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Abstract: 

The availability of abundant data posts a challenge to integrate static customer data and longitudinal 

behavioral data to improve performance in customer churn prediction. Usually, longitudinal behavioral data 

are transformed into static data before being included in a prediction model. In this study, a framework with 

ensemble techniques is presented for customer churn prediction directly using longitudinal behavioral data. 

A novel approach called the hierarchical multiple kernel support vector machine (H-MK-SVM) is 

formulated. A three phase training algorithm for the H-MK-SVM is developed, implemented and tested. The 

H-MK-SVM constructs a classification function by estimating the coefficients of both static and longitudinal 

behavioral variables in the training process without transformation of the longitudinal behavioral data. The 

training process of the H-MK-SVM is also a feature selection and time subsequence selection process 

because the sparse non-zero coefficients correspond to the variables selected. Computational experiments 

using three real-world databases were conducted. Computational results using multiple criteria measuring 

performance show that the H-MK-SVM directly using longitudinal behavioral data performs better than 

currently available classifiers. 
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1. Introduction 

In markets with intensive competition, customer relationship management (CRM) is an important 

business strategy. Business firms use CRM to build long term and profitable relationships with specific 

customers (Coussement and Van den Poel, 2008b; Ngai et al., 2009). An important task of CRM is customer 

retention. Customer churn is a marketing related term meaning that customers leave or reduce the amount of 

purchase from the firm. Customer churn prediction aims at identifying the customers who are prone to 

switch at least some of their purchases from the firm to competitors (Buckinx and Van den Poel, 2005; 

Coussement and Van den Poel, 2008b). Usually, new customer acquisition results in higher costs and 

probably lower profits than customer retention (Buckinx and Van den Poel, 2005; Coussement and Van den 

Poel, 2008a; Zorn et al., 2010). Therefore, many business firms use customer churn prediction to identify 

customers who are likely to churn. Measures can be taken to assist them in improving intervention strategies 

to convince these customers to stay and to prevent the loss of businesses (Zorn et al., 2010). 

Longitudinal behavioral data are widely available in databases of business firms. How to use the 

longitudinal behavioral data to improve customer churn prediction is a challenge to researchers. In some 

methods, longitudinal behavioral data are transformed into static data through aggregation or 

rectangularization. In this study, frameworks for customer churn prediction are developed. In the framework 

using ensemble techniques, a novel data mining technique called hierarchical multiple kernel support vector 

machine (H-MK-SVM) is proposed to model both static and longitudinal behavioral data. A three phase 

algorithm is developed and implemented to train the H-MK-SVM. The H-MK-SVM constructs a 

classification function by estimating the coefficients of both static and longitudinal behavioral variables in 

the training process without transformation of the longitudinal behavioral data. Because of the sparse nature 

of the coefficients, the H-MK-SVM supports adaptive feature selection and time subsequence selection. 

Furthermore, the H-MK-SVM can benefit customer churn prediction performance in both contractual and 

non-contractual settings. 

This paper is organized as follows. The next section reviews previous work. Section 3 describes the 

frameworks for customer churn prediction using longitudinal behavioral data. Section 4 presents the 

fundamentals of the support vector machine (SVM) and the multiple kernel SVM (MK-SVM). The model 

formulation and the three phase training algorithm of the H-MK-SVM are presented in Section 5. The 

computational experiments are described in Section 6 and the computational results are reported in Section 7. 
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Conclusions and further remarks are given in Section 8. 

2. Previous Work 

Recently, the topic of customer churn prediction has been discussed extensively in a number of 

domains such as telecommunications (Kisioglu and Topcu, 2010; Tsai and Lu, 2009; Verbeke et al., 2011), 

retail markets (Baesens et al., 2004; Buckinx and Van den Poel, 2005), subscription management (Burez and 

Van den Poel, 2007; Coussement and Van den Poel, 2008a), financial services (Glady et al., 2009) and 

electronic commerce (Yu et al. 2010). Many data mining techniques have been successfully applied in 

customer churn prediction. These techniques include artificial neural networks (ANN) (Tsai and Lu, 2009), 

decision trees (Qi et al, 2009), Bayesian networks (Baesens et al., 2004; Kisioglu and Topcu, 2010), logistic 

regression (Buckinx and Van den Poel, 2005; Burez and Van den Poel, 2007), AdaBoosting (Glady et al., 

2009), random forest (Buckinx and Van den Poel, 2005; Burez and Van den Poel, 2007), the proportional 

hazard model (Van den Poel and Larivière, 2004) and SVMs. Lessmann and Voß (2008) gave a detailed 

review on this topic. 

