

The TS metaheuristic (Glover, 1989, 1990; Glover and Laguna, 1997) uses responsive exploration and 

flexible memory to guide the search in the solution process. By responsive exploration, it determines a search 

direction based on the properties of the current solution and the search history. By flexible memory, it uses short 

term and longer term memory structures to record a selective search history. The memory structure used in this 
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study keeps track of solutions, as well as some of their attributes, visited in the search process. The short term 

memory records the recent time when a facility changed status and the long term memory memorizes visited 

solutions. This memory structure prevents solutions from being revisited and, therefore, prevents repetition and 

cycling. 

The proposed TS heuristic procedure is composed of search cycles. Each search cycle, except for the 

first, comprises the diversification function, the main search process, and the diversification function, in that 

order. The components of the TS heuristic procedure are detailed first in the following and then a step-by-step 

description is given. 

3.1. Move 

For a given solution, I  is partitioned into two subsets 0I  and 1I , where 0I  consists of the indices of 

the facilities that are closed and 1I  consists of the indices of the facilities that are open, respectively, i.e., 

0 { | 0}iI i I y= ∈ =  and 1 { | 1}iI i I y= ∈ = . Accordingly, 0m  and 1m , with 0 1m m m+ = , represent the numbers 

of closed and open facilities, respectively, i.e., 0 0| |m I=  and 1 1| |m I= . 

A move is defined as the status change of any facility i I∈ , i.e., 1i iy y← − . Thus a move is a 

transition from the current partition of I  to a new partition of I  by taking one element from 0I  and placing it 

into 1I  or vice versa. We use k  to count the number of moves, or iterations, made since the search started. 

The minimum total cost, including the transportation cost and the operating cost, of the partition at 

iteration k  is denoted by kz .The cost of the best solution found in a single search cycle is denoted by 0z  and 

the iteration at which 0z  is found is denoted by 0k . The values of 0z  and 0k  are updated when a better solution 

is found and are reset when a new search cycle starts. The cost of the best solution found since the search started 

is denoted by 00z . The value of 00z  is updated whenever a solution with total cost less than 00z  is found.  

3.2. Feasible and Infeasible Solutions 

Let A  denote the total capacity of all open facilities of a given partition and B  the total demand of all 

clients, i.e., 
1

ii IA a
∈

= ∑ and jj JB b
∈

= ∑ . The solution corresponding to a partition is feasible if and only if A 

≥ B. This TS procedure searches only the set of feasible solutions. A facility 1i I′∈  of a feasible solution can be 

closed and the resulting solution is still feasible only if  

 iA a B′− ≥ . (6)

Otherwise, the resulting solution is infeasible and facility 1i I′∈  cannot be closed. However, if the current 

solution is feasible, the resulting solution is always feasible when a currently closed facility 0i I′∈  becomes 

open. After the status of any facility i′  changes, the value of A is updated accordingly, i.e.,  

 iA A a ′← + , if 0i I′∈        or      iA A a ′← − , if 1i I′∈ . (7)
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Domschke and Drexl (1985) point out that the ADD method may lead to bad solutions when the 

facility capacities are distinct. They proposed three priority rules of opening facilities in order to overcome this 

difficulty. One priority rule is to move facilities 0i I∈  to 1I  in the order of increasing values of 

 12

1

n
jj

i i in
ij jj

b
P f a

c b
=

=

= −
∑
∑

 (8)

until the feasibility condition A B≥  is satisfied. Another priority rule is to move facilities 0i I∈  to 1I  in the 

order of increasing values of  

 
/3
13

/ 3

n
ijj i

i
i

c f
P

n a

⎢ ⎥⎣ ⎦
== +

⎢ ⎥⎣ ⎦

∑
 (9)

until the feasibility condition A B≥  is satisfied. Among the three rules, they showed that the rule of using 3
iP  

in (9) is the most efficient. Therefore, this rule is used in this study to find an initial feasible solution. 

