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1 Introduction

Analysis of ultra high-dimensional higher-order data (UHDHOD) is a mathematical challenge of

this Century. High-dimensional data is data with anywhere from a few dozen to thousands of

dimensions, whereas ultra high-dimensional data are those that goes beyond many thousands of

dimensions and can usually be obtained in the same way as high-dimensional data. However, unlike

the high-dimensional data, higher-order data can be arranged in hypercubes as opposed to vectors.

In this article, we develop both linear and quadratic classifiers for ultra high-dimensional third-order

data, assuming that C different normally distributed classes with a locally doubly exchangeable

covariance structure (defined in Section 3.1) and with a constant mean vector over space (CMVOS)

(defined in Section 3.2) are given.

Even though dimensionality is a curse, but at the same time a source of incredible information

too. We circumvent the curse of dimensionality by developing successful algorithms to reduce the di-

mensionality in a natural and meaningful way. One of the challenging problems with the UHDHOD

is to deal with the estimation of enormous variance-covariance matrix, which represents complex

dependence structures among the variables and over the space-time points. In this framework, the

number of samples is assumed to be much less than the total dimensions of the UHDHOD. One

can achieve this by imposing some appropriate variance-covariance structure so that it captures the

“natural” structure of the data with much less number of samples. This may be achieved by first

selecting the essential variables (Yu and Liu, 2003) and then choosing the appropriate covariance

structure over space-time points of the data. Reduction of dimensionality over space-time points

of the data is also another option. In this article we combine the Lasso based covariance structure

learning with imposing locally doubly exchangeability assumption.

In our current study we explore the block-wise sparsity, which leads to the additive structure of

the resulting classifier and allows much simpler asymptotic theory for evaluating the classification

accuracy, as it is shown in Pavlenko and Björkstrom (2010). Moreover, this approach allows for

much simpler computational methods for estimating classifier; see details in Pavlenko, Björkstrom

and Tillander (2012). They studied the classification problem in high dimensional first order data

based on exploring sparsity patterns in the data dependence first, and then computing the estimate

of the inverse variance-covariance matrix using constrained maximum likelihood. In their study,

rather than restricting themselves to methods that completely ignore potential dependence struc-

ture they tried to recover it from the data and then used it to their advantage. They used the

popular technique graphical Lasso or gLasso (Friedman, Hastie and Tibshirani, 2008) in learning

the sparsity patterns. Structured covariance matrix essentially simplifies high-dimensional statis-

tical procedures such as linear and quadratic discriminant analysis as well as Bayesian predictive

classification (Corander et al., 2012).

Structural patterns in the covariance matrix can be anticipated in biological applications, where
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the dependencies among the genes reflect the underlying molecular mechanisms. For example, in

tumor classification, genes can be grouped into pathways, so that the connection within a pathway

is stronger than between pathways. This type of structure can provide some insight into the

relationship between the gene expression level and a tumor type.

To tackle UHDHOD, we apply gLasso based blocked sparcifying covariance structure approx-

imation at the first stage. Given blocked variables corrresponding to the gLasso step, we at the

second stage integrate the higher-order variables (e.g., space-time points) into each blocked vari-

ables. Within each block we assume doubly exchangeable covariance structure which was exten-

sively studied by Roy and Leiva (2007) and Leiva and Roy (2011, 2012). These two authors have

introduced many covariance structures
(
Roy and Leiva (2007), Leiva and Roy (2009, 2011, 2012)

)
for high-dimensional third order

(
variables (p) × sites (u) × time points (v)

)
data in the context

of classification problem. In the current study we assume that structure learning is performed with

u = 1 and v = 1 at the first stage, and the structure remains stable over all space and time points.

Roy and Leiva (2007) and Leiva and Roy (2011, 2012) used doubly exchangeable covariance struc-

ture, that allows to partition a covariance structure into three unstructured covariance matrices,

corresponding to each of the three orders, in the classification problem. In this paper, we have

shown by simulation study that our new classification rules performs better for smaller block sizes.

Kroonenberg (2008) discussed practical issues in applying higher-order or multiway component

techniques to multiway data with an emphasis on methods for three-way data. Akdemir and Gupta

(2011) have developed classification techniques for high dimensional multiway data. In their paper

Akdemir and Gupta presented a technique called slicing for obtaining an approximate nonsingular

estimate of the covariance matrix for high-dimensional data when sample size is less than the di-

mension of the observed vector. Dudoit et al. (2002) and Lai et al. (2006) developed classification

rules for tumor samples using thousands of gene expression profiles with at most hundreds of sam-

ples. Bhattacharya et al. (2003) proposed a classifier called Liknon that simultaneously performs

classification and relevant gene identification. Liknon is trained by optimizing a linear discriminant

function with a penalty constraint via linear programming. Most recently, Kim and Simon (2011)

developed probabilistic classifiers which use the probabilities in conjunction with other information

such as treatment options and patient preferences for making complex integrated clinical decisions.

To the best of the authors’ knowledge, classification of UHDHOD with limited samples has

not yet been studied. To get the intensity levels of thousands of gene expressions (p), the lab

scientists generally obtain the intensity levels in three probes (u) for each gene and then average

them out to get one intensity level for each gene. Then they observe the intensity level for each

gene over a period of time (v), generally over years. Gene expression from a diseased tissue would

change over time, whereas gene expression from a healthy tissue would not change. Therefore,

by allowing monitoring of expression levels in cells for thousands of genes simultaneously over

the years, microarray experiments may lead to a more complete understanding of the molecular
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variations between the healthy and the diseased cells, or among different types of diseased cells, and

hence to a finer and better classification, and ultimately to a more reliable diagnosis. Furthermore,

classification accuracy can be further improved by including the intensity levels of the three probes

separately (not averaged) in the classification rules, as it has been observed that the introduction

of more orders of data in the discriminant analysis increases the classification accuracy (Leiva and

Roy, 2009). Thus, in the end by analyzing ultra high-dimensional third order (genes × probes

× time points) data one can classify different prognostic groups of patients by assessing disease

heterogeneity and for design and stratification of future clinical trials. Patterns of cancer or any

other life-threatening disease treatment are changing very rapidly, and it is important that the

results of the present analysis be applicable to contemporary patients.

The rest of the article is organized as follows. We first set up a supervised classification problem

and briefly describe learning block-diagonal covariance structure using gLasso in Section 2. We

then introduce locally doubly exchangeable covariance structure and corresponding mean vector

structure within each block in Section 3, and derive their maximum likelihood (ML) estimators

in Section 4. Our new classification techniques, both linear and quadratic are derived in Section

5 together with some generalization of the linear rule. In Section 6, the asymptotic effect of the

block size on the classification accuracy is studied in ultra high-dimensional framework. In Section

7, we report the results of some simulation studies that illustrate performance properties of our

new classifiers. Finally, Section 8 concludes with several comments and the scope for the future

research. Technical derivation of the MLEs of all unknown parameters and the proof of Proposition

1 are presented in two appendices.

2 Background and problem set-up

In this article we focus on a supervised classification problem, where each observed individual x
(c)
r

belongs to one of the C classes, Π1, . . . ,Πc. Let x
(c)
r be the puv-variate vector of all measurements

corresponding to the rth individual in the cth class, c = 1, . . . , C, r = 1, . . . , n(c). We partition this

vector x
(c)
r as follows:

x(c)
r =


x
(c)
r,1
...

x
(c)
r,v

 , where x
(c)
r,t =


x
(c)
r,t1
...

x
(c)
r,tu

 , with x
(c)
r,ts =


x
(c)
r,ts,1
...

x
(c)
r,ts,p

 ,

for t = 1, . . . , v, s = 1, . . . , u. The (p × 1) ultra high-dimensional vector of measurements x
(c)
r,ts

represents the rth replicate (individual) in the cth class on the sth site (space) and at the tth

time point. Each observation x
(c)
r for a fixed space-time point, e.g., for u = 1 and v = 1 is

represented by a set of (p× 1) dimensional variables (x
(c)
r,1, . . . , x

(c)
r,p)′ in class c, and we assume that

x
(c)
r ∈ Np(µx(c) ,Γx(c)). A decision rule, y(x

(c)
r ) is a function y : ℜp → {1, . . . , C} defined for all
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x
(c)
r ∈ ℜp. Assuming that Π1, . . . ,Πc are modeled by normal distribution, we assign a new (p× 1)

dimensional observation x0 to class Πc′ , i.e., y(x0) = c′ if c′ = arg max
c=1,...,C

ℓ(c)(x0), where

ℓ(c)(x0;µx(c) ,Γx(c)) = x′
0Γ

−1
x(c)µx(c) −

1

2
µ′
x(c)Γ

−1
x(c)µx(c) + lnπc, (1)

with πc is the a priori probability of the class c, and

C∑
c=1

πc = 1. This classifier is analogous to

the well-known Fisher linear discriminant score that is optimal in the sense of minimum overall

misclassification probability defined as E =
C∑

c=1

πcEc =
C∑

c=1

πcP (y(x0) ̸= c|x0 ∈ Πc).