SVMs have strong theoretical foundations and the SVM approach is a state-of-the-art machine 

leaning method. SVMs have been widely used in many areas such as pattern recognition and data mining 

(Schölkopf and Smolla, 2002; Vapnik, 1995, 1998) and have achieved successes in customer churn 

prediction (Coussement and Van den Poel, 2008a; Lessmann and Voß, 2008, 2009; Verbeke et al., 2011).  

Demographic and behavioral attributes have been widely used for customer churn prediction 

(Buckinx and Van den Poel, 2005). Customer demographic data are static, while longitudinal behavioral data 

are temporal. Customer demographic data can be directly obtained from the data warehouse of the business 

firm, while the longitudinal behavioral data of individual customers are usually separately stored in 

transactional databases (Cao, 2010; Cao and Yu, 2009; Chen et al., 2005). Three typical customer behavioral 

variables are recency, frequency and monetary variables. Recency is the time period since the customer’s 

last purchase to the time of data collection; frequency is the number of purchases made by individual 

customers within a specified time period; and the monetary variable represents the amount of money a 

customer spent during a specified time period (Chen et al., 2005; Buckinx and Van den Poel, 2005). 

The temporal nature of customer longitudinal behavioral data is usually neglected in customer churn 

prediction (Eichinger et al., 2007; Orsenigo and Vercellis, 2010; Prinzie and Van den Poel, 2006a). Usually, 

the longitudinal behavioral variables are transformed into static variables through aggregation or 
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rectangularization before being included in the prediction model (Cao, 2010; Cao and Yu, 2009; Eichinger et 

al., 2007; Orsenigo and Vercellis, 2010; Prinzie and Van den Poel, 2006a). The transformation results in the 

loss of temporal development information with potential discriminative ability. For example, the changing 

values of recency, frequency, and monetary variables between different time periods may have better 

customer churn predictive ability than the values of these variables in a fixed time period or their averages in 

a series of time periods. Furthermore, traditional customer churn prediction models usually use static data 

with two dimensions. Relatively few models proposed in the literature capture temporal information in 

longitudinal behavioral data with three dimensions (Prinzie and Van den Poel, 2006a).  

Customer longitudinal behavioral modeling has been studied in the fields of financial distress 

prediction (Sun et al., 2011) and customer acquisition analysis (Prinzie and Van den Poel, 2006b, 2007, 

2009). However, relatively little research has focused on longitudinal behavioral data for customer churn 

prediction. Prinzie and Van den Poel (2006a) incorporated static and a one dimensional temporal variable 

into a customer churn prediction model. They used a sequence alignment approach to model the temporal 

variable, clustered customers on the sequential dimension, and incorporated the clustering information into a 

traditional classification model. This approach is limited to the use of temporal variables with one dimension. 

Eichinger et al. (2007) proposed a classification approach using sequence mining combined with a decision 

tree for modeling customer event sequence. Orsenigo and Vercellis (2010) proposed a two stage strategy for 

multivariate time series classification. In the first stage, a rectangularization strategy using a fixed 

cardinality warping path is proposed to transform multivariate time series into a rectangular table. In the 

second stage, a temporal discrete SVM is used for classification. They applied this approach to 

telecommunication customer churn prediction. Huang et al. (2010) reformulated the rectangular table by 

adopting each time element of the temporal vector as a predictor. Long historical behavioral time series may 

lead to the “dimension curse” of the prediction models in this approach. The proportional hazard model (Cox) 

was extended for customer churn prediction using longitudinal behavioral variables (Van den Poel and 

Larivière, 2004). The coefficients of static and longitudinal behavioral variables are estimated, and then a 

threshold of the hazard is set for predicting churners. 

The above studies made great contributions to customer churn prediction using longitudinal 

behavioral data. However, they still have limitations. A transformation may result in the loss of potentially 

useful structural information embodied in the longitudinal behavioral data or increase the computational cost. 

Moreover, customer churn prediction involves predictors with multiplex data such as static data, temporal 
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data, event sequential data, textural data, and so on (Coussement and Van den Poel, 2008b; Eichinger et al. , 

2007; Orsenigo and Vercellis, 2010; Prinzie and Van den Poel, 2006a). Relatively little research has focused 

on simultaneously modeling multiplex data. In addition, the availability of expanded customer longitudinal 

behavioral and demographic data raises a new and important question about which variables to use and 

which time subsequence in the longitudinal behavioral variables to consider (Dekimpe and Hanssens, 2000). 