3.3. Solution of Transportation Problems 

When the variables iy  are fixed to their binary values for a given partition of I , the CFLP (1)–(5) 

reduces to a transportation problem with 1m  supply nodes and n  demand nodes. In the solution process, one 

transportation problem needs to be solved for each move whether a facility is opened or closed. A network 

algorithm is used to solve these transportation problems. Although the transportation problem has only 1m  

supply nodes, all m  facilities are stored as supply nodes in the data structure of the solution algorithm. Keeping 

all m  facilities as supply nodes allows the current transportation problem to be solved starting from the optimal 

solution of the previous one.  

Facilities and clients are represented by nodes and roads from facilities to clients are represented by 

arcs. The arc from facility i I∈  to client j J∈  is represented by ( , )i j . One dummy demand node, numbered 

1 1n n= + , is used to absorb slack supplies. Hence, the demand at client 1n  is 
1nb A B= −  and the flow from a 

facility i I∈  to client 1n , denoted by 
1inx , represents the slack supply at facility i . A spanning tree, denoted by 

T , is used to represent the current basic solution in the solution process. The fact that the arc ( , )i j  is in the 

spanning tree is denoted by ( , )i j ∈T . As in any network algorithm, together with other data, the values of the 

dual variables associated with the nodes are stored in the spanning tree. These dual variables are used for pricing 

purpose, i.e., for determining if the current solution is optimal and if a non-basic arc should be selected to enter 

the spanning tree. 

Let c  be a very large unit shipping cost, substantially larger than any ijc , ∀  i I∈  and j J∈ . If 

facility 1i I′∈  needs to be closed, then c  is added to i jc ′ , ∀ j J∈ , to make the use of the arc ( , )i j′  too costly. 

After c  is added to i jc ′ , c  is also added to the dual variable associated with node i′ . In this way, arcs ( , )i j′ , 
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∀ j J∈ , are forced out of the spanning tree and the supply at facility i′  will not be used, which is equivalent to 

closing facility i′ . If facility 0i I′∈  needs to be opened, the current value of i jc ′  for each j J∈  is over its 

actual value by c . Hence, c  is subtracted from the current value of each i jc ′  to restore its original value. After 

c  is subtracted from the current value of each i jc ′ , c  is also subtracted from the value of the dual variable 

associated with node i′ . In this way, an arc ( , )i j′  becomes more likely to be selected to enter the spanning tree 

and the supply at facility i′  will be used, which is equivalent to opening facility i′ . By imposing a large unit 

transportation cost to the arcs outgoing from a closed facility, rather than changing the capacity of the closed 

facility, the optimal solution of the previous transportation problem is still primally feasible in the new 

transportation problem. 

In the implementation, a special purpose algorithm was developed to solve such transportation 

problems to exploit the problem structure. This special algorithm differs from standard network algorithms 

(Kennington and Helgason, 1980) in the selection of a non-basic arc to enter the spanning tree. Because none of 

the arcs outgoing from any closed facility 0i I′∈  should be in the spanning tree of the optimal solution, these 

arcs are skipped in the pricing process. Substantial computation time is saved by skipping these arcs, especially 

when 0m  is relatively large as compared with 1m . 

3.4. Visited Solutions 

Because the solution process of transportation problems uses most of the computation time, the 

transportation problem for any given partition of I  only needs to be solved at most once. A solution is visited if 

it is the partition of I  of any move. When visited, the transportation problem corresponding to the partition is 

solved, the partition and the minimum cost of the partition are saved.  

For a problem with m  candidate facility sites, there are fewer than 2m feasible solutions. These 

solutions can be naturally ordered from 0 to 2 1m − . Only a tiny portion of these solutions is visited in the 

solution process. Therefore, it is not necessary and not feasible to store the visited solutions in an array with 2m  

elements. However, searching these visited solutions may need too much computation time if the solutions are 

not stored in a specific order. Storing them in a specific order may take even a much longer computation time if 

they are stored in an ordinary array. 