For C = 2 and Γx(1) = Γx(2) = Γx, (1) can be represented as

ℓ(x0;µx(1) ,µx(2) ,Γx) =

(
x0 −

1

2
(µx(1) + µx(2))

)′
· Γ−1

x · (µx(1) − µx(2)) ≶ ln
π2
π1

, (2)

and to measure its performance accuracy we turn to the maximum conditional misclassification

probability, E that is defined as

max
i=1,2

{Ei} = max
i=1,2

{P (ℓ(x0;µx(1) ,µx(2) ,Γx) ≤ 0|x0 ∈ Π1), P (ℓ(x0;µx(1) ,µx(2) ,Γx) > 0|x0 ∈ Π2)} , (3)

assuming that π1 = π2 = 1/2. Assume further that x0 ∈ Π1, with known µx(c)s and Γx, then

ℓ(x;µx(1) ,µx(2) ,Γx) is also normally distributed and corresponding optimal misclassification prob-

ability can be expressed as

Eopt = Φ
(
− 1

2

E [ℓ(x0;µx,Γx)|x ∈ Π1]√
Var [ℓ(x0;µx,Γx)|x ∈ Π1]

)
= Φ

(
− 1

2
δ(µx,Γx)

)
, (4)

where Φ(·) is the cumulative distribution function of the standard normal distribution, and δ2(µx,Γx) =

µ′
xΓ

−1
x µx is the square of the Mahalanobis distance between the classes Π1 and Π2 with a shift

vector µx = µx(1) − µx(2) . Asymptotic properties of the estimated misclassification probability of

the type (4) are extensively studied by McLachlan (2004), Shutoh (2011) and Shutoh et al. (2011).

In this article we extend the above consideration to the higher order data (e.g., space-time

points). Now, let t and s denote a given point in time and a given site respectively. Let x
(c)
ts :

(Ω, C) → ℜp, 1 ≤ t ≤ v, 1 ≤ s ≤ u, be the p−dimensional normally distributed random vector

from the cth population. Then the random families (x
(c)
1s )s∈{1,...,u}, . . . , (x

(c)
vs )s∈{1,...,u} are assumed

to be exchangeable. Furthermore, for fixed t, the family of random variables (x
(c)
ts )s∈{1,...,u} is

exchangeable. This assumption of double exchangeability reduces the number of unknown param-

eters considerably, thus allows more dependable or reliable parameter estimates. This covariance

structure can capture the data arrangement or data pattern in a third order multivariate data, and

thus may offer more information about the true association of the data. The major advantage of

this covariance structure is that the measurements over space and time need not be equally spaced

over space and time. Observe that for u = 1 and v = 1 we arrive to the classifier (1).
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2.1 Block-diagonal covariance structure approximation using gLasso: single
class

As remarked in the Introduction, since computation of the sample based covariance matrix for ultra

high-dimensional data is computer-intensive, it is always an advantage to reduce the dimension of

the observed vectors. In particular, imposing a proper structure on the covariance matrix can

essentially reduces the number of parameters to be estimated. For example, assuming that Γ is a

(p × p) dimensional block diagonal matrix, i.e., Γ = diag
[
Γ[1], . . . ,Γ[b]

]
for any space-time point,

where Γ[j] has dimension (pj × pj) for j = 1, . . . , b, we need to estimate only
b∑

j=1

pj(pj + 1)/2

unknown parameters, instead of p(p + 1)/2, and assuming that pj ≪ n a local estimation of each

block-diagonal entry of Γ can be obtained using standard ML approach. However, assumption of

the block-diagonal structure on Γ seems to be too strong; in the case of normal class conditional

distributions, this assumption is equivalent to the independence of the corresponding sets of blocks

of the observed vector x. Therefore, instead of imposing the block diagonal structure on Γ we

learn it from the data. In this section, we briefly review our results on the learning procedure

developed in Pavlenko et al. (2012), which uses the Lasso-based technique (gLasso) that relates

sparse covariance model selection in learning a Gaussian graph structure by using l1 regularization.

In what follows, we assume that the structure learning is applied at the first space-time point, that

is u = 1 and v = 1, and then assume that the structure remains stable over all the space-time

points. Interpretation of this assumption is very natural in the genetic data, where it is reasonable

to assume that the genes are groupped into types, which have similar connectivity or correlation

patterns. For example, genes can be grouped into pathways with certain biological interpretation,

where the dense connection within a pathway is more likely than the connection between pathways,

and this structure remains stable over probes and time.

To describe the covariance learning procedure, we introduce an undirected graph G on p nodes

which is defined by the ordered tuple G = {X ,Θ}, where X is the set of nodes associated with

the observed vector x and Θ is the set of undirected edges. Then, the Gaussian random graph

associated with G over the random vector x is the family of p-variate normal distributions with the

inverse covariance, or concentration matrix Γ−1, that represents the edge structure of the graph,

in the sense that γ−1
ij = 0 if (i, j) /∈ Θ. Hence, the sparsity pattern of Γ−1 reflects the condi-

tional independence among the entries of x. In particular, by the Hammersley-Clifford theorem

(see Lauritzen, 1996), it holds that γ−1
ij = 0 for all (i, j) /∈ Θ. Therefore, the problem of learn-

ing the Gaussian graph structure is equivalent to estimating the off-diagonal zero pattern of the

concentration matrix, i.e., the set

Θ := {i, j ∈ X |i ̸= j, γ−1
ij ̸= 0}.

For the graph structure learning, we focus on the minimizer of the negative l1-penalized log-
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likelihood

Γ̃
−1

λ = arg min
Γ−1≻0

[
Tr

(
Γ−1Γ̂

)
− ln |Γ−1|+ λ∥Γ−1∥1

]
, (5)

where Γ̂ is the ML estimator of Γ, ∥Γ−1∥1 =
∑
i<j

|γ−1
ij |, λ is a non-negative tuning parameter, and

the minimization is taken over symmetric positive definite matrices. We refer to the optimization

problem (5) as the gLasso (Friedman et al. 2007). The loss function in (5) is invariant to permu-

tations of variables, and the problem always has a unique solution as the negative log-determinant

is a strictly convex function. Moreover, the solution is positive definite for all λ > 0 even if Γ is

singular, and for sufficiently large λ, the estimate Γ̃
−1
λ will be sparse due to its nature, l1-penalty

works by pushing the off-diagonal elements to zero, thereby inducing sparsity in the resulting esti-

mator (Tibshirani, 1996). Similar estimates of Γ−1 were also considered in Rothman et al. (2008),

where different strngth of penalization was applied for diagonal and off diagonal elements of Γ−1.

The sparsity pattern of the solution of (5) gives rise to the sparse symmetric edge skeleton,

defined as Sλ := 1{γ̃−1
ij >λ} which in turn generates the estimated concentration graph Gλ = {X ,Θλ}.

Suppose now that for a specific λ, Gλ allows for a decomposition into bλ connected components as

Gλ =
bλ∪
j=1

{X λ
j ,Θ

λ
j }, where by a connected component we mean a maximal connected subgraph of

Gλ. Observe that bλ ∈ {1, . . . , p}, so that bλ = p for large λ and bλ = 1 for small λ. The former

case implies all the components are isolated, i.e., have size 1, whereas the latter case implies there

is only one component of size p. The connected components obtained from the decomposition of

Gλ lead to the block-diagonal form of the edge-matrix concentration graph

Θλ =


Θλ

1 0 . . . 0

0 Θλ
2 0 . . .

...
...

. . .
...

0 . . . 0 Θλ
bλ

 , (6)

where the different components represent blocks of indices specified by X λ
i , i = 1, . . . , bλ. Figure

1 illustrates correspondence between the graph structure (panel(a)), and the block-wise sparsity

pattern of the concentration matrix (panel (b)).

We then construct a matrix Γ̂λ = diag
[
Γ̂λ,[1], . . . , Γ̂λ,[b]

]
having the same block-diagonal structure

as (6), by the solution of (5), so that under certain assumptions on the maximal size of the connected

components, the problem of estimation of Γ can be reduced to bλ constrained ML estimators of

Γis, that can be solved independently, The resulting covariance structure has only

bλ∑
j=1

pj(pj +1)/2

unknown parameters, which is much less than p(p+ 1)/2 as mentioned before.