The H-MK-SVM approach proposed in this study is the first attempt of using static and longitudinal 

behavioral data in a direct manner. The computational results show that this approach outperforms other 

methods. 

3.  Frameworks for Customer Churn Prediction 

In this section, three frameworks for customer churn prediction using longitudinal behavioral data 

are discussed. The longitudinal behavioral attributes are used in different ways in these frameworks. 

Within the CRM context, demographic and transactional data recorded in the data warehouses of 

business firms have been widely used for customer churn prediction. Customer demographic and 

transactional data are organized in terms of entity relationship in relational databases (Cao, 2010; Eichinger 

et al., 2007). Each customer is treated as an observation and n  is used to represent the number of 

observations in the demographic dataset. 

Demographic data can be directly used as static attributes after simple data preprocessing such as 

feature selection and data cleaning for missing values. In a dataset with 1m  static variables, the static 

attributes of a customer i  is usually represented by the input vector 1{ | 1, , }i ijs j m= =s  . 

Transactional data are transformed into longitudinal behavioral data, i.e., customer-centered 

multivariate time series of fixed length. The number of longitudinal behavioral attributes is represented by 

M  and the number of time points in the longitudinal behavioral variables is represented by T . The 

longitudinal behavioral data are represented by a three-dimensional matrix { | 1, , }i i n=b  . Each 

{ | 1, , ;  1, , }i ijtb j M t T= = =b 
    is a rectangular matrix. The class label { }1, 1iy ∈ + −  indicates the status 

of customer i , i.e., 1iy =  if customer i  has churned and 1iy = −  otherwise. 

3.1  The standard framework for customer churn prediction 

In customer churn prediction, an aggregation strategy such as weighted averages is usually used to 
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transform longitudinal behavioral data into static data, called transformed static data in this study (Eichinger 

et al., 2007; Orsenigo and Vercellis, 2010; Prinzie and Van den Poel, 2006a). The transformed static data are 

represented by a matrix { | 1, , }i i n=ts  . The input vector 2{ | 1, , }i ijts j m= =ts   represents the 

transformed static attributes of customer i , where 2m  is the number of the transformed static attributes. 

Customer churn prediction with only static variables is a standard binary classification problem. The 

dataset with only static variables is represented by a two-dimensional matrix { ,  {1, , }}i i n∈x  , where 

[ , ]i i i m=x s ts  is the input vector of observation i  with 1 2m m m= + . The standard framework for 

customer churn prediction is illustrated in Fig. 1a. 

3.2 A framework with feature construction techniques 

A variety of binary classification methods can be used for customer churn prediction with only static 

variables (Lessmann and Voß, 2008). Time series classification methods can be used for customer churn 

prediction with longitudinal behavioral variables (Orsenigo and Vercellis, 2010). Feature construction 

techniques usually used for time series classification derive a rectangular matrix representation of the time 

series first and then apply an existing classifier. The proportional hazard model (Cox) with longitudinal 

behavioral variables (Van den Poel and Larivière, 2004) and the time windows techniques (Huang et al., 

2010) are examples of feature construction techniques. 

A framework with feature construction techniques is proposed to use these existing classifiers for 

customer churn prediction using longitudinal behavioral data as illustrated in Fig. 1b. In this framework, the 

longitudinal behavioral data { | 1, , }i i n=b   are transformed into a standard rectangular matrix 

{ | 1, , }i i n=tb  , where ,1 ,2 , 1 ( )[    ]i i i i M M T× ×=tb b b b  and each , { |  1, , }i j ijtb t T= =b     is a vector. Each 

time point of the longitudinal behavioral variable ijtb   is used as an attribute. For example, data with 

3M =  longitudinal behavioral variables and 12T =  time points are treated as data with M T× = 36 

( 3 12× ) attributes when the entire time series is used. Hence, the number of features in this framework is 

larger than those in the standard framework and in the framework with ensemble techniques discussed in the 

following. In this framework, the input vector of observation i  is 
11 ( )[ , ]i i i m M T× + ×=x s tb . 

3.3 A framework with ensemble techniques 

The proposed framework with ensemble techniques for customer churn prediction with the 
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H-MK-SVM using both static and longitudinal behavioral data is illustrated in Fig. 1c. In this framework, 

longitudinal behavioral data are directly used as input of the time series classifier without any aggregation as 

commonly used in the standard framework or rectangularization as commonly used by time series classifiers. 