In this study, visited solutions are stored in a PLQT. The PLQT is very efficient in storing and 

retrieving these visited solutions (Sun, 2007). The CPU time used to manage the PLQT is negligible as 

compared to that used to solve transportation problems. Sun (2007) provided detailed descriptions about the way 

a solution is encoded and represented in a PLQT and about the algorithms of storing and retrieving solutions. 

Hashing has been used for this purpose in the literature (Woodruff and Zemel, 1993). However, hashing may 

cause difficulties such as collision and excessive amount of memory space (Carlton and Barnes, 1996; Sun, 

2007). The use of a PLQT completely eliminates these difficulties. 
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3.5. Neighborhood 

The neighborhood of a feasible solution is the set of m  distinct solutions that can be reached by 

making one move from the current solution. Let k
iz ′∆  represent the decrease in total cost resulting from a move 

changing the status of facility i I′∈  at iteration k . The value of k
iz ′∆  measures the attractiveness of the move, 

the smaller the k
iz ′∆  is the more attractive the move is. Before a facility is selected to switch status for the next 

move, a number (up to m) of solutions in the neighborhood need to be evaluated to find or estimate k
iz ′∆  for 

some i I′∈ . 

If 1i I′∈ , the feasibility condition (6) of the resulting solution is checked first. If (6) is not satisfied, a 

k
iz ′∆ = ∞  is assigned to prevent 1i I′∈  from being closed. In the solution process, a solution is only expected to 

be visited at most once. If a solution is visited the second time, repeated visiting of a subset of solutions may 

occur. For each i I′∈  to be evaluated, the PLQT is searched. If the resulting solution is in the PLQT, the 

solution has been visited already. A k
iz ′∆ = ∞  is then assigned to prevent the solution from being visited again. 

If the resulting solution is feasible but has not been visited, k
iz ′∆  is then estimated. 

To find the exact value of k
iz ′∆  whether 0i I′∈  or 1i I′∈ , a transportation problem needs to be solved. 

Solving up to m  transportation problems before each move is relatively a very time consuming process. We 

found at the early stage of developing this TS procedure that exactly solving these transportation problems is 

impractical. Therefore, an upper bound on k
iz ′∆ , rather than its exact value, is computed and used in this TS 

procedure. 

A facility 0i I′∈  is a candidate to open if the resulting solution has not been visited already. The ADD-

LO procedure proposed by Jacobsen (1983) is used to estimate an upper bound on k
iz ′∆  for 0i I′∈ . When 

facility 0i I′∈  opens, the current flow from an 1i I∈  to a j J∈  may be shifted to a flow from i′  to j  if 

i j ijc c′ < . Let {( , ) | }i j iji j c c′= ∈ <A T , i.e., the set of basic arcs with i j ijc c′ < . Let *
ijx  be the current flow on 

arc ( , )i j  and let i
i jx ′  be the resulting flow shifted from arc ( , )i j  to arc ( , )i j′ . Solve the following continuous 

knapsack problem: 

iδ ′ = min  
( , )

( ) i
i j ij i j

i j
c c x′ ′

∈
−∑

A
  (10) 

s.t. 
( , )

i
i j i

i j
x a′ ′

∈
≤∑

A
  ( 11) 

 *0 i
i j ijx x′≤ ≤  ∀  ( , )i j ∈A . (12) 

Then  

 u k
i i iz fδ′ ′ ′∆ = +  (13)
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is an upper bound on k
iz ′∆   (Jacobsen, 1983) and k u k

iz z ′+ ∆  is an upper bound of the minimum total cost of the 

resulting partition. Although the solution process of the continuous knapsack problem in (10)-(12) requires a 

sorting of all arcs ( , )i j ∈A  in the ascending order of i j ijc c′ − , the problem is easy to solve because the number 

of arcs in A  is usually substantially smaller than that in T . 