A correlation based version of (5) is explored in Pavlenko et al. (2012), and a two-stage es-

timation procedure yielding a block-diagonal estimator of Γ−1 is suggested. Authors develop an
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Figure 1: (a) A Gaussian graph having p = 15 nodes that is decomposed into a set b = 4 connected
components. (b) The block-wise sparse covariance structure (stabilized skeleton, SC) where zero
pattern of the inverse covariance matrix is associated with the graph in (a).

empirical test procedure that uses the gLasso-based sparsity pattern of the solution of (5) and

generates the stabilized edge skeleton, Sλ meaning that only significant non-zeros are included; see

Algorithm 1 in Pavlenko et al. (2012). They also have shown that gLasso-based edge skeleton

followed by a suitable reordering of the graph nodes (see Algorithm 2 in Pavlenko et al., 2012),

induces a quasi-decomposition of Gλ into connected components, meaning that after omitting a

small number/portion of edges a decomposition {X ,Θλ} =
bλ∪
j=1

{Xj ,Θ
λ
j } holds. Observe also that

the step from a quasi-decomposition to an exact partition of Gλ is not unique, i.e., it yields a family

of decompositions; see details in Pavlenko et al. (2012)) where the sensitivity of Cuthil-McKee

reordering transform used in Algorithm 2 in Pavlenko et al. (2012) to the choice of the initial

node is discussed. It is also shown that for a given regularization strength λ and with certain

constraints on the maximum size of connected component, the exact choice of the decomposition

is asymptotically negligible.

In the present paper we explore the two-stage estimation procedure as described in the intro-

duction in the classification framework. Our focus is mainly be on the second stage, i.e., we assume

that the block structure of Γ−1 is established in (6) for a specific λ under constrained block size,

max
j=1,...,bλ

pj < n/uv, (7)

where n is the size of the training data. Note that if Γ−1 is block-diagonal then so is its inverse, Γ,

therefore consideration in what follows will be focused on modeling Γ given that the decomposition

{X ,Θλ} =
bλ∪
j=1

{Xj ,Θ
λ
j } holds. Unlike Pavlenko et al. (2012), where the within-block covariance

components are assumed to be unstructured, in this article we impose jointly equicorrelated covari-

ance structure for all space-time data within each block entry, Θλ
j thereby allowing a modeling of

a higher-order data. In the following sections we introduce locally jointly equicorrelated covariance

structure and a Kronecker product structured mean vector for third-order multivariate data.
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3 Covariance and mean vector structures

In this section, we introduce the locally jointly equicorrelated covariance structure and a Kronecker

product structured mean vector for third-order multivariate data. We also present some auxiliary

matrix results.

3.1 Covariance structure with local double exchangeability

Definition 1. Let xr be an puv−variate partitioned real-valued random vector xr = (x′
r,[1], . . . ,x

′
r,[b])

′
,

where xr,[j] = (x′
r,[j],1, . . . ,x

′
r,[j],v)

′
, for j = 1, . . . , b with x′

r,[j],t = (x′
r,[j],t1, . . . ,x

′
r,[j],tu)

′
for

t = 1, . . . , v and x′
r,[j],ts = (xr,[j],ts,1, . . . , xr,[j],ts,pj )

′
for s = 1, . . . , u. Let E [xr] = µx ∈ ℜpuv, and

Γx be the (puv×puv)−dimensional partitioned covariance matrix Cov [xr] =
(
Γxr,t,xr,t∗

)
= (Γr,tt∗) ,

where Γr,tt∗ = Cov [xr,t,xr,t∗ ] for t, t∗ = 1, . . . , v.

The p−variate vectors xr,11, . . . ,xr,1u, . . . ,xr,v1, . . . ,xr,vu are said to be locally jointly equicor-

related if Γx is given by

Γx = diag
(
Γ[1],Γ[2], . . . ,Γ[b]

)
, (8)

where

Γ[j] =



U0[j] U1[j] · · · U1[j] W [j] W [j] · · · W [j] · · · W [j] W [j] · · · W [j]

U1[j] U0[j] · · · U1[j] W [j] W [j] · · · W [j] · · · W [j] W [j] · · · W [j]
...

...
. . .

...
...

...
. . .

...
. . .

...
...

. . .
...

U1[j] U1[j] · · · U0[j] W [j] W [j] · · · W [j] · · · W [j] W [j] · · · W [j]

W [j] W [j] · · · W [j] U0[j] U1[j] · · · U1[j] · · · W [j] W [j] · · · W [j]

W [j] W [j] · · · W [j] U1[j] U0[j] · · · U1[j] · · · W [j] W [j] · · · W [j]
...

...
. . .

...
...

...
. . .

...
. . .

...
...

. . .
...

W [j] W [j] · · · W [j] U1[j] U1[j] · · · U0[j] · · · W [j] W [j] · · · W [j]
...

...
. . .

...
...

...
. . .

...
. . .

...
...

. . .
...

W [j] W [j] · · · W [j] W [j] W [j] · · · W [j] · · · U0[j] U1[j] · · · U1[j]

W [j] W [j] · · · W [j] W [j] W [j] · · · W [j] · · · U1[j] U0[j] · · · U1[j]
...

...
. . .

...
...

...
. . .

...
. . .

...
...

. . .
...

W [j] W [j] · · · W [j] W [j] W [j] · · · W [j] · · · U1[j] U1[j] · · · U0[j]



,

(9)

U0[j] is a positive definite symmetric pj × pj matrix, U1[j] and W [j] are symmetric pj × pj

matrices, and j = 1, . . . , b. The variance covariance matrix Γx is then said to have a locally

jointly equicorrelated covariance structure with sets of equicorrelation parameters
{
U0[1], . . . ,U0[b]

}
,{

U1[1], . . . ,U1[b]

}
and

{
W [1], . . . ,W [b]

}
such that

b∑
j=1

pj = p. The matrices U0[j],U1[j] and W [j]

for j = 1, . . . , b are all unstructured.

9



Thus, the vectors xr,11, . . . ,xr,1u, . . . ,xr,v1, . . . ,xr,vu are locally jointly equicorrelated if they

have the following “jointly equicorrelated covariance” matrix

Cov [xr,ts;xr,t∗s∗ ] =


U0[j] if t = t∗ and s = s∗,

U1[j] if t = t∗ and s ̸= s∗,

W [j] if t ̸= t∗,

for all j = 1, . . . , b, that is,

Γ[j] = Iuv ⊗U0[j] + [Iv ⊗ (Ju − Iu))]⊗U1[j] + [Juv − (Iv ⊗ Ju)]⊗W [j]

= Iuv ⊗
(
U0[j] −U1[j]

)
+Iv ⊗Ju ⊗

(
U1[j] −W [j]

)
+Juv ⊗W [j],

for all j = 1, . . . , b,, where Ia is the a× a identity matrix, and Ja = 1a1
′
a.

The pj × pj diagonal blocks U0[j] in (9) represent the variance-covariance matrix of the pj

response variables at any given site and at any given time point, whereas the pj × pj off-diagonal

blocks U1[j] in (9) represent the covariance matrix of the pi response variables between any two

sites (probes) and at any given time point. We assume U0[j] is constant for all sites and time

points, and U1[j] is same for all site pairs and for all time points. The pj × pj off-diagonal blocks

W [j] represent the covariance matrix of the pj response variables between any two time points. It

is assumed to be the same for any pair of time points, irrespective of the same site or between any

two sites.

Observe that due to its doubly exchangeable nature, each component diagonal block of Γx, Γ[j]

is also called doubly exchangeable covariance structure; see e.g., Roy and Leiva (2007). However,

within-block double exchangeability does not imply that the entire Γx has doubly exchangeable

structure since the block size varies with j. Thus, we call the structure Γx defined in (8-9) as locally

doubly exchangeable. Thus, we see that our locally jointly equicorrelated covariance structure

generalizes Roy and Leiva’s (2007) jointly equicorrelated covariance structure.

3.2 Mean vector structure

Like covariance structure mean vector can have some structure too. In this article in addition

to locally jointly equicorrelated covariance structure we consider the following Kronecker product

structure on the mean vector

µx =
(
µ′
x[1], . . . ,µ

′
x[b]

)′
, where µx[j] =

(
µ′
x[j],1, . . . ,µ

′
x[j],v

)′
,

with µx[j],t = 1u ⊗ µ[j],t and µ[j],t ∈ ℜpj , for t = 1, . . . , v, j = 1, . . . , b, and c = 1, . . . , C for the

third-order multivariate data. Gene expression levels are expected to be constant over all the three

probes (sites), so we consider the above ‘Constant mean vector structure over sites’ (CMVOS) as

a natural mean structure for this article.
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3.3 Matrix results

Lemma 1. Let Γ[j] be the doubly exchangeable covariance matrix for the jth block as in equation

(9) of Definition 1.

1. If

∆1[j] = U0[j] −U1[j], (10a)

∆2[j] = U0[j] + (u− 1)U1[j] − uW [j] =
(
U0[j] −U1[j]

)
+ u

(
U1[j] −W [j]

)
, and (10b)

∆3[j] = U0[j] + (u− 1)U1[j] + u (v − 1)W [j] =
(
U0[j] −U1[j]

)
+ u

(
U1[j] −W [j]

)
+ uvW [j],

(10c)

are non singular matrices, the matrix Γ[j] is non singular, and its inverse is given by

Γ−1
[j] = Ivu ⊗∆−1

1[j] + Iv ⊗ Ju ⊗ 1

u

(
∆−1

2[j] −∆−1
1[j]

)
+ Jvu ⊗ 1

vu

(
∆−1

3[j] −∆−1
2[j]

)
. (11)

Thus, we see that Γ−1
[j] has the same structure as Γ[j]. Therefore, the doubly exchangeable

covariance structure is invariant with respect to inverse, and so is local doubly exchangeable

covariance structure.