At the same time, static data are used as input of a standard classifier. An ensemble classifier then combines 

the results of the time series classifier and the standard classifier. In this framework, the input vector ix  for 

customer i  is a composite vector containing two parts, the static variables is  and the longitudinal 

behavioral variables ib , i.e., ( , )i i i=x s b . Because existing classifiers cannot be directly used in this 

framework, a novel method called the H-MK-SVM is developed and used for this purpose. 

Figure 1 approximately here 

4.  Support Vector Machines and Multiple Kernel Support Vector Machines 

The SVM and the MK-SVM, as the theoretical foundations of the H-MK-SVM, are briefly 

discussed in the following. The use of both static data and transformed longitudinal behavioral data in the 

SVM and the MK-SVM is also discussed. 

4.1  Support vector machines 

The basics of SVMs are introduced in this section. Vapnik (1995, 1998) and Schölkopf and Smolla 

(2002) gave more details. In a binary classification problem, a training dataset 1, 1 ,{( ), , ( )}n nG y y= x x  is 

available. A SVM constructs an optimal hyperplane in a high dimensional feature space 
 T( ) ( )f bf= ⋅ +x w x  (1) 

where ( ) : m mf ′ℜ ℜx : , with m m′ � , is a nonlinear function which maps an input vector m∈ℜx  from 

the input space mℜ  to ( ) mf ′∈ℜx  in a higher dimensional feature space m′ℜ . 

In the hyperplane (1), w  and b  are the coefficients estimated using the available training dataset. 

According to structural risk minimization principles (Vapnik, 1995, 1998), w  and b  are estimated by 

solving the following quadratic program 

min 2

1

1( , , )
2

n

i
i

J b C ξ
=

= + ∑w ξ w
 

 (2) 

s.t. ( ( ) ) 1T
i i iy bf ξ+ ≥ −w x   1, ,i n=   (3) 

 0iξ ≥   1, ,i n=   (4) 

where C  in (2) is a user defined regularization parameter.  
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The Lagrangian of the quadratic program in (2)-(4) is 
 

{ }
1 1

( , , ; ) ( , , ) ( ( ) ) 1
n n

T
i i i i i i

i i
L b J b y bα f ξ µ ξ

= =
= − + + − −∑ ∑w ξ α w ξ w ξ . (5) 

Taking partial derivatives of ( , , ; )L bw ξ α  with respect to the primal variables and substituting the results 

into ( , , ; )L bw ξ α  in (5) lead to the dual formulation of the SVM 

max 
1 , 1

1( , , ; ) ( , )
2

n n

i i j i j i j
i i j

L b y y kα α α
= =

 = − 
  
∑ ∑w ξ α ξ ξ

 
 (6) 

s.t. 
1

0
n

i i
i

yα
=

=∑   (7) 

 0 i Cα≤ ≤   1, ,i n=  . (8) 

In (6)-(8), iα  is the Lagrange multiplier of observation i , and ( , )i jk x x  is the kernel function 

which defines an inner product ( ), ( )f f〈 〉x x . When convenient, α  is used to denote the vector of all 

Lagrange multipliers. A commonly used kernel function is the Gaussian, also called the radial basis, function 

 2
2

1( , ) expi j i jk
σ

 = − − 
 

x x x x , (9) 

where 21 σ  is the parameter of the kernel. The relationship between the vectors w  and α  is 

 
1

( )
n

i i i
i

yα f
=

= ∑w x . (10) 

The dual in (6)-(8) is also a quadratic program and is usually easier to solve than the primal in (2)

-(4). The training process of the SVM is the solution process of the dual in (6)-(8). After the SVM is trained, 

the values of α  are determined. The resulting classification function in the Lagrange multipliers is 

 
1

( ) sgn ( , )
n

i i i
i

f y k bα
=

 
= + 

 
∑x x x . (11) 

The SVM for customer churn prediction is depicted graphically in Fig. 2. In Fig. 2a, the SVM is 

used for the standard framework of customer churn prediction in Fig. 1a. The static attributes is  and 

transformed static attributes its  are used as input of the SVM in this framework. In Fig. 2b, the SVM is 

used for the framework with feature construction techniques as shown in Fig. 1b. The static attributes is  

and the transformed longitudinal behavioral attributes itb  are used as input of the SVM in this framework. 

Figure 2 approximately here 

4.2 Multiple kernel support vector machines 

The generalization performance of the SVM is sensitive to the kernel function, the kernel parameter 
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21 σ  (if the Gaussian function is used) and the regularization parameter C . Hence, selecting a good kernel 

function is important in an application. 