A facility 1i I′∈  is a candidate to close in the next move only if it satisfies the feasibility condition (6) 

and the resulting solution has not been visited. When facility 1i I′∈  is closed, all flows from i′  must be supplied 

from other facilities. To find an upper bond on k
iz ′∆ , we assume these flows are supplied from the facilities 

1i I∈  with positive slack supplies, i.e., with 
1

0inx > . Let 
11{ | 0, '}S inI i I x i i= ∈ > ≠  represent the set of 

facilities, not including facility i′ , with positive slack supplies in the current solution. Let { | 0}D i jJ j J x ′= ∈ >  

represent the set of clients receiving shipments from facility i′  in the current solution. Let *
'i jx  be the current 

flow on arc ( , )i j′ , 
1

*
inx  be the slack supply of facility Si I∈ , and i

ijx ′  be the resulting flow on the arc ( , )i j  for 

Si I∈  and Dj J∈ . Solve the following transportation problem:  

iδ ′ = min  ( )
S D

i
ij i j ij

i I j J
c c x ′

′
∈ ∈

−∑ ∑   (14) 

s.t. 
*
'

S

i
ij i j

i I
x x′

∈
=∑  ∀ j JD∈  (15) 

 1

*

D

i
ij in

j J
x x′

∈
≤∑  ∀ i IS∈  (16) 

 0i
ijx ′ ≥  ∀ i IS∈  and j JD∈ . (17) 

Then i ifδ ′ ′−  is an upper bound on k
iz ′∆  (Jacobsen, 1983). This transportation problem is usually much smaller 

than the original transportation problem and is much easier to solve. Jacobsen (1983) mentioned this procedure 

and called it DROP-LO but did not implement it. Instead of obtaining iδ ′  by solving the transportation problem 

in (14)-(17) to optimality, the value of the objective function of an initial solution obtained with the greedy 

method, denoted by iδ ′ , is used as an upper bound of iδ ′  in this study. Then  

 u k
i i iz fδ′ ′ ′∆ = −  (18)

is also an upper bound on k
iz ′∆  and k u k

iz z ′+ ∆  is an upper bound of total cost of the resulting partition after 

closing facility i′ . Although u k
iz ′∆  is a looser bound than i ifδ ′ ′− , it is sufficient for the purpose of this TS 

heuristic. The greedy method requires a sorting of all arcs ( , )i j , ∀ Si I∈  and Dj J∈ , in the ascending order of 

ij i jc c ′− . However, such an initial solution is easy to find because the number of arcs involved is usually 

substantially smaller than that in T . 
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3.6. The Main Search Process 

The tabu tenure for each 0i I∈  is denoted by 0l  and that for each 1i I∈  is denoted by 1l . Hence, a 

facility is restricted to stay closed for 0l  moves after being closed and is restricted to stay open for 1l  moves 

after being opened unless the aspiration criterion is satisfied. The value of 0l  is randomly selected from the 

integers in the interval 0 0[ , ]l ul l  and that of 1l  is randomly selected from the integers in the interval 1 1[ , ]l ul l . The 

interval limits are related to m  and the initial values of 0m  and 1m . After an initial feasible solution is found, 

these interval limits are set to 1 / 8ll m= ⎡ ⎤⎢ ⎥ , 1 / 4ul m= ⎢ ⎥⎣ ⎦ , 0 1 0 1( / )l ll l m m=  and 0 1 0 1( / )u ul l m m= . Care is taken to 

make sure that these interval limits satisfy the restrictions 0 0
l ul l< , 1 1

l ul l< , 0 0ll > and 0
ul m≤ . If any of these 

restrictions is violated, some of the interval limits are reset to reasonable values. New values for 0l  and 1l  are 

selected from their respective intervals when the short term memory process restarts in a new search cycle. The 

tabu list is implemented through the integer vector t . The element it  of t  represents the iteration number at 

which facility i  changed its status for the last time.  