2. The determinant of Γ[j] is given by∣∣Γ[j]

∣∣ = ∣∣∆1[j]

∣∣v(u−1) ∣∣∆2[j]

∣∣(v−1) ∣∣∆3[j]

∣∣ .
See Roy and Leiva (2007) for the proof of this lemma.

Lemma 2. If Γx be a locally jointly equicorrelated with b blocks as follows

Γx = diag
(
Γ[1],Γ[2], . . . ,Γ[b]

)
,

then its inverse is given by

1.

Γ−1
x = diag

(
Γ−1
[1] ,Γ

−1
[2] , . . . ,Γ

−1
[b]

)
, (12)

and its determinant is given by

2.

|Γx| =
∣∣Γ[1]

∣∣ ∣∣Γ[2]

∣∣ · · · ∣∣Γ[b]

∣∣ . (13)

These results are used in Section 4 to obtain the maximum likelihood estimate (MLE) of the

doubly exchangeable covariance matrix Γx. Now, let x(c) represent the puv−variate vector of all

measurements corresponding to one individual in the cth class where we assume a distribution

11



Npuv (µx(c) ,Γx(c)), and let x
(c)
1 , . . . ,x

(c)

n(c) be a random sample of size n(c) of x(c). The unstructured

variance-covariance matrix Cov
[
x(c)

]
= Γx(c) has q = puv (puv + 1) /2 unknown parameters, which

can be large for arbitrary values of p, u or v. However, to obtain a suitable covariance structure one

needs to take into account the characteristics of the experimental design. One may assume a “jointly

equicorrelated covariance” structure in the situation, where the data is multivariate with three

orders. The biggest advantage of using this jointly equicorrelated covariance structure is that the

double exchangeability in this structure considerably reduces the number of unknown parameters,

and thus offers more reliable estimates. The resulting structure has only
b∑

j=1

3pj (pj + 1) /2 unknown

parameters, which is much much less than q. Moreover, this number does not even depend on u

and v. That means we can get more information about the data that reduces the misclassification

error rates of our new classifiers without increasing the number of unknown parameters.

4 Maximum likelihood estimates using local double exchangeabil-
ity: single class case

As mentioned in the introduction we assume that E[xr] = µx =
(
µ′
x[1], . . . ,µ

′
x[b]

)
, where µx[j] =(

µ′
x[j],1, . . . ,µ

′
x[j],v

)′
, with µx[j],t = 1u ⊗ µ[j],t and µ[j],t ∈ ℜpj for t = 1, . . . , v, j = 1, . . . , b, and

Cov[xr] = Γx = diag
(
Γ[1],Γ[2], . . . ,Γ[b]

)
, where the pj×pj blocks Γ[j], j = 1, . . . , b are given in (9).

The following theorem yields explicit expressions for the MLEs of µx and Γx. Let T = {x1, . . . ,xn}
denote a random training sample of size n from a class with distribution Npuv (µx,Γx) .

Theorem 1. Under the above assumptions, the maximum likelihood estimate of µx is

µ̂x = x =
(
x[1], . . . ,x[b]

)
,

where x[j] =
(
1′u ⊗ x′

[j],1, . . . ,1
′
u ⊗ x′

[j],v

)′
and x[j],t is the sample mean vector at time t, that is,

x[j],t =
1

nu

n∑
r=1

u∑
s=1

xr,[j],ts, for t = 1, . . . , v,

and the maximum likelihood estimate of Γx is Γ̂x = diag
(
Γ̂[1], Γ̂[2], . . . , Γ̂[b]

)
, where MLEs of the

sets of equicorrelation parameters {U0[j]}bj=1, {U1[j]}bj=1 and {W [j]}bj=1 are given by

Û0[j] =
1

nuv

n∑
r=1

v∑
t=1

u∑
s=1

(
xr,[j],ts − x[j],t

) (
xr,[j],ts − x[j],t

)′
,

Û1[j] =
1

nuv (u− 1)

n∑
r=1

v∑
t=1

u∑
s=1

u∑
s̸=s∗=1

(
xr,[j],ts∗ − x[j],t

) (
xr,[j],ts − x[j],t

)′
,

Ŵ [j] =
1

nu2v (v − 1)

n∑
r=1

v∑
t=1

v∑
t ̸=t∗=1

u∑
s=1

u∑
s∗=1

(
xr,[j],t∗s∗ − x[j],t∗

) (
xr,[j],ts − x[j],t

)′
.
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The proof of this theorem is given in Appendix A.

5 Classification with locally doubly exchangeable covariance struc-
ture

In this section we derive the classification rule for C classes. Using the same notations as in

the introduction, we assume that the vectors x
(c)
r,11, . . . ,x

(c)
r,1u, . . . ,x

(c)
r,v1, . . . ,x

(c)
r,vu are locally jointly

equicorrelated with sets of equicorrelation parameters {U (c)
0[j]}

b
j=1, {U

(c)
1[j]}

b
j=1 and {W (c)

[j] }
b
j=1 such

that

b∑
j=1

pj = p, with E[x
(c)
r ] = µx(c) =

(
µ
(c)′
x[1], . . . ,µ

(c)′
x[b]

)′
, where µ

(c)
x[j] =

(
µ
(c)′
x[j],1, . . . ,µ

(c)′
x[j],v

)′
,

with µ
(c)
x[j],t = 1u ⊗ µ

(c)
[j],t and µ

(c)
[j],t ∈ ℜpj for t = 1, . . . , v, j = 1, . . . , b, and Cov[x

(c)
r ] = Γx(c) =

diag
(
Γ
(c)
[1] ,Γ

(c)
[2] , . . . ,Γ

(c)
[b]

)
. Let T (c) = {x(c)

1 , . . . ,x
(c)

n(c)} be a random sample of size n(c) from the

cth class with distribution Npuv (µx(c) ,Γx(c)) , for c = 1, . . . , C. These C random training samples

are independent among each other. We will discuss the linear classifier case, that is, Γx(c) = Γx,

with equicorrelation parameters U
(c)
0[j] = U0[j],U

(c)
1[j] = U1[j] and W

(c)
[j] = W [j], for c = 1, . . . , C and

j = 1, . . . , b in Section 5.1, and the quadratic and modified linear classifier cases in Section 5.2.

5.1 When sets of equicorrelation parameters among classes concur

In this case we assume that all populations have equal sets of equicorrelation parameters {U0[j]}bj=1,

{U1[j]}bj=1 and {W [j]}bj=1, thus equal variance-covariance matrix Γx. Therefore, the likelihood

function can be written as

L (µx(1) , . . . ,µx(C) ,Γx) =

exp

−1

2

C∑
c=1

n(c)∑
r=1

(
x(c)
r − µx(c)

)′

Γ−1
x

(
x(c)
r − µx(c)

)
(2π)

nvup

2 |Γx|
n

2

,

where n =
C∑

c=1

n(c), and Γ−1
x = diag

(
Γ−1
[1] ,Γ

−1
[2] , . . . ,Γ

−1
[b]

)
, and pj × pj blocks Γ

−1
[j] are given in (11).

Along the lines presented in Appendix A, it can be proved that the MLEs of the mean vectors

µ
(c)
[j],t : j = 1, . . . , b, and t = 1, . . . , v, are given by

µ̂
(c)
[j],t = x

(c)
[j],t =

1

n(c)u

n(c)∑
r=1

u∑
s=1

x
(c)
r,[j],ts, for c = 1, 2, . . . , C and j = 1, 2, . . . , b,
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where MLEs of the sets of equicorrelation parameters {U0[j]}bj=1, {U1[j]}bj=1 and {W [j]}bj=1 are

given by

Û0[j] =
1

nuv

C∑
c=1

n(c)∑
r=1

v∑
t=1

u∑
s=1

(
x
(c)
r,[j],ts − x

(c)
[j],t

)(
x
(c)
r,[j],ts − x

(c)
[j],t

)′
,

Û1[j] =
1

nuv (u− 1)

C∑
c=1

n(c)∑
r=1

v∑
t=1

u∑
s=1

u∑
s̸=s∗=1

(
x
(c)
r,[j],ts∗ − x

(c)
[j],t

)(
x
(c)
r,[j],ts − x

(c)
[j],t

)′
,

and Ŵ [j] =
1

nu2v (v − 1)

C∑
c=1

n(c)∑
r=1

v∑
t=1

v∑
t ̸=t∗=1

u∑
s=1

u∑
s∗=1

(
x
(c)
r,[j],t∗s∗ − x

(c)
[j],t∗

)(
x
(c)
r,[j],ts − x

(c)
[j],t

)′
,

where c = 1, . . . , C. It is to be noted here that the MLEs of {U0[j]}bj=1, {U1[j]}bj=1 and {W [j]}bj=1

are derived for one population case, i.e., for c = 1 in Appendix A. The computation of the MLEs

µ̂
(c)
[j],t for j = 1, . . . , b, t = 1, . . . , v, and Û0[j], Û1[j] and Ŵ [j] is straightforward, as all of them have

closed form solutions.