Currently, multiple kernel learning is a popular topic in kernel methods. A MK-SVM uses a 

combination of some basic kernels to adaptively approximate an optimal kernel (Chen et al., 2007, 2011; 

Sonnenburg et al., 2006; Gönen and Alpaydin, 2011). The existing algorithms of the MK-SVM can be 

classified as one-step methods and two-step methods (Gönen and Alpaydin, 2011). One-step methods 

include several standard reformulations of the MK-SVM such as the quadratically constrained quadratic 

programming, semidefinite programming, and second-order cone programming (Bach et al., 2004; 

Lanckrient et al., 2004a). Because of the computational complexity of the one-step methods, two-step 

methods have been proposed for fast implementation purpose (Chapelle et al., 2002; Chen et al., 2007, 2011; 

Gunn and Kandola, 2002; Keerthi et al., 2007; Rakotomamonjy et al., 2008; Sonnenburg et al., 2006). Chen 

et al. (2007) used a two phase algorithm while Chapelle et al. (2002) and Keerthi et al. (2007) used a 

gradient decent algorithm to optimize the kernel parameters. 

The two-step method of the MK-SVM presented here was proposed by Chen et al. (2007). It 

introduces a single feature kernel in the MK-SVM for simultaneous feature selection and pattern 

classification. When m  basic kernel functions are used, a linear combination of the basic kernels is 

 
1

( , ) ( , )
m

i j d d i j
d

k kβ
=

=∑x x x x , (12) 

where 0dβ ≥  is the weight of the basic kernel ( , )d i jk x x . When convenient, β  is used to denote the 

vector of all weights of the basic kernels. When a single feature basic kernel is introduced in the MK-SVM, 

the linear combination is of the form 

 
, ,

1
( , ) ( , )

m

i j d d i d j d
d

k k x xβ
=

=∑x x , 0dβ ≥  (13) 

where ,i dx  denotes the thd  component of the input vector ix . As in (12), dβ  in (13) is the coefficient 

representing the weight on the single feature basic kernel , ,( , )d i d j dk x x . 

When the multiple kernel function (13) is used in (6)-(8), the formulation of the MK-SVM becomes 

max  ,
1 , 1 1

1( , ) ( , )
2

n n m

i i j i j d d i d d
i i j d

L y y k x xα α α β
= = =

 = − 
  
∑ ∑ ∑α β   (14) 

s.t. 
1

0
n

i i
i

yα
=

=∑   (15) 
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 0 i Cα≤ ≤   1, ,i n=   (16) 

 0dβ ≥  1, ,d m=  . (17) 

Chen et al. (2007) proposed a two phase iterative scheme which decomposes the quadratic program 

in (14)-(17) into two sub-problems, a quadratic program and a linear program. The two sub-problems are 

solved iteratively by standard solution methods. The two phase iterative scheme is summarized as follows. 

In phase 1, the values of β  are fixed at initial values in the first iteration or at the values obtained 

in phase 2 of the previous iteration in subsequent iterations, and the values of the Lagrange multipliers α  

are obtained by solving the following quadratic program 

max
α

 ,
1 , 1 1

1 ( , )
2

n n m

i i j i j d d i d d
i i j d

y y k x xα α α β
= = =

 − 
  
∑ ∑ ∑   (18) 

s.t. 
1

0
n

i i
i

yα
=

=∑   (19) 

 0 i Cα≤ ≤   1, ,i n=  . (20) 

In phase 2, the values of α  are fixed at the values obtained in phase 1 and a shrinkage strategy is 

used to select features by solving a linear program. In the linear program, a 1L -norm soft margin error 

function is minimized to obtain the values of β . Any attribute d  corresponding to 0dβ =  is discarded 

and all others are kept as selected features. The linear program is 

min  
1 1

( , )
m n

d i
d i

J β λ ξ
= =

= +∑ ∑β ξ   (21) 

s.t. , ,
1 1

( , ) 1
m n

i d j j d i d j d i
d j

y y k x x bβ α ξ
= =

 
+ ≥ −  

 
∑ ∑   1, ,i n=   (22) 

 0iξ ≥   1, ,i n=   (23) 

 0dβ ≥  1, ,d m=  . (24) 

In (21), λ  is a regularization parameter that controls the sparseness of β . The 1L -norm soft 

margin error function (21) and the constraints (22)-(24) are derived from the primal problem (2)-(4) when 

the multiple kernel (13) and w  in (10) are used. The dual of the linear program in (21)-(24) is solved in the 

implementation because the dual is easier to solve.  