At iteration k , a move switching the status of facility i′  is chosen, such that, 

 u k
iz ′∆  = min { u k

iz∆  | 1, ,i m= }. (19)

The following tabu condition is then checked 

 0ik t l′− ≤  if 0i I′∈  or 1ik t l′− ≤  if 1i I′∈ . (20)

The selected move is not tabu if (20) is not satisfied. In this case, the move is made. Otherwise, if (20) is 

satisfied, the move is tabu and is made only if the following aspiration criterion is satisfied 

 0
k u k

iz z z′+ ∆ < . (21)

If tabu and (21) is not satisfied, u k
iz ′∆ = ∞  is set, another move is selected according to (19), its tabu condition is 

checked according to (20), and so on. This process continues until a move that is not tabu or tabu but satisfies 

the aspiration criterion is found and the move is made. The main search process stops if 0z  is not improved after 

1mα  moves, where 1 0α >  is a parameter of the TS heuristic procedure, i.e., when the condition 0 1k k mα− >  is 

satisfied. 

3.7. Intensification and Diversification 

Each time after the main search process ends, the intensification function starts. The priority rules 2
iP  

in (8) and 3
iP  in (9) (Domschke and Drexl, 1985) are used alternately for this purpose. If 2

iP  is used in the 

current search cycle, 3
iP  will be used in the next search cycle. Because no solution is allowed to be visited the 

second time, the intensification function will never end up at a previously visited solution, including the initial 

solution. 
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Let *
iP  be 2

iP  or 3
iP  whichever is used in the current search cycle. A facility 1i I′∈  is selected such 

that 

 * *
1max{ | }i iP P i I′ = ∈ . (22)

Facility i′  is closed if the feasibility condition (6) is satisfied and the resulting solution has not been visited 

already. If the resulting solution has been visited already, i′  is skipped and another 1i I′∈  is selected according 

to (22). Otherwise if the feasibility condition (6) is not satisfied, another facility 0i I′∈  is selected to open such 

that  

 * *
0min{ | }i iP P i I′ = ∈ . (23)

Facility i′  is opened if the resulting solution has not been visited already, or i′  is skipped and another 0i I′∈  is 

selected according to (23) otherwise. This process continues until there are not any 0i I′∈  and 1i I′′∈  such that 

* *
i iP P′ ′′<  that have not been checked. In the implementation, the values of 2

iP  and 3
iP  are sorted and stored in 

their respective ascending orders. 

The recency based memory, i.e., the integer vector t , is also used for the diversification function. The 

diversification function is performed at the beginning of each search cycle, except for the first. A facility i′  is 

selected such that  

 max{ | }i it t i I′ = ∈ . (24)

A move is then made to open the facility if 0i I′∈  proved the resulting solution has not been visited already, or 

to close it if 1i I′∈  proved the feasibility condition (6) is satisfied and the resulting solution has not been visited 

already. If a move cannot be made, facility i′  is skipped and another facility is selected according to (24).  

This process is continued until c  moves are made in the c th search cycle. In this way, the search will 

explore a new area in the feasible region to achieve diversification purpose. The search process terminates after 

C  search cycles have been executed. 

3.8. The TS Procedure 

A step-by-step description of the TS heuristic procedure is given in the following. These steps are 

roughly grouped into different sections according to their functions.  

Initialization 

Step 1 Find an initial solution with a total cost 1z  using the ADD method. Let 1
0z z←  and 00 0z z← . 

Determine 1m . Choose values for 0
ll  and 0

ul  and select an integer for 0l such that 0 0 0[ , ]l ul l l∈ . Let 

0it l← − ,∀ 0i I∈ . Choose values for 1
ll  and 1

ul  and select an integer for 1l such that 1 1 1[ , ]l ul l l∈ . Let 

1it l← − , ∀ 1i I∈ . Select values for the parameters α1 and C. Let k ← 1, k0 ← 1, c0 ← 0, c ← 1. 
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Main Search Process  

Step 2 Obtain u k
iz∆  for some i I∈ . For 0i I∈ , if the resulting solution is not in the PLQT already, solve the 

continuous knapsack problem in (10)-(12) and compute u k
iz∆  using (13). For 1i I∈ , if the feasibility 

condition (6) is satisfied and the resulting solution is not in the PLQT already, find an initial solution 

for the transportation problem in (14)-(17) and compute u k
iz∆  using (18). Otherwise, let u k

iz∆ = ∞ . 