We now consider the problem of assigning a new individual with puv−variate partitioned mea-

surement vector x0 =
(
x′
0[1], . . . ,x

′
0[b]

)′
to one of the C classes. The previous set-up leads to a

linear discriminant function as follows:

Under the assumptions of equal prior probabilities and equal costs of misclassification, we define

the linear score ℓ(c) as

ℓ̂(c) (x0) := x′
0 · Γ̂

−1

x · µ̂x(c) −
1

2
µ̂′
x(c) · Γ̂

−1

x · µ̂x(c) ,

=
b∑

j=1

[
x′
0[j] · Γ̂

−1

[j] · µ̂
(c)′
x[j] −

1

2
µ̂
(c)′
x[j] · Γ̂

−1

[j] · µ̂
(c)
x[j]

]
,

as ℓ̂(c) (x0) =
∑b

j=1 ℓ̂
(c)
j (x0[j]), where µ̂x(c) =

(
µ̂
(c)′
x[1], . . . , µ̂

(c)′
x[b]

)′
, where µ̂

(c)
x[j] =

(
µ̂
(c)′
x[j],1, . . . , µ̂

(c)′
x[j],v

)′
,

with µ̂
(c)
x[j],t = 1u ⊗ µ̂

(c)
[j],t and µ̂

(c)
[j],t = x

(c)
[j],t =

1

n(c)u

n(c)∑
r=1

u∑
s=1

xr,[j],ts, for t = 1, . . . , v, j = 1, . . . , b

and c = 1, . . . , C. The estimate of inverse covariance matrix Γ̂
−1

x is obtained from (12) by replacing

U0[j], U1[j] and W [j] by Û0[j], Û1[j] and Ŵ [j] respectively. Then the resulting classification rule

is given as follows:

• Assign a new observation x0 =
(
x′
0[1], . . . ,x

′
0[b]

)′
to Class Πi if y(x0) = i, i.e.

ℓ(i) (x0) = largest of
{
ℓ(c) (x0) : c = 1, . . . , C

}
, for i = 1, . . . , C.

This linear rule has been extensively studied by McLachlan (1992).

In the special case of C = 2 populations we obtain a linear classifier, which by partitioning the

observed vector x0 becomes:
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Assign x0 to class Π1 if

b∑
j=1

[
x′
0[j] · Γ̂

−1

[j] ·
(
µ̂
(1)
x[j] − µ̂

(2)
x[j]

)]
>

1

2

b∑
j=1

[(
µ̂
(1)
x[j] + µ̂

(2)
x[j]

)′
· Γ̂

−1

[j]

(
µ̂
(1)
x[j] − µ̂

(2)
x[j]

)]
,

and to the class 2 otherwise.

5.2 When sets of equicorrelation parameters among classes differ

In this case we assume that all populations have different sets of equicorrelation parameters

{U (c)
0[j]}

b
j=1, {U

(c)
1[j]}

b
j=1 and {W (c)

[j] }
b
j=1, thus different variance-covariance matrices Γ

(c)
x . Follow-

ing the same technique as before in this case also it can be proved that the maximum likelihood

estimates of the means µ
(c)
[j],t : t = 1, . . . , v, and j = 1, . . . , b, are

µ̂
(c)
[j],t = x

(c)
[j],t =

1

n(c)u

n(c)∑
r=1

u∑
s=1

x
(c)
r,[j],ts, for c = 1, 2, . . . , C,

where MLEs of the sets of equicorrelation parameters {U (c)
0[j]}

b
j=1, {U

(c)
1[j]}

b
j=1 and {W (c)

[j] }
b
j=1 are

given by

Û
(c)

0[j] =
1

n(c)uv

n(c)∑
r=1

v∑
t=1

u∑
s=1

(
x
(c)
r,[j],ts − x

(c)
[j],t

)(
x
(c)
r,[j],ts − x

(c)
[j],t

)′
,

Û
(c)

1[j] =
1

n(c)uv (u− 1)

n(c)∑
r=1

v∑
t=1

u∑
s=1

u∑
s̸=s∗=1

(
x
(c)
r,[j],ts∗ − x

(c)
[j],t

)(
x
(c)
r,[j],ts − x

(c)
[j],t

)′
,

and Ŵ
(c)

[j] =
1

n(c)u2v (v − 1)

n(c)∑
r=1

v∑
t=1

v∑
t ̸=t∗=1

u∑
s=1

u∑
s∗=1

(
x
(c)
r,[j],t∗s∗ − x

(c)
[j],t∗

)(
x
(c)
r,[j],ts − x

(c)
[j],t

)′
.

Here also the computation of the maximum likelihood estimates µ̂
(c)
[j],t Û

(c)

0[j], Û
(c)

1[j] and Ŵ
(c)

[j] for

j = 1, . . . , b, t = 1, . . . , v, are easy, as they all have closed form solutions.

The optimal classification rule for the puv−variate vector of observations, x is quadratic as the

covariance matrices are not equal in C classes. More precisely, under the assumption of equal prior

probabilities and equal costs of misclassification we define the estimation of the quadratic score

q(c) for the observed vector x0 =
(
x′
0[1], . . . ,x

′
0[b]

)′
as

q̂(c) (x0) := −1

2
ln

∣∣∣Γ̂x(c)

∣∣∣− 1

2
(x0 − µ̂x(c))

′ · Γ̂
−1

x(c) · (x0 − µ̂x(c))

= −1

2

b∑
j=1

[
ln |Γ̂(c)

[j] |+
(
x0[j] − µ̂

(c)
x[j]

)′
·
(
Γ̂
(c)
[j]

)−1
·
(
x0[j] − µ̂

(c)
x[j]

)]
,
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where µ̂x(c) =
(
µ̂
(c)′
x[1], . . . , µ̂

(c)′
x[b]

)′
, µ̂

(c)
x[j] =

(
µ̂
(c)′
x[j],1, . . . , µ̂

(c)′
x[j],v

)′
, with µ̂

(c)
x[j],t = 1u ⊗ µ̂

(c)
[j],t and

µ̂
(c)
[j],t = x

(c)
[j],t =

1

n(c)u

n∑
r=1

u∑
s=1

xr,[j],ts, for t = 1, . . . , v, j = 1, . . . , b and c = 1, . . . , C. Thus the

classification rule is:

Assign a new observation x0 to Class Πi if y(x) = i, i.e.,

q̂(i) (x0) = largest of
{
q̂(c) (x0) : c = 1, . . . , C

}
, for i = 1, . . . , C.

Since the distribution theory associated with this quadratic rule is exceedingly difficult, we

like many former authors
(
Chaudhuri et al., 1991; Park and Kshirsagar, 1994; Leiva and Herrera,

1999
)
propose linear solutions to this problem in this article. Linear rule is desirable than quadratic

rule because of its simplicity, and we like to evaluate its theoretical misclassification probabilities.

Under the normality assumption, Chaudhuri et al. (1991) found an asymptotic optimal linear

classification function ℓ(x) = α′x + β to classify an unknown individual with response variable

x into one of the two populations Π1 and Π2. They assumed that the two classes have normal

densities with mean vectors µx(1) and µx(2) , and positive definite covariance matrices Γx(1) and

Γx(2) respectively and proved that the optimal vector α = (Γx(1) + Γx(2))
−1 (µx(1) −µx(2)), under

certain regularity conditions. Chaudhuri et al. (1991) considered the optimality in the sense of

maximizing the Bhattacharyya (1943) distance asymptotically. An equivalent linear solution can be

found based on a definition of separation between two density functions as suggested by Park and

Kshirsagar in 1994. They modified the distance between two normal classes that was originally

proposed by Paranjpe and Gore (1994). Park and Kshirsagar’s modified distance δ2 (µx,Γx(c))

between two vectors, µx(1) and µx(2) as follows

δ2 (µx,Γx(c)) = µ′
x ·

(
Γx(1) + Γx(2)

2

)−1

· µx (14)

where µx = µx(1) − µx(2) is a shift vector, c = 1, 2. The distance δ2 (µx,Γx(c)) is indeed a

generalization of the square of the Mahalanobis distance δ2 (µx,Γx) given in Section 2.

Observe that provided appropriate grounds, the distance δ2 (µx,Γx(c)) can be related to the

misclassification probability defined in (4). By the strict monotonicity of Φ(·), one can see from

(4) that δ (µx,Γx) = −2Φ−1 (Eopt), and hence for the normal class-conditional distributions, Eopt
and δ (µx,Γx) provide equivalent information about the classification performance. This in turn

implies that δ2 (µx,Γx(c)) can also be used as a measure of separation between Π1 and Π2. In

particular, Leiva and Herrera (1999) have studied the asymptotic properties of this separation

measere and showed that it is related to Hellinger’s similarity measure (Rao and Varadarajan,

1963) and Matushita’s closeness measure (Matushita, 1966).