The classification function obtained with the MK-SVM is 
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i ,

1 1
( ) sgn ( , )

n m

i d d i d d
i d

f y k x x bα β
= =

 
= + 

 
∑ ∑x , (25) 

where the Lagrange multipliers α  and feature coefficients β  are learned by solving the quadratic and 

linear programs in the two phase iterative scheme.  

The classification function can also be written as 

 
i ,

1 1 1
( ) sgn ( ) sgn ( , )

m m n

d d d i d i d d
d d i

f f b y k x x bβ β α
= = =

      = + = +   
      
∑ ∑ ∑x x . (26) 

Each i ,1( ) ( , )n
d i d i d dif y k x xα

=
=∑x  is a sub-function of feature d . The classification function ( )f x  is a 

linear combination of the sub-functions ( )df x  plus a bias b .  

The MK-SVM for customer churn prediction is depicted graphically in Fig. 3. In Fig. 3a, the static 

attributes is  and transformed static attributes its  are used as input of the MK-SVM for the standard 

framework of customer churn prediction in Fig. 1a. In Fig. 3b, the static attributes is  and the transformed 

longitudinal behavioral attributes itb  are used as input of the MK-SVM for the framework with feature 

construction techniques in Fig. 1b. 

Figure 3 approximately here 

5.  The Hierarchical Multiple Kernel Support Vector Machine and the Training 

Algorithm 

The H-MK-SVM is formulated and the three phase training algorithm is developed in this section. 

The decomposition of the resulting classification function is also discussed. 

5.1 Model Formulation 

In the H-MK-SVM, two types of multiple kernels are used for the static and the longitudinal 

behavioral attributes, respectively. For the static attributes, the single feature kernel (27) is used (Chen et al., 

2007) 

 
1

, ,
1

( , ) ( , )
m

i j j i ji i j
j

k k s sβ
=

=∑s s  , 0jβ ≥ . (27) 

In (27), , ,( , )j i j i jk s s  is the basic kernel mapping dimension j  of the static attribute is  and jβ  is the 

coefficient of , ,( , )j i j i jk s s . For the longitudinal behavioral attributes, the single feature kernel (28) is used 

 
, , , , ,

1 1
( , ) ( , )

M T

i ti j j t i j t i j t
j t

k k b bβ γ
= =

=∑ ∑b b      


 . (28) 
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In (28), jβ 
  is the coefficient of dimension j  of the temporal attribute input vector ib , , , , , ,( , )j t i j t i j tk b b     

is the basic kernel mapping time point t  of the time series ,i jb   and tγ  is the weight of , , , , ,( , )j t i j t i j tk b b    . 

When convenient, β  is used to denote the vector of all the coefficients and γ  is used to denote the vector 

of all the weights of the basic kernels in (28). 

When multiple kernels (27) and (28) are used, the formulation of the H-MK-SVM becomes 

, ,
max max

αβ β γ
 1

, , , , , , ,
1 , 1 1 1 1

1 ( , ) ( , )
2

mn n M T

i i i j j i j ti i i j j j t i j t i j t
i i i j j t

y y k s s k b bα α α β β γ
= = = = =

 
− +  

 
∑ ∑ ∑ ∑ ∑       

 

  (29) 

s.t. 
1

0
n

i i
i

yα
=

=∑   (30) 

 0 i Cα≤ ≤  1, ,i n=   (31) 

 0jβ ≥  11, ,j m=   (32) 

 0jβ ≥   1, ,j M=   (33) 

 0tγ ≥  1, ,t T=  . (34) 

5.2 The three phase training algorithm 

The H-MK-SVM is trained through a three phase training algorithm. The H-MK-SVM model in (29)

-(34) is decomposed into three sub-problems, a quadratic program and two linear programs that can all be 

solved with standard solution algorithms. 

