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Abstract

The introduction of shape parameters into the statistical literature
opened new areas of research and allowed statisticians to use mod-
els that produced better fits to experimental data. The Weibull and
gamma families are prime examples wherein shape parameters produce
more reliable statistical models than standard exponential models in
lifetime studies. In the presence of many gamma-populations, one may
test equality (or homogeneity) of shape parameters across a collection
of independent populations. In this paper we develop standard asymp-
totic tests for testing the equality of shape parameters of gamma dis-
tributions using the log-likelihood ratio (LRT) test statistic. Other
tests are given that summarize test hypotheses on the shape param-
eter of a single gamma distribution. We numerically investigate the
performances of these tests and find that in large sample sizes that the
distribution of the log-likelihood ratio test statistic converges nicely to
that of a chi-square distribution.
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1 Introduction

The purpose of this article is the development of some hypothesis tests
for testing the equality of shape parameters of two-parameter gamma
distributions from two independent populations. These tests are devel-
oped under the constraint that the actual Type I error rate should not
exceed the prescribed level of significance, (α), even for small sample
sizes. In what follows, we first explore two conservative tests for the
shape parameter of a gamma distribution. For every testing problem,
we numerically compute the Type I error rate via Monte Carlo simu-
lation and show that in most cases the simulated Type I error rate is
under control. To compare several independent gamma populations,
we develop a test by using the generalized likelihood ratio test and
verify the traditional asymptotic approach via the log-likelihood ratio
test statistic.

1.1 Applications of the Gamma–Family

The gamma distribution has many practical applications across many
spectra of human endeavors and scientific discoveries. In human sur-
vival, the family is one of wide applicability in that its hazard function
can be decreasing (DFR), constant, or increasing (IFR): the three com-
mon features of most empirically derived hazard functions, also known
as the bathtub curve. One can generate a bathtub curve model by
connecting three separate gamma distributions piecewise via change
points. A random variable X that follows gamma law has a density
function is given by

f (x;κ, β) =
xκ−1 exp(−x/β)

Γ (κ) βκ
× I(0,∞) (x) (1)

The shape parameter, κ, is especially interesting to survival analysts
since the gamma hazard function is decreasing, constant, or increasing
according to the trichotomy of κ − 1. We denote this distribution
property by X ∼ G(κ, β). The mean and variance of X are well known
to be E(Y ) = κβ and V (Y ) = κβ2. Epidemiologists, engineers, and
other scientists note that many experimental settings lead to a random
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variables in which the coefficient of variation is a deterministic constant.
If the random variable follows the gamma law then knowledge of the
coefficient of variation implies knowledge of κ. The shape parameter
is a recurring model in renewal theory for times to failure, remission,
etc., that follow from a set of formal assumptions.

Special cases of random variables having gamma distributions, in-
clude chi-square random variables for which κ = ν/2, where the positive
integer, ν, is the number of degrees of freedom of the chi-square ran-
dom variable, and β = 2. Another special case of the Gamma–family
is given by the Erlang family in which κ = n where n is a positive inte-
ger. Its importance is seen because a finite series can be given for the
cumulative distribution of the random variable. In general this cannot
be done for all members of the Gamma–family of random variables.
The most widely used special case of the Gamma–family occurs when
κ = 1 and is known as the exponential family. It is well known that
the exponential distribution has a constant failure rate distribution.
The value of κ = 1 separates the parameter space Ω into two disjoint
regions. The Erlang distribution is often considered as the sum of n
independent and identically distributed exponential random variables
with mean time to failure of β. Another well known case of the (IFR)
Gamma–family occurs when κ = 3

2
which is called Maxwell’s distribu-

tion. When κ = 2, we get the length-biased version of the exponential
family which is quite important in sampling.

1.2 Competing Risks

Consider a homogeneous population of n individuals with lives that are
at risk to a diseases or competing causes of death, such as cardiovas-
cular disease, cancer, diabetes, etc. (see Pintille [19] or Crowder [5]).

Let xℓ, ℓ = 1, . . . , n be the observed lifetime of an individual and
let ∆ℓ be the indicator which specifies the cause of death for the ℓth

individual. The random variable ∆ℓ has support on the set {1, . . . , p}.
If the person expires due to the ith disease, we have:

∆ℓ = i and Pr (∆ℓ = i) = πi. (2)

The natural restriction is that
∑p

i=1 πi = 1. It follows that the con-
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ditional distribution of an individual’s lifetime due to the ith cause is
denoted by x | ∆ = i and has the same pdf as the ith family.

f (x,∆ = i) = f (x | ∆ℓ = i) Pr (∆ℓ = i)

= fi (x)πi. (3)

Using the previous expression, we can write a general expression for
the likelihood of n independent deaths due to a competing causes as

L =
p∏

i=1

 ni∏
j=1

fi (xij) πj

 (4)

where xij is the j
th lifetime due to the ith cause of death and ni is the

number of deaths due to the ith cause. Within the context of competing
risks, we introduce multiple independent Gamma distributions each
representing the length of life ended by the disease.

2 Foundations

For each i, i = 1, 2, . . . , p, suppose xij are ni i.i.d. gamma random
variables with shape parameter κi and scale parameter βi for each j =
1, 2, . . . , ni. The joint density function for the sample obtained from
the ith population is given by

f (xi1, . . . , xini
| κi, βi) =

x̃
ni(κi−1)
i exp(−nix̄i

βi
)

[βκi
i Γ(κi)]ni

(5)

The arithmetic and geometric means of this random sample are denoted
respectively by x̄i and x̃i. Let wi = x̃i/x̄i denote the ratio of the
sample geometric mean to the sample arithmetic mean and this ratio
by Jensen’s inequality, is 0 ≤ wi ≤ 1. Following Bhaumik et al.[4] define
Ri (xi) = −ni ln (wi) as the natural logarithm of their reciprocal, where
xi is the vector of observed values from the sample of size ni obtained
from the ith population. Thus from the joint distribution, we obtain
the likelihood function as

Li (κi, βi | xi) =
x̃
ni(κi−1)
i exp(−nix̄i

βi
)

[βκi
i Γ(κi)]ni

. (6)
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The subsequent log-likelihood, for each population, (i.e., i = 1, . . . , a)
is given by

Li (κi, βi | xi) = ln {Li (κi, βi | xi)}

= ni (κi − 1) ln (x̃i)−
nix̄i
βi

(7)

−niκi ln(βi)− ni ln [Γ(κi)] .

By methods of the calculus, one can solve for the maximum likelihood
estimators of κi and βi by solving the following system of equations
numerically:

• ln (wi) = ψ (κ̂i)− ln (κ̂i).
The solution obtained numerically for κ̂i is the MLE of κi where
ψ(x) is the digamma function. The MLE of κ, denoted as ˆkappai,
is substituted into the following equation to obtain the corre-
sponding MLE for βi.

• κ̂iβ̂i = x̄i.

Evaluation of the log-likelihood function at the maximum likelihood
estimators, yields the following expression

Li

(
κ̂i, β̂i | xi

)
= niκ̂i ln (wi)− niκ̂i − ni ln [Γ (κ̂i)] (8)

+niκ̂i ln(κ̂i)− ni ln (x̃i)

As κ̂i depends upon the data only through the statistics wi, then it
becomes clear that the estimated log-likelihood depends upon the data
only through wi and x̃i thus its distribution depends only on the joint
distribution of wi and x̃i.