Step 3 Select a move switching the status of facility i′  according to (19). Check the tabu status of the 

selected move according to (20). If the move is tabu, go to Step 4; otherwise, go to Step 14. 

Step 4 Check the aspiration criterion of the selected move according to (21). If (21) is not satisfied, set 
u k

iz ′∆ ← ∞  and go to Step 3; otherwise, go to Step 14. 

Intensification  

Step 5 If all i′  have been checked, go to Step 9; otherwise, select a facility i′  according to (22).  

Step 6 If the feasibility condition (6) is not satisfied, go to step 7. If the resulting solution is in the PLQT 

already, skip i′  and go to Step 5; otherwise, go to Step 14. 

Step 7 If all i′  have been checked, go to Step 9; otherwise, select a facility i′  according to (23). 

Step 8 If the resulting solution is in the PLQT already, skip i′  and go to Step 7; otherwise, go to Step 14. 

Diversification 

Step 9 If c C> , Stop. Let 0 0 1c c← + . If 0c c> , go to Step 13. 

Step 10 Select a facility i′  according to (24). If 0i I′∈ , go to Step 11, otherwise, go to Step 12. 

Step 11 If the resulting solution is not in the PLQT already, go to Step 14; otherwise, skip  i′  and go to Step 

10. 

Step 12 If the feasibility condition (6) is satisfied and the resulting solution is not in the PLQT already, go to 

Step 14; otherwise, skip  i′  and go to Step 10. 

Step 13 Let c0 ← 0, c ← c + 1, z0 ← z, k0 ← k. Reset the value of 0l such that 0 0 0[ , ]l ul l l∈  and that of 1l such 

that 1 1 1[ , ]l ul l l∈  and then go to Step 2. 

Move Execution  

Step 14 Update A  according to (7). If 0i I′∈ , let 1 1 1m m← + ; otherwise, let 1 1 1m m← − . Change the status 

of facility i′ , i.e., let 1i iy y′ ′← − . Let it k′ ←  and k ← k + 1. Solve the resulting transportation 

problem and let kz  be the minimum value of the total cost of the partition. If 0
kz z< , let 0

kz z←  

and k0 ← k. If 0 00z z< , let 00 0z z← . 

Step 15 If 0 1k k mα− ≤ , go to Step 2; otherwise, go to Step 5. 
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4. Computational Experiments 

The proposed TS heuristic procedure was coded in C. The C code for the LH/SLH methods (Lorena 

and Senne, 1999) was obtained from the original authors. The computational experiments were conducted on a 

Sun Enterprise 450 computer with two 400 Mhz processors (only one is used) and 1.5 GB RAM. 

In the following tables, computational results are reported. For each group of test problems, solution 

quality of a heuristic method is measured by the average gap. The gap in percentage for a test problem is the 

relative deviation between the total cost of the final solution obtained by a heuristic method (i.e., the final value 

of 00z  in the TS heuristic procedure) and that of the optimal solution. Using finalz  to denote the total cost of the 

final solution obtained with a heuristic method, optz  to denote the total cost of the optimal solution, and g  to 

denote the gap, then g  is defined as 

 100%final opt

opt

z z
g

z
−

= × . (25)

For each group of test problems, the average CPU time in seconds taken by each solution method is 

reported. For the TS heuristic procedure, the average CPU time in seconds needed to reach the best solution is 

also reported. For the TS procedure, the CPU time for each problem includes the time needed for data input and 

results output. For the LH/SLH methods, the CPU time does not include the time needed for data input and 

model setup (Lorena and Senne, 1999). 

4.1. Test Problems from the Literature 

The 49 test problems with known optimal solutions in the OR-Library (Beasley, 1990) are used first. 

These test problems are divided into 13 groups with four problems in each, except the second. The names of the 

problems are used in the OR-Library. The size of the problems are measured by m n× . The values of the 

parameters in the TS procedure are set to 1 1.0α =  and 5C = for smaller problems ( 50m ≤ ) or 8C =  for larger 

problems ( 100m = ). 