In phase 1, β , β  and γ  are fixed and the values of the Lagrange multipliers α  are updated by 

solving a quadratic program that is similar to a standard SVM. The quadratic program is the dual of the 

primal problem (2)-(4) but using the multiple kernels (27) and (28), 

max
α

 
1

, t, , , , ,
1 , 1 1 1 1

1 ( , ) ( , )
2

mn n M T

i i i j i ji i i j j i j t i j t
i i i j j t

y y k s s k b bα α α β β γ
= = = = =

 
− +  

 
∑ ∑ ∑ ∑ ∑      

 

  (35) 

s.t. 
1

0
n

i i
i

yα
=

=∑   (36) 

 0 i Cα≤ ≤  1, ,i n=   (37) 

 0tγ ≥  1, ,t T=  . (38) 

In phase 2, the values of α  and γ  are fixed and the values of β  and β  are updated by 
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minimizing a 1L -norm soft margin error function in the following linear program 

, ,
min
β β ξ  

1

1 1 1

m M n

j ij
j j i
β β λ ξ

= = =
+ +∑ ∑ ∑



   (39) 

s.t. 
1

, , , , , ,
1 1 1 1

( , ) ( , ) 1
mn M T

i j i j ti i i j j i j t i j t
i j j t

y y k s s k b b bα β β γ ξ
= = = =

   + + ≥ −      
∑ ∑ ∑ ∑      
 

  (40) 

 0iξ ≥  1, ,i n=   (41) 

 0jβ ≥  11, ,j m=   (42) 

 0jβ ≥  1, ,j M=  . (43) 

The 1L -norm soft margin error function (39) and the constraints (40)-(43) are derived from the 

primal problem (2)-(4) when multiple kernels (27) and (28) are used. Demiriz et al. (2002) proved that 

minimizing the 1L -norm soft margin error function directly optimizes a generalization error bound. 

Moreover, this method can enforce sparseness of the coefficients β  and β . In the implementation, the dual 

of this linear program is actually solved because the dual is easier to solve than the primal.  

In phase 3, the values of α , β  and β  are fixed and the values of γ  are updated by minimizing 

the 1L -norm soft margin error function in the following linear program. The linear program is also derived 

from the primal problem (2)-(4) using multiple kernels (27) and (28). It enforces sparseness of the 

coefficients γ . The linear program is in (44)-(47) in the following but its dual is actually solved 

,
min

γ ξ
 

1 1

T n

t i
t i
γ λ ξ

= =
+∑ ∑   (44) 

s.t. 
1

, , , , , ,
1 1 1 1

( , ) ( , ) 1
mn M T

i j i j t ii i i j j i j t i j t
i j j t

y y k s s k b b bα β β γ ξ
= = = =

   + + ≥ −      
∑ ∑ ∑ ∑      
 

  (45) 

 0iξ ≥  1, ,i n=   (46) 

 0tγ ≥  1, ,t T=  . (47) 

 
 

The Three Phase Training Algorithm 

Input: Static data s  and longitudinal behavioral data b . 

Initialization:  Initialize the coefficients 
1

(0)
1 m×=β I , (0)

1 M×=β I , (0)
1 T×=γ I .  

While not converging  
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For 1 to t MaxIteration=  

Phase 1:  Find the Lagrange coefficients ( )tα   using fixed ( 1)t −β  , ( 1)t −β   and ( 1)t −γ   by solving the 

quadratic program in (35)-(38). 

Phase 2:  Find the static and longitudinal behavioral attribute coefficients ( )tβ   and ( )tβ   using the 

Lagrange multipliers ( )tα   obtained in Phase 1 and fixed ( 1)t −γ   by solving the dual of the 

linear program in (39)-(43). 

Phase 3:  Find the time series coefficients ( )tγ   using the Lagrange multipliers ( )tα   and the static and 

longitudinal behavioral attribute coefficients ( )tβ   and ( )tβ   found in Phases 1 and 2 by 

solving the dual of the linear program in (44)-(47). 

End For 
End While 
Output 

 

The H-MK-SVM model in (29)-(34) has three blocks of variables, i.e., the parameters α , { β , β } 

and γ . These parameters are learned through the three phase training algorithm. Because the parameters 

obtained are sparse, the training process is also a feature selection process. In each phase of the three phase 

training algorithm, a convex program is optimized with respect to one block while the other blocks are fixed. 

Besides the quadratic program in phase 1 which is a standard SVM, the other two convex programs directly 

optimize a generalization error bound (Demiriz et al., 2002). The three phase training algorithm iterates 

among these three phases to obtain a final solution by iteratively optimizing the same primal problem, and 

thus can be viewed as an application of the block coordinate decent method. The convergence property of 

the block coordinate decent method for convex differentiable minimization with bounded constraints can be 

found in Tseng (2001) and the references therein. The convergence of the algorithm is guaranteed in a few 

iterations. Practically, the solution obtained in a one iteration update is usually sufficient. Similar phenomena 

are observed with other iterative algorithms such as sparse kernel (Gunn and Kandola, 2002), structured 

SVM (Lee et al., 2006) and component selection and smoothing operator (CSSO) (Lin and Zhang, 2006). 