Assuming that the shapes parameters are equal to a common value
H0 : κ0 = κ1 = κ2 = . . . = κp, then one can write the likelihood
function of κ0, β1, . . . , βp as

L0 (κ0, β1 . . . βp | x1,x2 . . .xp) =
Πp

i=1x̃
ni(κ0−1)
i exp

(
−∑p

i=1
nix̄i

βi

)
Πp

i=1 [β
κ0
i Γ(κ0)]

ni
. (9)
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It then follows that

L0 (κ0, β1 . . . βp | x1,x2 . . .xp) = (κ0 − 1)
p∑

i=1

ni ln (x̃i)−
p∑

i=1

nix̄i
βi

− κ0

p∑
i=1

ni ln (βi)− n0 ln [Γ(κ0)].(10)

where n0 =
∑p

i=1 ni.

Taking the partial derivative of (10) with respect to κ0 produces:

∂L0

∂κ0
=

p∑
i=1

ni ln (x̃i)−
p∑

i=1

ni ln (βi)− n0ψ(κ0) (11)

where ψ(x) is Euler’s digamma function evaluated at the positive real
number, x. Likewise,

∂L0

∂βi
=
nix̄i
β2
i

− κ0ni

βi
(12)

for each i = 1, . . . , p. Setting the equations in (12) equal to zero we
obtain the following p equations in p+ 1 unknowns.

βi = x̄i/κ0. (13)

Substituting these solutions into (11) one obtains,

∂L0

∂κ0
=

p∑
i=1

ni ln (wi) + n0 ln (κ0)− n0ψ(κ0) (14)

Setting the partial derivative equal to zero we obtain,

p∑
i=1

ni ln (wi) = n0ψ(κ0)− n0 ln (κ0)

ln (Πp
i=1w

ci
i ) = ψ(κ0)− ln (κ0) (15)

where ci = ni/n0. Thus the maximum likelihood estimator of κ0 satis-
fies the same equation (15) as the ones for random samples taken from
individual populations where data are involved through the weighted
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geometric mean of the ratios of sample geometric to sample arithmetic
means in samples of size ni. In this vein, define

W = Πp
i=1w

ci
i . (16)

Thus the log-likelihood evaluated at the maximum likelihood estima-
tors assuming the null hypothesis is true becomes

L0

(
κ̂0, β̂1 . . . β̂p | x1,x2 . . .xp

)
= n0κ̂0 ln (W )− n0κ̂0 + n0κ̂0 ln (κ̂0)

−n0 ln [Γ (κ̂0)]−
p∑

i=1

ni ln (x̃i) (17)

The likelihood ratio test is found by computing the following:

Λ (x1, . . . ,xp) =
L0

Πp
i=1Li

. (18)

It follows that the log-likelihood test reduces under a logarithmic trans-
formation to

ln (Λ) = L0 −
p∑

i=1

Li.

=
p∑

i=1

ni [κ̂0 − κ̂i] ln (wi) +
p∑

i=1

ni [κ̂0 ln (κ̂0)− κ̂i ln (κ̂i)]

−
p∑

i=1

ni [κ̂0 − κ̂i]−
p∑

i=1

ni {ln [Γ (κ̂0)]− ln [Γ (κ̂i)]} (19)

3 Testing hypotheses on a single shape parameter

In this section, we present hypothesis tests on the shape parameter
of a gamma distribution assuming the scale parameter is unknown.
Keating et al. [14] provide an optimal test to test hypotheses on the
values of the shape parameter in a single population. The test statis-
tic, X̄, alone cannot be used to construct a test statistic for testing the
shape parameter as the scale parameter is involved in its distribution.
However, the distribution of w depends only on κ and not on β. This
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random variable, w follows naturally from the generalized likelihood-
ratio test. Keating et al. [14] constructed this uniformly most powerful
unbiased (UMPU) test for κ based on the ratio of the geometric to
arithmetic sample means, w, only by expressing the density function
of w in powers of − ln(w). This representation is Glaser’s series expan-
sion [9] of the distribution of w. Keating et al. [14] noted that Glaser’s
expression yields a conservative radius of convergence for the series,
which is known to converge for all w in the closed-bounded interval
[exp(−2π/n), 1]. This condition is problematic whenever the alterna-
tive hypothesis is left-sided and occurs frequently when one may test
the null of exponentiality against a DFR alternative.

In the material that follows we recount the research of Bhaumik
et al. [4] on approximations to distributions of test statistics in small
sample sizes. These results follow from an exact expression of the test
statistic as a product of independent beta random variables but with
different shape parameters although its power is not optimal as it does
not follow from the generalized likelihood ratio test.

3.1 Right–tail alternatives

Let us first investigate the problem for:

H01 : κ = κ0

vs (20)

Ha1 : κ > κ0

They wanted a simple test that controls the Type I error rate, α,
for even very small values of n. The procedure involves construc-
tion of a random variable Z which is stochastically larger than wn

(denote this ordering by Z ≻ wn) and develop a conservative test
based on Z. In this section, Z, conservative test statistic, follows a
beta distribution rather than a product of independent beta random
variables having different shape parameters. Denote the 100pth per-
centile of a beta distribution with parameters ξ and δ by bp(ξ, δ); so
that Pr (Y < bp(ξ, δ)) = p where Y follows the beta distribution with
shape parameters ξ and δ, respectively. The test that follows is easy
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to implement for H01. The result is presented below in the form of a
theorem.

Theorem 1 Let X1, X2, . . . , Xn be a random sample from a gamma
distribution as in (1) with shape parameter κ and scale parameter β.
Let w be the ratio of the sample geometric to the arithmetic sample
mean. A conservative rejection region in testing the hypothesis H01

against the alternative Ha1 in 20, is given by :{
x : wn > b1−α

(
κ0,

n− 1

2

)}
(21)

where bp(ξ, δ) is the 100p
th percentile point of a beta distribution with

parameters ξ and δ.

Proof. Glaser [9] proved that the distribution of wn is distributed as a
product of (n− 1) independent beta distributions, i.e.

wn ∼
n−1∏
i=1

Zi (22)

where Zi ∼ B(κ, i
n
), i = 1, 2, · · · , n − 1. Note that B(κ, i

n
) is stochas-

tically increasing in κ. It follows that we can construct a random
variable Z∗

1 ∼ B(κ + 2
n
, 1
n
) that is stochastically larger than Z1. Using

the succession of beta’s result, see Bhaumik et al. [4], we have

Z1Z2 ≺ Z∗
1Z2 = Z∗

2 , where Z
∗
2 ∼ B(κ, 1

n
+

2

n
). (23)

By the induction principle, we can construct a random variable Z which
is stochastically larger than wn, i.e. wn ≺ Z, where Z ∼ B(κ0, n−1

2
).

Thus, Pr
[
wn > b1−α(κ0,

n−1
2
)
]
< Pr

[
Z > b1−α(κ0,

n−1
2
)
]
= α. Hence,

the test is conservative.