Computational results of these test problems are presented in Table 1. These results were obtained with 

a single run. Slightly different results may be obtained if different values for the parameters in the TS procedure 

are used. The TS heuristic procedure found optimal solutions for all problems with 16 50m n× = ×  and 

25 50m n× = × .  However, it missed the optimal solution for 2 out of the 12 problems with 50 50m n× = × . The 

solutions it found for problems with 100 1000m n× = ×  are all very close to the optimal solutions. As compared 

to the LH/SLH methods, the TS procedure found much better solutions in much less CPU time for all problems. 

The TS procedure also found the best solutions relatively early in the search process.  

However, for small problems, heuristic procedures don’t have much computational advantage over 

exact algorithms. For problems with up to 50 50m n× = × , the CPU time used by CPLEX is only a few times of 

that used by the TS procedure. For these problems, the LH/SLH methods even use much more CPU time than 

CPLEX. However, for problems with 100 1000m n× = × , the CPU time used by heuristic methods are negligible 
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as compared to that used by CPLEX. The average CPU time of 236,383.95 seconds used by CPLEX for 

problems “capa*” is the average of problems “capa1” and “capa2”, the only 100 1000m n× = ×  problems that 

can be solved so far on the computer used for this study. Although the LH/SLH methods use much more CPU 

time than the TS procedure does, the CPU time they use are still within the rounding error of that used by 

CPLEX. Therefore, heuristic methods are aimed for large problems. 

Table 1 approximately here 

4.2. New Test Problems 

Randomly generated new test problems were used in order to evaluate the performance of the TS 

heuristic procedure with a wide range of test problems. Test problems were divided into groups. Test problems 

in each group have similar properties, such as the size of the problem, ranges of unit transportation costs, ranges 

of fixed operating costs, ranges of facility capacities and ranges of client demands. The notation 1 2[ , ]U l l  is used 

to denote a randomly generated number from the integer uniform distribution with a lower limit 1l  and an upper 

limit 2l . 

Metric test problems are used. These metric test problems were generated in a scheme similar to that 

proposed by Cornuejols et al. (1991). Five problem groups, each with 30 problems, are used. The differences 

among these five groups are in the ratios of total capacity to total demand and in the fixed costs. The ratios for 

the five problem groups are listed Table 2 in the column with a heading R . Coordinates of facility and client 

locations were randomly generated in a unit square with a uniform distribution. The transportation cost ijc  is 

then 10 times of the Euclidean distance between facility i  and client j . Fixed costs were generated according 

to the expression ( )[0,90] [100,110]i if r U U a= + . The value of r  is given in Table 2 for each problem group. 

Client demands were generated from [5,35]U , i.e., [5,35]jb U= . Facility capacities were first generated from 

[10,160]U , i.e., [10,160]ia U= , and then rescaled for each problem to have the total capacity to total demand 

ratio given in Table 2. All these problems have the same size 50 50m n× = × . The values of the parameters in 

the TS procedure are set to 1 1.0α =  and 10C = .  

Table 2 approximately here 

Computational results of these test problems are reported in Table 2. The TS heuristic procedure found 

very good solutions for most of these problems using a small fraction of the time taken by CPLEX. For real life 

problems, the deviation from the optimal solution is much smaller than the imprecision in the input data. Among 

the five groups, problems in groups 4 and 5 are more difficult to solve than others. TS solutions have larger 

deviations from the optimal solutions and CPLEX takes more CPU time for these test problems. These problems 

have larger total capacity to total demand ratios than others. For the easier problems, the TS procedure found the 

best solutions relatively early in the search process, while for more difficult problems, it found the best solution 

relatively late. All these new test problems are more difficult to solve than the test problems in the OR-Library. 

Compared to the 50 50m n× = ×  problems (cap11*, cap12* and cap13*) in Table 1, CPLEX used much more 
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CPU times, while the TS procedure found solutions that are not as close to the optimal solutions although used 

more CPU times, for these new test problems. It could be interesting to compare the TS results with those 

obtained with the LH/SLH methods. Unfortunately, the LH/SLH code generated running time errors on these 

test problems. 