Leiva and Herrera (1999) also obtained the optimal discriminant solution by maximizing the

separation measure (14) on a transformed variable z = α′x + β, where the maximization is done
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with respect to α. They showed that z can be chosen as

z = T (x) = (µx(1) − µx(2))′
(
Γx(1) + Γx(2)

2

)−1

x,

and thus, α can be chosen as

α′ = (µx(1) − µx(2))′
(
Γx(1) + Γx(2)

2

)−1

.

Under the assumptions of equal prior probabilities, equal costs of misclassification and given the

locally jointly equiocorrelated structure of Γx(c) with the same block-sized components for c = 1

and 2, the M-linear (modified linear) sample classification rule with the corresponding partition of

the observed vector, x0 =
(
x0[1], . . . ,x0[b]

)′
is defined as follows:

Assign x0 to class Π1 if

b∑
j=1

x0[j] ·

 Γ̂
(1)

[j] + Γ̂
(2)

[j]

2

−1

·
(
µ̂
(1)
x[j] − µ̂

(2)
x[j]

)
>

1

2

b∑
j=1

(µ̂(1)
x[j] − µ̂

(2)
x[j]

)
·

 Γ̂
(1)

[j] + Γ̂
(2)

[j]

2

−1

·
(
µ̂
(1)
x[j] + µ̂

(2)
x[j]

)
and to class Π2 otherwise. Here,

µ̂
(c)
x[j] =

(
µ̂
(c)′
x[j],1, . . . , µ̂

(c)′
x[j],v

)′
, with µ̂

(c)
x[j],t = 1u ⊗ µ̂

(c)
[j],t and µ̂

(c)
[j],t ∈ ℜpj ,

for t = 1, . . . , v, j = 1, . . . , b, and c = 1, 2, and Γ̂
(c)

[j] is given in (9).

Observe that
Γ̂x(1) + Γ̂x(2)

2
has also the form (8) as each of Γ̂

(c)

[j] , j = 1, . . . , b, c = 1, 2 is

invariant with respect to addition, and therefore its inverse can be obtained using (12). The

difference between the linear and M-linear procedures is that the former uses a weighted average of

sample covariance matrices while the later uses an unweighted average. Thus, the two procedures

will be exactly same when sample sizes are equal. The generalization of this rule for C > 2 is simple.

6 Class of asymptotically equivalent block structure approxima-
tions of Γx

For a reasonable choice of the covariance structure approximation in the classification framework,

we need to investigate the effect of the block size, pjuv, j = 1, . . . , b, on the probability of misclas-

sification.

The quantity E for C = 2 is defined in (3). Recall from (7) that under constraints max
j=1,...,bλ

pj <

n/uv, imposed on the the block size in Algorithm 1 of Pavlenko et al. (2012), each choice of
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the penalty parameter λ in (gLasso section), provides an approximate block structure of Γx, so

that for a general choice of u and v the resulting estimator of the class covariance matrix Γx is

given by Γ̂x,λ = diag
[
Γ̂[1],λ, . . . , Γ̂[b],λ

]
, where Γ̂[j],λ for j = 1, . . . , b are the ML estimators of the

corresponding block diagonal entry. Hence, to optimize the selection of the block structure we need

to minimize E with respect to λ. However, the solution of Algorithm 2 in Pavlenko et al. (2012)

is not unique due to the sensitivity of the Cuthill-McKee reordering transform to the choice of

the initial node; see Algorithm 2 in Pavlenko et al. (2012) for details. To avoid this problem, we

instead express E in terms of the block size, pjuv for a given λ, and show that the effect of pjuv

on the classification accuracy is negligible in growing dimensions asymptotics. Since λ is assumed

to be fixed for a specific block structure, we drop this index in the rest of the article.

First, by using the block partitioned mean vector µx (defined in Section 3.2), which is constant

over sites (u), and by the conditional independence of xr,[j]’s for j = 1, . . . , b, given class variable

y(x), we find the empirical counterpart of the theoretical linear score ℓ(c)(x) in (1) as

ℓ̂(c)(x0) =

b∑
j=1

ℓ̂
(c)
j (x0[j]) =

b∑
j=1

[
x′
0[j] · Γ̂

(c)−1

[j] · µ̂(c)
x[j] −

1

2
µ̂
(c)′
x[j] · Γ̂

(c)−1

[j] · µ̂(c)
x[j]

]
+ lnπc,

where µ̂
(c)
x[j] are ML estimators of µ

(c)
x[j] for all c = 1, . . . , C as specified in Section 4, and Γ̂

(c)−1

[j] for

the class c is obtained from (11) by plugging-in the ML estimators of equicorrelation parameters

U0[j], U1[j] and W [j] that are also obtained in Section 4.

Further, as in the previous consideration, without loss of generality we focus on the analysis

of the misclassification error for the case of C = 2 and assume that π1 = π2 = 1/2 in (2). The

resulting estimated classifier is then expressed as

ℓ̂(x0) =

b∑
j=1

ℓ̂j(x0[j]) =

b∑
j=1

[(
x0[j] −

1

2

(
µ̂
(1)
x[j] + µ̂

(2)
x[j]

))′
· Γ̂

−1

[j] ·
(
µ̂
(1)
x[j] − µ̂

(2)
x[j]

)]
. (15)

To find the explicit expressions for the misclassification probability of (15) in terms of pjuv, we

assume that x0 =
(
x′
0[1], . . . ,x

′
0[b]

)′
∈ Π1 and recall that pjuv < n for all j = 1, . . . , b. Then the

conditional distribution of the jth block linear score given
(
µ̂
(1)
x[j], µ̂

(2)
x[j], Γ̂[j]

)
is normal,

ℓ̂j(x0[j])
∣∣µ̂(1)

x[j], µ̂
(2)
x[j], Γ̂[j] ∼ Npjvu

(
E[j], V[j]

)
,

where

E[j] =
(
µ̂
(1)
x[j] − µ̂

(2)
x[j]

)′
· Γ̂

−1

[j] ·
(
µ̂
(1)
x[j] − µ

(1)
x[j]

)
− 1

2

(
µ̂
(1)
x[j] − µ̂

(2)
x[j]

)′
· Γ̂

−1

[j] ·
(
µ̂
(1)
x[j] − µ̂

(2)
x[j]

)
(16)

and

V[j] =
(
µ̂
(1)
x[j] − µ̂

(2)
x[j]

)′
· Γ̂

−1

[j] · Γ−1
[j] · Γ̂

−1

[j] ·
(
µ̂
(1)
x[j] − µ̂

(2)
x[j]

)
. (17)
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In asymptotic study of ultra high dimensional data with block dependence structure, we turn to

the growing dimensions asymptotic framework
(
see e.g. Pavlenko (2003), Pavlenko et al. (2012)

)
,

that allows b → ∞ together with n so that b/n → β as n → ∞, where β > 0. The advantage of

this approach is that we can find a closed form expression for E assuming that the block size pjuv

is fixed for each given λ, as shown below.

For fixed pjuv, as b → ∞ the classifier (15) can be considered as the sum of growing number

of independent random variables ℓ̂j(x0[j]). Using the results of Pavlenko (2003) we further see

that the distribution of ℓ̂(x0) is asymptotically normal. Due to normality assumption on the class

conditional distributions, this result is a special case of Pavlenko (2003), where the more general

consideration of the distributional properties of the supervised classifier under the assumption of

block-wise dependence structure was given. In particular, in Pavlenko (2003), the asymptotic

distributional properties of the classifier were studied under more relaxed conditions, which impose

a set of regularity conditions on the class conditional distributions and constrained convergence

rates of parameter estimators.