Example 1 Consider the IFR example given in Keating et al. [14]
where they enumerate 29 operating hours of air-conditioning systems
in aircraft 7909. The sample geometric mean is given by x̃ = 60.15
hours and arithmetic mean of x̄ = 83.52 hours. The resulting value
of u = 0.7203. b1−α(κ0,

n−1
2
)) = b.95(1, 14) = 0.00365710258483887,

u = 0.7203, [b0.95(1, 14)]
1/29 = 0.82402
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3.2 Left tail alternatives

Let us now consider another hypothesis H02 : κ = κ0 against the al-
ternative Ha2 : κ < κ0. The approach used in Theorem 1 would not
produce a conservative left-sided test. By contrast, to construct a con-
servative test for H02, we should look for a random variable Z which is
stochastically smaller than wn.

Theorem 2 Let X1, X2, . . . , Xn be a random sample from a gamma
distribution with shape parameter κ and scale parameter β, and w
be the ratio of the geometric mean to the arithmetic mean. Let Yi’s
i = 1, 2, · · · , n−1 be n−1 independent and identically distributed beta
random variables each with parameters κ and n−1

n
and

Z =
n−1∏
i=1

Yi.

Denote the (α)100%th percentile point of the distribution of Z by
Zα(κ,

n−1
n
). For testing the hypothesis H02 against the alternative Ha2

there exists a conservative test given by: reject H02 if w
n < Zα(κ,

n−1
n
).

Proof. In Theorem 1 we stated that wn ∼ ∏n−1
i=1 Zi, where Zi ∼ B(κ, i

n
).

Note that each B
(
κ, i

n

)
is stochastically decreasing in i. As Yi ∼

B
(
κ, n−1

n

)
, i = 1, . . . , n − 1, hence Yi ≺ Zi, for all i = 1, 2, . . . , n − 1.

Thus Z =
∏n−1

i=1 Yi is stochastically smaller than wn.

Derivation of the exact distribution of Z and determination of its per-
centile point c may be mathematically challenging but our approach
will lose its simplistic appeal. Instead, we determine c by Monte Carlo
simulation. Exploiting the fact that Yi’s are independently distributed,
we can further simplify the computation as follows.

Pr (wn < c) ≤ Pr (Z < c) = 1− Pr (Z > c)

≤ 1−
n−1∏
i=1

Pr
[
B
(
κ,

i− 1

n

)
> c

1
n−1

]

= 1−
[
Pr(B(κ, n− 1

n
) > c

1
n−1 )

]n−1

.(24)
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The middle inequality in (24) is obtained from the fact that Yi’s are
independently and identically distributed. Determination of c is sim-
plified as the extreme right side of (24) is based on a single beta random
variable. In order to determine the cut-off point c, we equate the ex-
treme right side of (24) to the given nominal level of significance α. In
turn this test becomes more conservative.

3.3 Simulations

In order to evaluate the performance of the proposed test for H01 we
have numerically computed the Type I error rate (based on 100, 000
samples) for a wide range of κ starting from 1 to 10 and for n =
2, · · · , 10. For smaller values of κ(≤ 5) we observe that the simulated
Type I error rates are always between 0.03 and 0.05 when n is not
more than 5. For larger values of κ(> 5) we obtain similar results for
n = 2, . . . , 10.

We evaluate the performance of H02 by the same way as mentioned
before. When c is determined numerically based on the distribution of
Z, the simulated Type 1 error rates match with those described before.
But when c is determined from the extreme right side of (24), we notice
that the test performs reasonably well for very small values of n (< 5)
and for a wide range of κ between 0.25 to 30.

Note that tests proposed in Theorems 1 and 2 are conservative and
their performances are not satisfactory for large values of n. In this
context, we evaluated a test for κ using Theorem 2. We compute the
mean and variance of Rn = −n ln(w) using the Delta method. The
constants associated with a chi-square approximation, c and ν, are
determined from the following equations:

2nκ0E(Rn) = cν

2nκ0V ar(Rn) = 2c2ν. (25)

The test is to reject H01 if 2nκ0Rn < cχ2
ν,1−α, and H02 if 2nκ0Rn >

cχ2
ν,α. An extensive simulation study based on 100, 000 samples indi-

cates that the overall performance of these tests is extremely well in
terms of simulated Type I error rate for all values of n = 1, · · · , 30 and
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κ > 1. Even for κ < 1 and for small values of n (< 5) the simulated
Type I error rate did not exceed 0.065 when α was fixed at .05.

4 Comparisons of two gamma populations

In this section we assume that we have p = 2 independent gamma pop-
ulations. We would like to compare their shape parameters. Assume
that we have ni independent observations from each of two indepen-
dent gamma populations, i.e. xij ∼ G(κi, βi) j = 1, 2, . . . , ni and
i = 1, 2. Our hypothesis of interest is Ho : κ1 = κ2 against the alterna-
tive hypothesis, Ha : κ1 ̸= κ2. In engineering, when components of a
product are made in different plants for the purpose of using them in
the same system, it is essential to check whether they are equivalent.
In a study of this type, generally shape parameters govern the decision
as data are often rescaled, so that one can often assume equality of
the scale parameters, β1 = β2 = 1. In the first part of this section,
we develop a test for Ho under the assumption that xij ∼ G(κi, β).
Let, Z =

∑2
i=1

∑ni
j=1 xij and zij =

xij

Z
. The joint distribution of zij’s is

Dirichlet with the following density function:

f(z11, · · · , z2n2) =
Γ(n1κ1 + n2κ2)

(Γ(κ1))n1(Γ(κ2))n2

× z
(κ1−1)
11 · · · z(κ1−1)

1n1
z
(κ2−1)
21 · · · z(κ2−1)

2n2
. (26)

Marshall and Olkin [17] called this distribution as Dirichlet Type III
distribution. We now proceed to construct an unbiased test (in the
sense of Schur convexity) for H03 using zij’s and their joint distribution
as defined above. Let us state the result in the form of a theorem.

Theorem 3 Let xi1 , xi2 , · · · , xini
be a random sample from the ith

gamma population with shape parameter κi and scale parameter β,
where i = 1, 2. Denote the 100(α)th percentile point of a Dirichlet’s
distribution defined in (26) when all the κ’s are equal by Dα. For
testing the hypothesis H03 against the alternative Ha3 there exists a
unbiased test in the sense of Schur convexity given by: reject H03 if

Q(z11, · · · , z2n2) < Dα
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where,

Q(z11, · · · , z2n2) =
2∏

i=1

ni∏
j=1

zij.

Proof. Q(z11, · · · , z2n2) is a Schur-concave function of random variables
z11 , · · · , z2n2

. Note that
∑2

i=1

∑ni
j=1 zij = 1. It can be proven that

the indicator function I{Q(z11,···,z2n2)<Dα} is Schur-convex. Dirichlet’s
Type III distributions parameterized by the vector κ1 and κ2 has the
property that expectation of a Schur-convex function leads to a Schur-
convex function of κ1 and κ2 (see Marshall and Olkin [17], Chapter 11).
Hence, Ψ(κ1, κ2) = E(I{Q(z11,···,z2n2 )<Dα}) is a Schur-convex function of
κ1, κ2. Thus under H03, Ψ(κ1, κ2) takes its minimum value as (κ, κ) is
majorized by (κ1, κ2). But, the value of (κ1, κ2) is (κ, κ) under H03.
Therefore, the proposed test is unbiased in the sense of Schur-convexity.