5.  Conclusions  

This paper presents a TS heuristic procedure for the CFLP. In addition to recency based short term 

memory, it employs a PLQT to store all visited solution as a long term memory. Before moving to a solution, it 

checks to make sure that the solution has not been visited already. In this way, it explicitly prohibits the revisit 

of any previously visited solutions. Therefore, it completely eliminates repetition and cycling of a subset of 

solutions. Because the PLQT is very efficient in storing and retrieving solutions, the computational time used to 

manage the PLQT is negligible as compared to the total CPU time used by the TS procedure. This is the first 

time for the PLQT to be used in a heuristic procedure. It has the potential to be used in other heuristic 

procedures where visited solutions need to be stored. 

Computational results on test problems from the literature and on test problems newly generated show 

that this TS heuristic procedure is very effective and efficient in finding good solutions. It finds optimal 

solutions for almost all test problems in the literature. As compared to the LH/SLH methods, it can find much 

better solutions using much less CPU time. 

With modifications, this TS procedure may be applied to other facility location problems, such as the 

capacitated p-median problem and the single source capacitated facility location problem. Although other 

researchers have worked on such problems, it might be possible to find room for further improvement. 
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Table 1. Results of Test Problems from the Literature 

Problem TS  LH SLH CPLEX 

Name Si ze M ean Gap CPU Time 
 to Best CPU Time Iterations Mean Gap CPU Time Iterations Mean Gap CPU Time Iterations CPU Time

cap4* 16× 50 0.000 0.02 0.05 62.0 1.223 1.83 583.5 1.223 1.23 426.8 0.17 
cap51 16× 50 0.000 0.05 0.09 125.0 0.397 1.75 555.0 0.562 0.92 288.0 0.36 
cap6* 16 × 50 0.000 0.03 0.09 119.0 0.188 0.86 284.3 0.314 0.67 245.0 0.20 
cap7* 16 × 50 0.000 0.02 0.07 126.8 0.087 0.28 105.8 0.000 0.27 108.8 0.16 
cap8* 25 × 50 0.000 0.07 0.21 173.0 1.517 5.55 773.8 1.940 3.13 496.5 0.48 
cap9* 25 × 50 0.000 0.05 0.16 175.0 0.106 2.49 464.8 0.122 1.26 234.3 0.47 
cap10* 25 × 50 0.000 0.07 0.15 193.0 0.000 0.76 164.5 0.000 0.64 138.8 0.30 
cap11* 50 × 50 0.158 0.14 0.52 298.5 0.591 11.13 636.5 0.637 7.24 455.5 1.71 
cap12* 50 × 50 0.000 0.11 0.41 302.0 0.125 6.32 455.3 0.204 4.27 351.3 1.66 
cap13* 50 × 50 0.000 0.13 0.42 322.5 0.171 3.22 265.0 0.353 2.52 193.8 1.26 
capa* 10 0× 1000 0.023 18.89 53.36 956.0 1.400 497.20 697.3 2.263 262.05 411.5 236383.95
capb* 10 0× 1000 0.425 48.97 66.65 1047.0 2.030 669.62 722.3 3.099 394.90 574.0 —
capc* 10 0× 1000 0.310 33.85 53.87 978.3 0.466 607.51 809.3 0.630 368.16 560.3 —
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Table 2. Results of Randomly Generated Metric Test Problems 

TS CPLEX 
Problem R  r  

Gap CPU Time to 
Best CPU Time Iterations CPU Time 

1 1.5 2.0 0.322 0.30 0.91 688.9 3.22
2 2.0 2.0 0.655 0.38 0.95 714.9 5.60
3 3.0 1.0 1.235 0.51 0.96 752.0 6.59
4 5.0 1.0 2.163 0.57 0.96 782.6 7.57
5 10.0 1.0 1.679 0.55 0.93 751.8 9.03

 