The asymptotic normality of ℓ̂(x0) suggest that the misclassification probability, Eopt can be

approximated by

Φ

−

∑b
j=1 ET

[
ℓ̂j(x0[j])

∣∣x0 ∈ Π1

]
∑b

j=1VarT

[
ℓ̂j(x0[j])|x0 ∈ Π1

]
 , (18)

where ET [·
∣∣x0 ∈ Π1] and VarT [·

∣∣x0 ∈ Π1] denote the expectation and variance with respect to the

training data T respectively, and x0 is independent of µ̂
(1)
x[j], µ̂

(2)
x[j] and Γ̂x. Further, by applying

the results of Davis (1987) to the moments of ℓ̂j(x0[j]), as expressed in (16) and (17) we obtain

ET

[
ℓ̂j(x0[j])

∣∣x0 ∈ Π1

]
=

1

2

m

νj

[
δ2j + pjuv

(
1

n(1)
− 1

n(2)

)]
(19)

and (
m

νj

)2

(νj − 2)(νj + 1)VarT

[
ℓ̂j(x0[j])

∣∣x ∈ Π1

]
=

1

2
δ4j (νj + 1) + δ2j (νj + 1)

[
νj

(
1 +

1

n(2)

)
+

(
1

n(1)
− 1

n(2)

)]
+pjuv(νj + pjuv)

[
νj

(
1

n(1)
− 1

n(2)

)
+

1

2
(νj + 1)

(
1

(n(1))2
+

1

(n(2))2

)
− 1

n(1)n(2)

]
, (20)

where m = n(1) + n(2) − 2, νj = m− pjuv − 1. The square of the Mahalanobis distance δj for the

jth block can be expressed as

δ2j = µ′
x[j] · Γ

−1
[j] · µx[j]

= µ′
x[j] ·

(
Ivu ⊗∆−1

1[j] + Iv ⊗ Ju ⊗ 1

u

(
∆−1

2[j] −∆−1
1[j]

)
+ Jvu ⊗ 1

vu

(
∆−1

3[j] −∆−1
2[j]

))
· µx[j],

(21)
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where µx[j] = µ
(1)
x[j] − µ

(2)
x[j] is the shift vector for the jth block, and ∆1[j], ∆2[j] and ∆3[j] are

expressed in (10a), (10b) and (10c) respectively in terms of equicorrelation parameters U0[j], U1[j]

and W [j] for j = 1, . . . , b.

Now, the main result of this section is stated in the following proposition.

Proposition 1. Assume that maximal possible growth rate of the block size identified by Algorithm

1 in Pavlenko et al. (2012) is constrained by pj < n/uv for all j = 1, . . . , b, and let p =
1

b

b∑
j=1

pj be

the average block size where averaging is performed for a specific λ. Then, for a third-order data

with locally doubly exchangeable covariance structure, the asymptotic effect of puv on Eopt is of the

order O(
pvu

n2
).

The proof this proposition is given in Appendix B.

This proposition says, in words, that by considering a path of solutions in the Algorithm 1 in

Pavlenko et al. (2012) for a range of penalization parameter such that λ = O(

√
ln(p)
n ), and by

constraining the block size to pj < n/uv, we derive a structure approximation that leads to the

classifier with asymptotically equivalent performance for each value of λ. Hence, asymptotically

the average block size, p̄uv does not effect the classification accuracy. This means that the block

structures having such property form a class of asymptotically equivalent structure approximations

for UHDHOD, nonetheless for finite sample the effect could be investigated for each particular

choice of pj , u, v and n. Numerical studies of these effects are presented in the next section.

7 A simulation study

We conduct a simulation study to see the the effect of the block size pj and the effect of number

of repeated measurements v over time on the performance accuracy of our new linear classifier. To

see the effect of the block size on the performance accuracy we consider three partitioning scenarios

of the (p × p) dimensional variance-covariance matrix, where p = p1 + · · · + pb. In our simulation

study we keep the block sizes (pj) to be constant p0 (say) in each scenario. To vary the block sizes

for a fixed number of variables p = 12 we consider three choices of block sizes p0 = 4, p0 = 3 and

p0 = 2 resulting in b = 3, 4 and 6 blocks respectively. For each p0 we set the values of v, the number

of repeated measurements over time as 3 and 5, and the number of sites as u=2 for all scenarios.

We assume that the two populations have the same locally jointly equicorrelated covariance matrix

Γx as defined in (8), where the diagonal blocks Γ[j], for j = 1, . . . , b are jointly equicorrelated

covariance matrix with equicorrelation parameters U0[j], U1[j] and W [j]. Further, for each choice

of p0, v and u we assume the same jointly equicorrelated covariance matrix with equicorrelation
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parameters U0[j], U1[j] and W [j]. Our choice for p0 = 4 and b = 3 are given below:

U0[1] =


2 1 2 1
1 4 3 2
2 3 5 4
1 2 4 5

 , U0[2] =


7 1 2 1
1 5 3 2
2 3 6 5
1 2 5 5

 , and U0[3] =


5 1 0 0
1 4 1 0
0 1 6 1
0 0 1 4

 ,

for three blocks of sizes (4 × 4) for j = 1, 2 and 3. For all three blocks The covariance matrices

U1[j] and W [j] are chosen as follows

U1[j] =


0.40 0.11 0.40 0.30
0.11 0.60 0.15 0.30
0.40 0.15 0.60 0.20
0.30 0.30 0.20 0.10

 , and W [j] =


0.30 0.20 0.10 0.10
0.20 0.30 0.10 0.07
0.10 0.10 0.30 0.20
0.10 0.07 0.20 0.20

 .

The equicorrelation parameters U0[j], U1[j] and W [j] for b = 4 are chosen as the main majors

from the above equicorrelation parameters for b = 3. This strategy provides only three sets of

U0[j]s for b = 4 so the last U0[4] is chosen as

U0[4] =

 3 1 0
1 3 1
0 1 3


Using the similar technique we set the (2 × 2) equicorrelation parameters U0[j], U1[j] and W [j]

for b = 6. We choose the mean vectors µ
(c)
x for class c = 1, 2 as defined in Section 3.2 with

µ
(1)
[j],1 = (2, 1, 1, 0.5)′, µ

(1)
[j],2 = (2.5, 1.5, 1.5, 1)′ and µ

(1)
[j],3 = (3, 1.5, 1.5, 1)′ for all j = 1, 2 and 3. And,

µ
(2)
[j],1 = (0, 1, 0, 0.5)′, µ

(2)
[j],2 = (2.0, 1.5, 1.0, 1.0)′ and µ

(2)
[j],3 = (2.0, 1.5, 0.5, 0.5)′ for all j = 1, 2 and 3.

Training samples of sizes (n(1), n(2)) =(3, 3), (4, 4), (5, 5) (very small), (8, 8), (12, 12) (small),

(15, 15), (25, 25) (moderate) and (50, 50), (100, 100), (500, 500) (large), and a pair of test samples

(2000, 2000) are generated from the puv-variate normal populations Npuv(µ
(c)
x ,Γx), c = 1, 2,

where µ
(c)
x and Γx are defined as above. Based on these samples, we estimate (µ

(1)
x ,µ

(2)
x ) and

(U0[j],U1[j],W [j]) for all partition scenarios using the ML method as discussed in Section 4.

Table 1 shows the misclassification error rates (MERs) of the test set of (2000, 2000). We see

that smaller the block size p0, the better the classification performance, i.e., lower the MERs. This

pattern is observed for all pairs of training samples and within that for each v = 3 and 5, except for

a small bump at sample sizes (8, 8) and v = 3. These results indicate that for smaller sample sizes,

the classifiers with smaller blocks outperform those with larger blocks over all sets of u and v; this

result is indeed expected as with smaller p0 there are less parameters to be estimated. We also see

that MER always decreases with the increase of v with the exception of small bumps sometimes.

This is due to the fact that more repeated measurements means more information and it leads to

less MERs. And, this is true for all pairs of sample sizes. We also see that with the increase of

training sample sizes MER decreases as we get reliable parameter estimates; more samples, more

information, thus much reliable estimates of the unknown parameters.
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This result could also be interpreted in terms of bandable covariance structure; the wider the

band, the more parameters to be estimated, this in turn yields more pronounced effect on the clas-

sification performance. Observe however that our empirical results indicate that the performance

accuracy is better when approximating the band structure by smaller blocks, i.e., when the blocks

are inside the band, than approximating by larger blocks, i.e., when blocks cover the band. Note

that in the later case the approximation involves spurious non-zero covariances naturally affecting

the misclassification.

For completeness reason we also intend to see whether the performance pattern of our new

classifiers remain the same for the large sample consideration ((50, 50), (100, 100), (500, 500)); see

Table 2. It turns out that the pattern of Table 1 is preserved in Table 2. However, the effect of

block size seems to be less pronounced with the increase of the sample size, i.e., the resulting MERs

become very close to each other, demonstrating more stable behavior for all the block sizes; this

supports our limit results of Proposition 1 stating that the choice of the block size at the model

selection stage is asymptotically small.