In order to implement the result stated in Theorem 3, we need the
common value of κ say, κ0 under H03 = κ1 = κ2 = κ0. We will call
κ0 as the target value. The critical value Dα of Theorem 3 depends on
the target value κ0. The power of the test at (κ1, κ2) is always greater
than α whenever

∑2
i=1 niκi = κ0

∑2
i=1 ni.

In case κ0 is not specified we should look for a test that does not
depend on the target value. Without any loss of generality, let n1 be
the minimum of (n1, · · · , np). Using the second part of Theorem 3, we
can construct a test

F =
n1Rn1

n2Rn2

that follows, under the truth of H03, a central F -distribution with df’s
n1−1 and n2−1. Note that to construct this F we do not need the scale
parameters of the distributions to be equal. Neither the construction
nor the distribution of F depends on any parameters under the null
hypothesis.
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5 The Likelihood Function

Recall the competing risks example discussed in Section 1.2 where mul-
tiple independent Gamma populations are involved. In this section we
discuss the maximum likelihood estimation procedure for estimating
model parameters under the assumption that each gamma population
has its own scale and shape parameters. Thus we have κ1, κ2, · · · , κp
shape parameters and β1, β2, · · · , βp scale parameters. In Sections 5.1
and 5.2 we discuss some special cases regarding the equality of these
model parameters and provide a sketch of estimation. The joint den-
sity function of the gamma random variables in the ith random sample
of size ni, Y1, . . . , Yni

, obtained from this gamma distribution is given
by:

fi(y1, . . . , yni
;κi, βi) =

ni∏
j=1

yκi−1
j e−yj/βi

Γ (κi) βi
κi
I(0,∞)

(
y(1)i

)
(27)

and j = 1, . . . , ni for each i = 1, . . . , p. Recall that when this joint
density function of the ith gamma family is viewed as a function of the
parameters κi and βi given the data, yi (the vector of observations),
the function is the likelihood function, Li (κi, βi|y), by Fisher. The
likelihood function of the ithgamma family is given by

Li (κi, βi|yi) = fi(yi;κi, βi) (28)

=
ỹ
ni(κi−1)
i e−niȳi/βi

[Γ (κi)]
ni βniκi

i

I(0,∞)

(
y(1)i

)
,

where ỹi is the geometric mean of the ith random sample observations
and ȳi is their corresponding arithmetic mean the ith sample. These
statistics form a pair of sufficient statistics for the ith gamma family.

ỹi =

 ni∏
j=1

yij

1/ni

ȳi =
1

ni

ni∑
j=1

yij ui =
ỹi
ȳi

Let wi signify the ratio of geometric to arithmetic mean in the ith

gamma family, i = 1, . . . , p, where p is the number of families.

The joint density function of the gamma random variables for all data
from the p populations with respective sample sizes n1, . . . , np, obtained
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from these gamma distributions is given by:

f0
(
y1, . . . ,yp;κ,β

)
=

p∏
i=1

fi (yi)

=
p∏

i=1

ni∏
j=1

yκi−1
ij e−yij/βi

Γ (κi) βi
κi

I(0,∞) (min yij) (29)

Recall that when the joint density of the ith gamma family is viewed as
a function of the parameters κi and βi given the data, yi (the vector of
ni observations), the function is the likelihood function, Li (κi, βi|y), by
Fisher. Let κ denote the vector of p shape-parameters. The likelihood
function of all the information contained in the p gamma-families is
given by

L0

(
κ,β|y1 . . .yp

)
=

p∏
i=1

Li (κi, βi|yi)

=
p∏

i=1

ỹ
ni(κi−1)
i e−niȳi/βi

[Γ (κi)]
ni βniκi

i

I(0,∞) (min yij) (30)

=

[∏p
i=1 ỹi

ni(κi−1)
]
exp (−∑p

i=1 niȳi/βi)

[
∏p

i=1 Γ (κi)]
ni
∏p

i=1 β
niκi
i

I(0,∞) (min yij)

In exponential families, it is more convenient to deal with the natural
logarithm of likelihood function. Let the log-likelihood function associ-
ated with the ith population be denoted by Li (κi, βi|yi) which for each
i, i = 1, . . . , p is:

Li(κi, βi|yi) = ln (Li(κi, βi|y)) .

It follows that the log-likelihood function for all the data is given by

L0

(
κ,β|y1, . . . ,yp

)
=

p∑
i=1

(ni(κi − 1)) ln (ỹi)−
p∑

i=1

(ni)
ȳi
βi

−
p∑

i=1

ni {ln [Γ (κi)]} −
p∑

i=1

(niκi) ln (βi)
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5.1 Identically Distributed: Common Shape and Scale

The first question most would want to resolve is whether he or she is
dealing with one or many populations. Let us pose the concept the
following null hypothesis:

H0 : κ1 = κ2 = · · · = κp and β1 = β2 = · · · = βp

versus

H1 : κm ̸= κt for some positive integers, m and t,m ̸= t

or βm ̸= βt for some positive integers, m and t,m ̸= t

Under these assumptions, the log-likelihood equations simplifies to:

L0 (κ, β|y1 . . .yp) = (k − 1)
p∑

i=1

ni ln (ỹi)− β−1
p∑

i=1

niȳi

− n {ln [Γ (κ)]} − nκ ln (β)

Under the null hypothesis the maximum likelihood estimator of the
common shape parameter, κ, satisfies

κ̂β̂ =
p∑

i=1

νiȳi where νi =
ni

n
.

So it follows that:

ln

( ∏p
i=1 ỹ

νi∑p
i=1 νiȳi

)
= ln (W ) = ψ (κ)− ln (κ) .

Thus the maximum likelihood estimator satisfies the same equation as
in the one-sample problem with the exception that the ratio of the
geometric mean of the observations within one sample is replaced with
the weighted geometric mean of the p geometric means to the weighted
arithmetic means of the individual samples. Thus the statistic, W ,
treats the values as though they all came from the sample and has the
same distribution as that of Bartlett’s test statistic for equal variances
among p independent and normally distributed populations which have
respective sample sizes, n1, . . . , np. Thus the test statistic follows the
distribution laid out by Glaser [8], [9], [10], [11], Nandi [18] and Dyer
and Keating [6].
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5.1.1 Example: Equal Sample Sizes

Consider the failure data in Feiveson and Kulkarni [7] of stress-ruptures
of Kevlar-wrapped pressure vessels. These data can also be found in
Glaser [12]. Consider the data for two samples obtained from Spool 1
separated by different stress–fractions:

sample 1 sample 2
stress time stress time
fraction (hours) fraction (hours)
0.791 453.4 0.853 444.4

664.5 755.2
930.4 952.2
1,755.5 1,108.2

These data arise from the typical stress–strain relationship, in which
the stress–fraction measures the amount of stress relative to nominal
value. Thus higher stress–fractions are indicative of higher loads or
stress levels. The time to failure at a specific stress–fraction is then
measured in hours. The engineer then wants to determine whether the
failure rate has increased at the higher stress–fraction. If the times
to failure are modeled with the gamma distribution, then testing the
equality of shape parameters (i.e., H0 : κ1 = κ2 vs. H1 : κ1 ̸= κ2)
becomes a test for equality of failure rates.

At a stress–fraction of 0.791, the geometric, ỹ1, and arithmetic, ȳ1,
means are 837.5520 and 950.95, respectively. The subsequent ratio,
w1, of geometric to arithmetic mean is 0.8808. At a stress–fraction
of 0.791, the geometric, ỹ2, and arithmetic, ȳ2, means are 771.4283
and 815.00, respectively. The ratio, w2, of geometric to arithmetic
mean is 0.9465. The geometric and arithmetic means are 803.8105 and
882.9750, respectively when the data are aggregated into one sample
of size 8. The ratio is given by 0.9103.

Thus the likelihood ratio test depends upon the:

W =
wν1

1 w
ν2
2

wν1+ν2
0

=
w

1/2
1 w

1/2
2

w0
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Thus the MLE of κ = 5.4842. The critical value is given by
Bp (α, n) = B2 (0.05, 4) = 0.4780, where Bp (α, n) is the critical value
of Bartlett’s test for p populations of equal sample size n. Since
W = 0.9103 we fail to reject H0 that the two populations coincide.

5.2 Equality of shape parameters

If one assumes that the shape parameters are equal, then the maximum
likelihood estimator of the common shape parameter, κ, satisfies κ̂iβ̂i =
ȳi, ∀ i = 1, . . . , p.

p∑
i=1

νi ln (ri) = ln

( p∏
i=1

ri
νi

)
= ln (Q) = ψ (κ)− ln (κ) .

where νi = ni/n. Thus the maximum likelihood estimator satisfies the
same equation as in the one-sample problem with the exception that
the ratio of the geometric mean of the observations within one sample
is replaced with the weighted geometric mean of the p geometric means
of the individual populations where the weights are the proportions of
the individual sample sizes out of the total. Thus a sufficient statistic
for inferences about κ is given by

Q =
p∏

i=1

ri
νi ⇒ ln (Q) =

p∑
i=1

νi ln (ri) .

The distribution of each ri can be expressed as the product of inde-
pendent beta random variables, (i.e., ri

ni ∼ ∏ni
m=1 Vim where Vim ∼

B (κ,m/ni)). It follows that

Qn =
p∏

i=1

ri
ni ∼

p∏
i=1

ni∏
m=1

Vim where

Vim ∼ B (κ,m/ni) i = 1, . . . , p.

One can readily see that inferences on κ will be more complex than
in the one-sample case. Assuming the shape parameters are equal we
can express the distribution of the test-statistic as that of the nth root
of a double product of independent beta random variables.
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Under the null hypothesisH0 : κ1 = κ2 = · · · = κp vs. H1 : κm ̸= κt
for some positive integers,m and t,m ̸= t. For the gamma distribution,
the log-likelihood function becomes

Li(κi, βi|yi) = ni(κi − 1)ln (ỹi)− niȳiβ
−1
i (31)

−niln [Γ(κi)]− niκiln (βi) .

5.3 Asymptotics

Under the assumptions of independently sampling ni observations from
the ith population, for each i, i = 1, . . . , p the distribution of each

−2niκi ln (ri) ≈ χ2
ni−1

provided κi > 1 ∀ i, i = 1, . . . , p. Therefore, it follows that

−2
p∑

i=1

niκi ln (ri) ≈ χ2
n−p.

Under the null hypothesis H0 : κ1 = κ2 = · · · = κp, since the ri are
independent and by the reproductive property of the chi-square family,
we have

−2nκ ln (Q) = −2nκ
p∑

i=1

νi ln (ri) ≈ χ2
n−p.

5.4 Special Case

Without loss of generality let us assume that n{1} = min {n1, n2, . . . , np}.

Z1 =

(
n0 − p− n{1} + 1

)
n{1} ln

(
r{1}

)
(
n{1} − 1

)∑p
i=2 ni ln (ri)

.

Then it follows that

Z1 ≈ Fn{1}−1, n0−p−n{1}+1
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as the quotient of independent chi-squares divided by their respec-
tive degrees of freedom. Let α denote the specified Type I error rate.
Our simulations Type I error rates remain in the neighborhood of
α (0.05) ∀ n = 2, . . . , 30 when κ > 1.

In special cases, we can simplify this distribution. Suppose that all
sample sizes are equal (i.e., n1 = . . . = np = n), define:

L0

(
κ̂, β̂|y1 . . .yp

)
=

p∑
i=1

(ni(κ̂i − 1)) ln (ỹi)−
p∑

i=1

(ni) κ̂i

−
p∑

i=1

ni {ln [Γ (κ̂i)]} −
p∑

i=1

(niκ̂i) ln
(
β̂i
)

5.5 Numerical Methods

We used the secant method to find the maximum likelihood estimators
numerically in the gamma distribution. To do this, we must solve for
the root(s) of the following function of κ̂:

∂L(κ, θ|y)
∂κ

= n [ln (Q)− ψ(κ) + ln (κ)] .

The secant method requires the continuity of the function as well as
upper and lower bounds on the root, κ = κ̂. The secant method finds
a root, c in [a,b], of the function, f(x), based on the Intermediate Value
Theorem, where

f(a) < 0

f(b) > 0

f(x) is strictly increasing on [a, b].

Then there exists a unique root, c in [a,b]. To find the iterative con-
dition, consider the secant-line of the graph of f(x) determined by the
points (a, f(a)) and (b, f(b)) with an equation given by

y − f(a) =
f(b)− f(a)

b− a
(x− a).
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Let c be the x-intercept of this straight line, that is

c = a− b− a

f(b)− f(a)
f(a).

If f(c) > 0 then the root is now in [a,c] or if f(c) < 0 then the root is
in [c,b]. A FORTRAN subroutine is contained in the Appendix that
solves for the maximum likelihood equation using the secant method.

Sometimes bounds used in the secant method are far apart and
require excessive computation to obtain convergence. A better way to
bound the root of κ is based on a table of medians of the distribution
of r for various values of n and κ. From the sample data, determine
the value of Q. In Table 9 of Keating, Glaser, and Ketchum (1990),
find the row of the sample size of the data set on hand. Then move
horizontally along the row until r is bracketed above and below. The
corresponding values of κ form the lower and upper bounds to κ̂.

5.6 FORTRAN Code

FORTRAN Subroutine for finding the MLE’s in the Gamma Distribution

dimension x(100) external u common w,s write(6,180)

180 format(’ Please enter the sample size: n= ’)

read(5,*) n do 189 i=1,n write(6,181) i

181 format(’ Please enter x( ’,i2,’ ) = ’ )

read(5,*) x(i)

189 continue

write(10,300) (x(i),i=1,10) write(10,300) (x(i),i=11,20) write(10,300) (x(i),i=21,30)
write(10,300) (x(i),i=31,40) write(10,300) (x(i),i=41,50) write(10,300) (x(i),i=51,60)
write(10,300) (x(i),i=61,70) write(10,300) (x(i),i=71,80) write(10,300) (x(i),i=81,90)
write(10,300) (x(i),i=91,100)

300 format(10f8.2)

xn=sngl(n) sum1=0.0 sum2=0.0 do 80 i=1,n sum1=sum1+alog(x(i)) sum2=sum2+x(i)

80 continue
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avg1=sum1/xn avg2=sum2/xn w=exp(avg1)/avg2 s=avg2 write(6,186) w,s
write(10,186) w,s

186 format(’ the ratio = ’,f8.6,’ and the mean = ’,f12.6)

write(6,184)