Table 2: MERs (%) for the simulated data for different training

sample sizes and with different block sizes

n(1),n(2) (50,50) (100,100) (500,500)

v → 3 5 3 5 3 5
Block
Size (p0) ↓
4 6.200 4.100 5.250 3.475 5.175 2.625

3 4.625 2.675 3.400 2.350 3.150 1.800

2 3.325 2.175 2.350 1.900 2.250 1.650

8 Conclusions and scope for the future

In this article we explore the block-wise sparsity, which leads to the additive structure of the result-

ing linear and quadratic classifiers, which in turn essentially simplifies covariance estimation in ultra

high-dimensional settings. The technique of the covariance structure learning was extended to the

higher order data with specific block-wise covariance structure. In particular, our approach allows

for modeling higher order data with varying sets of equicorrelation parameters, reflecting many sites

and time points. This type of simultaneous covariance structure learning and parameter estima-

tion is of great advantage for supervised classification. One possibility to extend our approach is to

turn to other graphical techniques for covariance model selection, such as l1-penalized log determi-

nant Bregman divergence, where the structure is specified by the graph of an associated Gaussian

Markov random field, as described in Ravikumar et al. (2011). Another extension may be possible

by using Bayesian perspective, namely turn to Bayesian predictive classification where priors are
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assigned to the set of equicorrelation parameters in the model (9); see Corander et al. (2012) for

details. Observe however that the block diagonal covariance structure in Corander et al. (2012)

was pre-specified; it would be interesting to impose proper priors on the covariance structure as well.
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A Maximum likelihood estimation of µ[j]t, U 0[j],U 1[j] and W [j], j =
1, . . . , b, t = 1, . . . , v

Proof of Theorem 1: Using the same notations as in Section 4, the likelihood function L =

L (µx;Γx) = L
(
µ[j]1, . . . ,µ[j]v,U0[j],U1[j],W [j]

)
for j = 1, . . . , b can be written as

L (µx,Γx) =

exp

{
−1

2

n∑
r=1

(xr − µx)
′
Γ−1
x (xr − µx)

}

(2π)

npuv

2 |Γx|
n

2

,

or equivalently,

L
(
µx∗ ,Γx∗

)
=

exp
{
−1

2

(
x∗−µx∗

)′
Γ−1
x∗

(
x∗−µx∗

)}
(2π)

npuv

2 |Γx∗ |
1

2

,

where

x[j]∗ =
(
x

′

1,[j], . . . ,x
′

n,[j]

)′

,

µ′
x[j]∗

= 1
′
n ⊗ µ

′

x[j] = 1
′
n ⊗

(
1′u ⊗ µ′

[j],1, . . . ,1
′
u ⊗ µ′

[j],v

)
,

and

Γ[j]∗ = In ⊗ Γ[j],
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which is a block diagonal matrix with n identical diagonal blocks Γx. Thus, using the results (12)

and (13) the log likelihood function can be written as

ln(L
(
µx∗ ,Γx∗

)
) = −npuv

2
ln (2π)− n

2
ln |Γx| −

1

2

n∑
r=1

(xr − µx)
′
Γ−1
x (xr − µx) ,

= −npuv

2
ln (2π)− n

2
ln(

∣∣Γ[1]

∣∣ ∣∣Γ[2]

∣∣ . . . ∣∣Γ[b]

∣∣)
−1

2

n∑
r=1

(xr − µx)
′
diag

(
Γ−1
[1] ,Γ

−1
[2] , . . . ,Γ

−1
[b]

)
(xr − µx) ,

= −npuv

2
ln (2π)− n

2
ln(

∣∣Γ[1]

∣∣ ∣∣Γ[2]

∣∣ . . . ∣∣Γ[b]

∣∣)
−1

2

n∑
r=1

b∑
j=1

(
xr,[j] − µx[j]

)′

Γ−1
[j]

(
xr,[j] − µx[j]

)
,

= −npuv

2
ln (2π)− n

2

b∑
j=1

ln
∣∣Γ[j]

∣∣
−1

2

b∑
j=1

n∑
r=1

(
xr,[j] − µx[j]

)′

Γ−1
[j]

(
xr,[j] − µx[j]

)
,

= −npuv

2
ln (2π)− 1

2

b∑
j=1

ln
∣∣Γ[j]∗

∣∣
−1

2

b∑
j=1

(
x[j]∗ − µx[j]∗

)′

Γ−1
[j]∗

(
x[j]∗ − µx[j]∗

)
,

= −npuv

2
ln (2π)− 1

2

b∑
j=1

ln
∣∣Γ[j]∗

∣∣
−1

2

b∑
j=1

(
x[j]∗ − µx[j]∗

)′

Γ−1
[j]∗

(
x[j]∗ − µx[j]∗

)
, (A1)

where the matrix Γ−1
[j] is given in (11). Using the centered vectors

•
xr,[j],ts = xr,[j],ts − µ[j],t, for

r = 1, . . . , n, s = 1, . . . , u, and t = 1, . . . , v, the sum of quadratic forms for the jth block

Q
(
x[j]∗

)
=

n∑
r=1

(
xr,[j] − µx[j]

)′

Γ−1
[j]

(
xr,[j] − µx[j]

)
=

(
x[j]∗−µx[j]∗

)′

Γ−1
[j]∗

(
x[j]∗ − µx[j]∗

)
.

Now, the log likelihood function (A1) can be written as

ln(L
(
µx∗ ,Γx∗

)
) = −npuv

2
ln (2π)− 1

2

b∑
j=1

[
ln
∣∣Γ[j]∗

∣∣+Q
(
x[j]∗

)]
. (A2)
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Thus, we see from (A2) that the mean vector and the variance-covariance matrix µx[j]∗ and Γ[j]∗

for each of the jth blocks, j = 1, . . . , b can be obtained separately. We first minimize Q
(
x[j]∗

)
with

respect to µx[j] for a fixed covariance matrix Γ[j]∗ . By substituting this estimate µ̂x[j] into (A2),

we minimize the log-likelihood equation with respect to Γ[j]∗ to get the MLE of Γ[j]∗ .

Following the same techniques as Roy and Leiva (2007) we have the MLEs of µ′
x[j] for the jth

block as follows:

µ̂′
x[j] =

(
1′u ⊗ µ̂′

[j],1, . . . ,1
′
u ⊗ µ̂′

[j],v

)
,

where µ̂[j],t = x[j],t =
1

nu

n∑
r=1

u∑
s=1

xr,[j],ts, for t = 1, . . . , v, and the MLEs of U0[j],U1[j] and W [j]

for the jth block as follows:

Û0[j] =
1

nuv

n∑
r=1

v∑
t=1

u∑
s=1

(
xr,[j],ts − x[j],t

) (
xr,[j],ts − x[j],t

)′
,

Û1[j] =
1

nuv (u− 1)

n∑
r=1

v∑
t=1

u∑
s=1

u∑
s̸=s∗=1

(
xr,[j],ts∗ − x[j],t

) (
xr,[j],ts − x[j],t

)′
,

and Ŵ [j] =
1

nu2v (v − 1)

n∑
r=1

v∑
t=1

v∑
t ̸=t∗=1

u∑
s=1

u∑
s∗=1

(
xr,[j],t∗s∗ − x[j],t∗

) (
xr,[j],ts − x[j],t

)′
,

for j = 1, . . . , b.

B Proof of Proposition 1

To simplify asymptotic consideration, we set pj = p for all j = 1, . . . , b, and n(1) = n(2) = n0 (say).

Thus, the equations (19) and (20) reduce to

ET

[
ℓ̂j(x0[j])|x0 ∈ Π1

]
=

1

2

m

νj
δ2j

and

VarT

[
ℓ̂j(x0[j])|x0 ∈ Π1

]
=

ν2
[
1
2δ

4
j (ν + 1) + δ2j (ν + 1) + puv(ν + puv)/n2

0

]
m2(ν − 2)(ν + 1)

(B1)

where ν = 2n0 − puv − 3. The proof proceeds now by summing ET

[
ℓ̂j(x0[j])|x0 ∈ Π1

]
over j, and

by dividing the variance term in (B1) into three parts as follows

VarT

[
ℓ̂j(x0[j])|x0 ∈ Π1

]
=

ν2

m2
· 1

(nu− 2)(ν + 1)
[Ij + IIj + IIIj ] ,
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so that

I =
b∑

j=1

Ij =
1

2

ν2

(ν − 2)m2

b∑
j=1

δ4j , (B2a)

II =

b∑
j=1

IIj =
ν3δ2

m2(ν − 2)

(
1 +

1

n0

)
, (B2b)

and III =
b∑

j=1

IIIj =
ν2puv(ν + puv)

m2n2
0(ν − 2)(ν + 1)

, (B2c)

where

δ2 =

b∑
j=1

δ2j

=
b∑

j=1

[
µ′
x[j] ·

(
Ivu ⊗∆−1

1[j] + Iv ⊗ Ju ⊗ 1

u

(
∆−1

2[j] −∆−1
1[j]

)
+ Jvu ⊗ 1

vu

(
∆−1

3[j] −∆−1
2[j]

))
· µx[j]

]
,

with µx[j] = µ
(1)
x[j] −µ

(2)
x[j] is the shift vector for the jth block. Expressions I − III in (B2a), (B2b)

and (B2c) respectively in combination with some algebraic simplifications, (18) yields

Φ
(
− δ

2

[( ν

mδ

)2
(I + II + III)

]−1/2)
.

Now, by observing that n0 ∼ O(n) and by ignoring the terms of O(1/n) and O(p/n2), we observe

that the term I is o(n−1), by the constraints on p, p̄ ≪ n and by the boundary conditions on the

Mahalanobis distance. As n → ∞, by the assumption (7), II goes to δ2, a constant which does

not depend on p. Next, by observing ν + puv = 2n0 − 3 and ν/m2 is of order O(puv/n2), it is then

clear that III is bounded by O(puv/n2) where p/n2 → 0 as n → ∞ by the assumption (7).
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