184 format(’ enter the lower bound on the mle of κ ’)

read(5,*) aa write(6,183)

183 format(’ enter the upper bound on the mle of κ ’)

read(5,*) bb

88 ab=aa-(u(aa)*(bb-aa))/(u(bb)-u(aa)) write(6,*) ab u0=u(ab) if(abs(u0).lt.1.e-
6) go to 81 write(6,190) ab,u0 write(10,190) ab,u0

190 format(2f12.6) if(u0.lt.0.0) go to 82 aa=ab go to 88

82 bb=ab go to 88

81 th=s/ab write(6,187) ab,th,ab*th write(10,187) ab,th,ab*th

187 format(/’ The mle of κ=’,f7.4,’, the mle of theta= 1 ’,f9.4,’ , and the mle of the
mean=’,f8.4/) write(6,199)

199 format(/’ enter the value of x0 ’/) read(5,*) x0 c0=x0/th p0=GAMDF(c0,ab)
write(6,198) p0,x0 write(10,198) p0,x0

198 format(/’ the failure prob = ’,f6.4,’ at x0 = ’, 1 f10.4/) stop end function u(y)
common w,s u=alog(y)-psi(y)+alog(w)

65 return end

5.7 Examples of MLE’s

Example 1. Consider the following data:

162 200 271 302 393 508 539 629 706 777 884 1,008 1,101
1,182 1,463 1,603 1,984 2,355 and 2,880.

The sample arithmetic mean, ȳ = 997.21051 divided by the sample
geometric mean, ỹ = 743.70963, produces a ratio, Q = 0.74579. For
n = 19, the referenced table brackets the root between a = 1.50 and
b = 2.00. Using the Wilk–interpolation scheme developed in Keat-
ing, Glaser, and Ketchum (1990), write down (a, 1

1−a∗
), (c, 1

1−Q
), and
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(b, 1
1−b∗

) where a∗ and b∗ are the lower and upper bounds on Q found
in Table 9. Then (c, b) are narrower bounds for κ̂. Using the Wilk
interpolation scheme gives a value of c = 1.71. Using these improved
bounds: [1.71, 2.00], the solution of κ̂ = 1.8540 is obtained in 4 itera-
tions of the secant method. If we had chosen more conservatively and
set the lower bound to be 1.0 instead of 1.7108, the secant subroutine
would have required 15 iterations before convergence.

The corresponding maximum likelihood estimator of the scale pa-
rameter, β is given by β̂ = 537.8821.

Example 2. Consider the following data which are the times between
failures of an air conditioning system on Boeing aircraft # 7909.

10, 14, 20, 23, 24, 25, 26, 29, 44, 44, 49, 56, 59, 60, 61, 62, 70, 76, 79,
84, 90, 101, 118, 130, 156, 186, 208, 208, 310.

The sample arithmetic mean, ȳ = 83.51724 divided by the sample
geometric mean, ỹ = 60.15438, yields a ratio, Q = 0.72026. For n = 29,
the referenced table brackets the root between a = 1.50 and b = 2.00.
Proceeding as in the preceding example, we obtain κ̂ = 1.671 and
β̂ = 49.9806.

5.8 Examples of MME’s

Example 1 Revisited: Reconsider the following data:

162 200 271 302 393 508 539 629 706 777 884 1,008 1,101
1,182 1,463 1,603 1,984 2,355 and 2,880.

The sample arithmetic mean, ȳ = 997.21051 and the standard de-
viation with n as a divisor S = 740.94837 yield a method of moments
estimator of κ̂0 = 1.8113 β̂ = 550.5402.

Example 2 Revisited: Reconsider the failures data of an aircraft air
conditioning system.

10 14 20 23 24 25 26 29 44 44 49 56 59 60 61 62 70 76 79
84 90 101 118 130 156 186 208 208 310.

The sample arithmetic mean, ȳ = 83.51724 and the standard de-
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viation with n as a divisor of S = 69.5744 yield a method of moments
estimators of κ̂ = 1.4410 and β̂ = 57.9578. Notice that there is greater
disparity between the moment and maximum likelihood estimators in
this example.

6 Appendix

As demonstrated earlier, the issue of finding maximum likelihood es-
timators for a common shape parameter when among several gamma
populations reduces to precisely the same problem as in the one pop-
ulation situation. Herein, we produce the derivation for one family for
completeness and provide FORTRAN code for the numerical solution.

6.1 The Maximum Likelihood Estimators-One Family

To find the maximum likelihood estimators, κ̂ and β̂, of the parameters
k and β, we solve for the absolute maximum of L (k, β|y) using methods
of the calculus. The first partial derivative of L(k, β|y) with respect to
k is given by

∂L(κ, θ|y)
∂κ

= nln (ỹ)− n
Γ′ (k)

Γ (k)
− n ln (β).

One can simplify this expression by noticing that the digamma func-
tion, ψ(x), is defined by

ψ (x) =
Γ′ (x)

Γ (x)
.

The first partial derivative of L(k, β|y) with respect to β is given by:

∂L(κ, θ|y)
∂θ

= nȳβ−2 − nκβ−1.

These two equations must be set equal to zero and solved simultane-
ously. Setting the partial derivative with respect to β equal to zero
yields

β̂ =
ȳ

κ̂
.
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Using this substitution into the expression for the first partial derivative
of the log–likelihood function with respect to κ yields:

∂L(κ̂, β̂|y)
∂κ

= n

[
ln

(
ỹ

ȳ

)
− ψ(κ̂) + ln (κ̂)

]
.

Notice that this expression involves the components of y only through
the ratio, r, of their geometric to their arithmetic mean, where ri is
formally given as

r =
ỹ

ȳ
.

This means that the maximum likelihood estimator of κ depends upon
the data in the sample only through this ratio. By the Neyman fac-
torization Theorem, we know that r is sufficient for estimation of κi.
Pitman [20] first proved that r and ȳ are independent random variables
using properties of invariance. The fact that

0 < r < 1

with probability 1 is a direct consequence of Jensen’s inequality.

∂L(κ̂, β̂|y)
∂κ

= 0 ⇒ ln

(
ỹ

ȳ

)
= ψ(κ̂)− ln (κ̂) .

Thus we can clearly see that the MLE is a function of the statistic
r alone. The distribution of r is quite complex and an efficient series
representation of its density has been found only in the last two decades
(see Lawless [15]; Keating, Glaser, and Ketchum [14]).

Hence we can solve this equation as a function of κ̂. However,
to make certain that the solution indeed maximizes the log–likelihood
function and hence the likelihood function, we must check that the
second partial derivatives with respect to κ and β are negative and that
the determinant of the matrix of second partial derivatives is positive.

The entries of the matrix of second partial derivatives is given by

∂2L(k, β|y)
∂κ2

= −nψ′(κ) (32)

∂2L(k, β|y)
∂k∂θ

= −nβ−1 (33)
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∂2L(k, β|y)
∂θ2

= −2nȳβ−3 + nκβ−2 (34)

where ψ′(t) is the trigamma function. The second partial derivative of
the log likelihood function with respect to κ evaluated at κ̂ is given by

∂2L(κ̂, β̂|y)
∂κ2

= −nψ′(κ̂) < 0.

The inequality follows since the digamma function is a strictly increas-
ing function. Since ȳ = κ̂β̂, the second partial derivative of the log
likelihood function with respect to β evaluated at (κ̂, β̂) is given by

∂2L(κ̂, β̂|y)
∂θ2

= −nκ̂β̂−2 < 0.

The matrix D of second partial derivatives is given by

D(κ, β) =

 ∂2L(k,β|y)
∂κ2

∂2L(k,β|y)
∂k∂θ

∂2L(k,β|y)
∂k∂θ

∂2L(k,β|y)
∂θ2

 . (35)

When the matrix of second partial derivatives is evaluated at the max-
imum likelihood estimators, we obtain:

D(κ̂, β̂) =

 −nψ′(κ̂) −nβ̂−1

−nβ̂−1 −nκ̂β̂−2

 . (36)

The determinant of the matrix of second partial derivatives evaluated
at the maximum likelihood estimators is given by

|D(κ̂, β̂)| = n2

β̂2
[κ̂ψ′(κ̂)− 1] .

Since

ψ′(t) =
Γ′′(t)Γ(t)− [Γ′(t)]2

[Γ(t)]2
> 0.

See Artin [1] )). The determinant is positive and therefore the maxima
exist.
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6.2 FORTRAN Program

c This program deletes some print statements which are unnecessary
c (to include in the paper) to simulate the distribution of the log-likelihood
c ratio statistic, ln(Λ), to test equality of shape parameters of two
gamma populations

USE NUMERICAL LIBRARIES
implicit real*8(a-h,o-z)
dimension n(5),x(50),y(50),alpha1(10),alpha2(10),xlnl(50000)
@,qprob(15), xy(100),q(15),whi(15),wlo(15),simq(10,10,15)
External WS, u, gamlik

c define quantile probabilites
qprob(1)=.005d0
qprob(2)=.010d0
qprob(3)=.025d0
qprob(4)=.050d0
qprob(5)=.100d0
qprob(6)=.250d0
qprob(7)=.375d0
qprob(8)=.500d0
qprob(9)=.625d0
qprob(10)=.750d0
qprob(11)=.900d0
qprob(12)=.950d0
qprob(13)=.975d0
qprob(14)=.990d0
qprob(15)=.995d0

c generate data from gamma distributions
eps=0.25d0
do i=1,10
alpha1(i)=1.0d0+dfloat(i-1)*.5d0
alpha2(i)=1.0d0+dfloat(i-1)*.5d0
write(6,*)’alpha1=’, alpha1(i),’ alpha2=’,alpha2(i)
write(8,*)’alpha1=’, alpha1(i),’ alpha2=’,alpha2(i)
end do

do i=1,5
n(i)=5+ (i-1)*5
end do
nsim=50000

c This loop is to set the parameter alpha
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do 10 i=1,5
ii=1+2*(i-1)
a1=alpha1(ii)
a2=alpha2(ii)

c this loop is for fixing the sample size

do 15 j=1,5

c n1=50

c n2=50

n1=n(j)

n2=n(j)

write (6,*)’n1=’,n1, ’ n2=’,n2

c This loop is to generate Nsim values of the likelihood ratio

c statistic to generate its c cut points under H0: Equality of

c shape parameters.

do 20 k=1,nsim

c Generate n1 values from the gammma distributions with parameters a1 and a2

call drngam(n1, a1,x)

call drngam(n2, a2,y)

c compute W1 for sample 1, W2 for sample 2, and and W for the combined sample

c *** define aa and bb for each sample based on method of moment estimates

***

sumx1=0.0d0

sumx2=0.0d0

sumy1=.0d0

sumy2=0.0d0

do ii=1, n1

sumx1=sumx1+x(ii)

sumx2=sumx2+x(ii)**2

end do

do jj=1,n2

sumy1=sumy1+y(jj)
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sumy2=sumy2+y(jj)**2

end do

xn1=dfloat(n1)

yn2=dfloat(n2)

xbar=sumx1/xn1

ybar=sumy1/yn2

varx=(xn1*sumx2-sumx1**2)/(xn1*(xn1-1.0))

vary=(yn2*sumy2-sumy1**2)/(yn2*(yn2-1.0))

ratx=xbar**2/varx

raty=ybar**2/vary

aax=dmax1(ratx - 0.5d0,eps)

bbx=ratx + 2.d0

aay=dmax1(raty - 0.5d0,eps)

bby=raty + 2.0d0

call WS(x,n1,W1,s1)

call gamlik(aax,bbx,w1,s1,xk1,th1)

call WS(y,n2,W2,s2)

call gamlik(aay,bby,w2,s2,xk2,th2)

c compute ln(
∏
(wi)

ci) and compute k0 and th0

n0=n1+n2

xn0=dfloat(n0)

xn1=dfloat(n1)

xn2=dfloat(n2)

c1=xn1/xn0

c2=xn2/xn0

W0=(W1**c1)*(W2**c2)

c Set up initial values for aa bb under H0

c Set up the grand vector combining x and y

do 40 kk=1,n0

if (kk .le. n1) go to 35

xy(kk)=y(kk-n1)

29



go to 40

35 xy(kk)=x(kk)

40 continue

c Find mean and variance of the combined sample

sum10=0.0d0

sum20=0.0d0

do i1=1,n0

sum10=sum10+xy(i1)

sum20=sum20+xy(i1)**2

end do

xyn0=dfloat(n0)

xybar=sum10/xyn0

varxy=(xyn0*sum20-sum10**2)/(xyn0*(xyn0-1.0d0))

rat0=xybar**2/varxy

aa0=dmax1(rat0 - 0.5d0,eps)

bb0=rat0 + 2.0d0

call WS(xy,n0,W0,s0)

call gamlik(aa0,bb0,w0,s0,xk0,th0)

c To compute Ln likelihood

t0=xk0*dlog(w0)

t1=xn1*xk1*dlog(w1)+xn2*xk2*dlog(w2)

t2=xn0*xk0*dlog(xk0)-xn1*xk1*dlog(xk1)-xn2*xk2*dlog(xk2)

t3=xn0*xk0-xn1*xk1-xn2*xk2

t4=xn0*dlngam(xk0)-xn1*dlngam(xk1)-xn2*dlngam(xk2)

xlnl(k)=-2.0d0*(xn0*t0-t1+t2-t3-t4)

20 continue

call deqtil(nsim,xlnl,15,qprob, q,wlo, whi,nmiss)

write(6,*) ’Percentiles of likelihood ratio statistic:’

write(6,*)’n1=’,n1,’ n2=’,n2, ’ alpha1=’,a1, ’alpha2=’,a2

write(8,*)’n1=’,n1,’ n2=’,n2, ’ alpha1=’,a1, ’alpha2=’,a2

write(6,14)

write(8,100)
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100 format(2x,’ltprob’,’ & ’,’ simquantiles ’,’ & ’, ’ simquantiles ’,

@’ & ’, ’ low ’,8x,’high’)

14 format(2x,’ltprob’,4x,’simquantiles’,2x, ’simquantiles’,8x,

@’low’,8x,’high’)

do ii=1,15

simq(i,j,ii)=q(ii)

write(6,12)qprob(ii), q(ii),simq(i,j,ii), wlo(ii),whi(ii)

write(8,12)qprob(ii), q(ii),wlo(ii),whi(ii)

12 format(f10.4,2x, 4(f10.4, 2x))

end do

15 continue

10 continue

c To output tables of quantiles write(8,*) ’Percentiles of -2log(lambda) for equality

@ of Shape parameters’

do 99 ni=1,5

write(8,102)

102 format(30x, ’alpha’ )

write(8,101) n(ni), (alpha1(i),i=1,10,2)

101 format(2x, i3,’ & ’,’ quantile ’, ’ & ’, 4(2x,f5.2,’ & ’),2x,f5.2)

do 103 jj=1,15

write(8,104) qprob(jj),(simq(ni,jj,kk),kk=1,5)

104 format(’&’, f6.3, 5(’ & ’,f8.3))

103 continue

99 continue

stop

end

c Subroutine to compute the mle of k and theta for gamma distribution.

subroutine gamlik(aa,bb,w,s,xk,th)

implicit real*8(a-h,o-z)

external u

88 ab=aa-(u(aa,w)*(bb-aa))/(u(bb,w)-u(aa,w))

if(ab .lt. 0.0d0) ab=0.25d0

u0=u(ab,w)

if(dabs(u0) .lt. 1.0d-6) go to 81
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if (u0 .lt. 0.0d0) go to 82

aa=ab

go to 88

82 bb=ab

if(dabs((bb-ab)/(aa-ab)).gt.5.d0) go to 88

aa=(ab+aa)/2.d0

go to 88

81 th=s/ab

xk=ab

return

end

c Function to compute the likelihood equation for alpha

function u(y,w)

implicit real*8(a-h,o-z)

zz=dpsi(y)

u=dlog(y)-zz+dlog(w)

return

end

c subroutine to compute w=xtilde/xbar and s=xbar

subroutine WS(x,n,w,s)

Implicit real*8(a-h,o-z)

dimension X(100)

sum1=0.0d0

sum2=0.0d0

do i=1,n

sum1=sum1+dlog(x(i))

sum2=sum2+x(i)

end do

xn=dfloat(n)

avg1=sum1/xn

avg2=sum2/xn

W=dexp(avg1)/avg2

s=avg2

return

end
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Table 1: Quantiles for Testing Equality of Shapes for Two Gamma Distri-
butions

Common Shape Parameter (κ)
n1 n2 LTProb 1.00 2.00 3.00 4.00 5.00
5 5

0.005 0.015 0.011 0.010 0.011 0.011
0.010 0.029 0.023 0.021 0.023 0.022
0.025 0.073 0.059 0.055 0.056 0.054
0.050 0.145 0.121 0.115 0.114 0.108
0.100 0.295 0.245 0.232 0.228 0.226
0.250 0.795 0.664 0.642 0.618 0.606
0.375 1.293 1.092 1.043 0.999 0.985
0.500 1.887 1.617 1.528 1.475 1.457
0.625 2.674 2.289 2.164 2.100 2.061
0.750 3.785 3.228 3.061 2.958 2.922
0.900 6.296 5.383 5.079 4.928 4.897
0.950 8.192 6.942 6.565 6.411 6.364
0.975 10.025 8.526 8.101 7.826 7.857
0.990 12.483 10.643 10.062 9.798 9.734
0.995 14.508 12.249 11.504 11.226 11.389

Common Shape Parameter (κ)
n1 n2 LTProb 1.00 2.00 3.00 4.00 5.00
10 10

0.005 0.013 0.011 0.011 0.010 0.011
0.010 0.027 0.023 0.021 0.021 0.021
0.025 0.069 0.058 0.054 0.054 0.055
0.050 0.138 0.116 0.115 0.110 0.109
0.100 0.288 0.234 0.236 0.226 0.222
0.250 0.798 0.652 0.634 0.619 0.609
0.375 1.292 1.066 1.025 1.007 0.997
0.500 1.897 1.587 1.513 1.491 1.480
0.625 2.695 2.256 2.153 2.113 2.084
0.750 3.810 3.167 3.038 2.973 2.924
0.900 6.268 5.249 5.057 4.924 4.893
0.950 8.129 6.837 6.574 6.412 6.363
0.975 10.005 8.479 8.048 7.900 7.819
0.990 12.365 10.489 10.038 9.835 9.780
0.995 14.325 12.091 11.505 11.366 11.224
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Common Shape Parameter (κ)
n1 n2 LTProb 1.00 2.00 3.00 4.00 5.00
15 15

0.005 0.013 0.011 0.011 0.010 0.010
0.010 0.027 0.021 0.021 0.022 0.020
0.025 0.070 0.056 0.054 0.055 0.052
0.050 0.140 0.116 0.113 0.114 0.110
0.100 0.288 0.240 0.233 0.229 0.232
0.250 0.798 0.655 0.635 0.617 0.618
0.375 1.307 1.075 1.039 1.013 1.004
0.500 1.929 1.595 1.535 1.484 1.475
0.625 2.698 2.272 2.166 2.099 2.081
0.750 3.816 3.215 3.055 2.952 2.927
0.900 6.288 5.342 5.094 4.918 4.858
0.950 8.202 6.961 6.600 6.411 6.311
0.975 10.026 8.505 8.167 7.880 7.724
0.990 12.530 10.759 10.255 9.801 9.627
0.995 14.592 12.377 11.848 11.287 11.113

Common Shape Parameter (κ)
n1 n2 LTProb 1.00 2.00 3.00 4.00 5.00
20 20

0.005 0.014 0.010 0.012 0.010 0.011
0.010 0.029 0.020 0.022 0.022 0.022
0.025 0.071 0.057 0.055 0.054 0.054
0.050 0.144 0.118 0.115 0.106 0.107
0.100 0.295 0.245 0.236 0.224 0.224
0.250 0.798 0.664 0.633 0.615 0.612
0.375 1.286 1.094 1.036 1.007 1.001
0.500 1.888 1.605 1.521 1.488 1.467
0.625 2.697 2.261 2.170 2.107 2.075
0.750 3.770 3.219 3.050 2.997 2.933
0.900 6.255 5.327 5.027 4.999 4.894
0.950 8.140 6.896 6.573 6.439 6.462
0.975 9.964 8.548 8.078 7.971 7.857
0.990 12.404 10.690 10.085 9.957 9.940
0.995 14.285 12.216 11.647 11.447 11.466
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Common Shape Parameter (κ)
n1 n2 LTProb 1.00 2.00 3.00 4.00 5.00
25 25

0.005 0.014 0.011 0.012 0.012 0.011
0.010 0.027 0.023 0.024 0.023 0.021
0.025 0.070 0.057 0.059 0.055 0.053
0.050 0.143 0.116 0.115 0.107 0.111
0.100 0.288 0.243 0.233 0.220 0.223
0.250 0.783 0.662 0.628 0.609 0.603
0.375 1.273 1.082 1.032 1.010 0.990
0.500 1.882 1.594 1.518 1.485 1.447
0.625 2.673 2.259 2.159 2.091 2.056
0.750 3.781 3.194 3.051 2.963 2.926
0.900 6.259 5.254 5.085 4.970 4.841
0.950 8.188 6.799 6.597 6.455 6.278
0.975 10.055 8.442 8.182 8.000 7.759
0.990 12.658 10.538 10.155 9.878 9.667
0.995 14.475 12.322 11.627 11.278 11.098
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