This one iteration update approach substantially reduces the computational time needed. 

Efficient linear and quadratic programming solution techniques can be used in the three phase 

training algorithm to speed up the training of the H-MK-SVM. For example, the parallel and distributed 

algorithms of the SVM (Woodsend and Gondzio, 2009) can be used in phase 1 to greatly reduce the 
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computational complexity of the H-MK-SVM. 

The output of the three phase training algorithm is the classification function 

 
1

, , , ,
1 1 1 1

( , ) sgn ( , ) ( , )
mn M T

i i j i j j tj i j t j t
i j j t

f y k s s k b b bα β β γ
= = = =

   = + +      
∑ ∑ ∑ ∑s b   



 . (48) 

The bias b  in (48) is computed as follows 

 
1

, , , , , ,
1 1 1 1

( , ) ( , )  for (0, )
mn M T

i i j i j ti i j j i j t i j t i
i j j t

b y y k s s k b b Cα β β γ α
= = = =

 
= − + ∈  

 
∑ ∑ ∑ ∑      



  . (49) 

5.3 The decomposition of the classification function 

The classification function (48) can be decomposed into three parts as shown in (50), i.e., the output 

of the static data 1( )f s , the output of the temporal data 2 ( )f b , and a bias b  in (49). Both 1( )f s  and 

2 ( )f b  can be viewed as sub-classifiers. 

1 2 , , , ,
1 1 1 1

( , ) sgn( ( ) ( ) ) sgn ( , ) ( , )
mn M T

i i j i j j tj i j t j t
i j j t

f f f b y k s s k b b bα β β γ
= = = =

   = + + = + +      
∑ ∑ ∑ ∑s b s b   



   (50) 

The H-MK-SVM uses hierarchical multiple kernels and is trained hierarchically. There are three 

levels in the hierarchy. On the first level, the Lagrange multipliers α  are learned to obtain the support 

vectors. On the second level, the coefficients β  and β  are learned for the selection of the static and 

longitudinal behavioral attributes, respectively. On the third level, the coefficients γ  are learned to select 

time subsequence in the selected longitudinal behavioral attributes. Hence the model is called the 

hierarchical MK-SVM (H-MK-SVM).  

Schematically, the H-MK-SVM for customer churn prediction using longitudinal behavioral data is 

shown in Fig. 4. In the H-MK-SVM, the two types of multiple kernels are used in the sub-classifiers to 

model static and longitudinal behavioral data respectively. The H-MK-SVM can be viewed as an ensemble 

classifier to combine the results of the sub-classifiers. 

Figures 4 approximately here 

6.  Computational Experiments 

The H-MK-SVM is a better and more useful approach for customer churn prediction using 

longitudinal behavioral data only if it outperforms other existing approaches. Hence, there are a few 

questions about the performance of the three frameworks and the corresponding methods on customer churn 

prediction using longitudinal behavioral data. One question is whether the framework with ensemble 
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techniques outperforms the other two with transformed static data or with rectangularized longitudinal 

behavioral data. Another question is how the H-MK-SVM, the MK-SVM, the SVM and other more 

traditional methods compare using multiple criteria measuring performance. One more question is whether 

the H-MK-SVM and other methods are equally effective on balanced and imbalanced data. Using three 

real-world databases, these questions are answered by means of computational experiments. In the following, 

the datasets used and the design of the computational experiments are described. Data preprocessing and 

parameter tuning are also discussed. 

6.1 The databases 

Three datasets extracted from three real-world databases, Foodmart 2000, AdventureWorksDW, and 

Telecom, are used in the computational experiments. Table 1 summarizes the characteristics of these datasets 

including the number of observations N , the number of static attributes 1m , the number of longitudinal 

behavioral attributes M , the length, i.e., the number of time points, of each longitudinal behavioral attribute 

in the original datasets 'T , the length of each longitudinal behavioral attribute in the training, validation and 

testing sets T , and the percentage of churners in the datasets p . 

Table 1 approximately here 

The Foodmart dataset is extracted from the retail database Foodmart 2000 in Microsoft SQL Server 

2000 (Chen et al., 2005; Tsai and Shieh, 2009). The database includes the customer and transactional 

datasets of a chain store. The customer dataset records 10281 customers with different types of membership 

cards. Two transactional datasets in the database are used for this study. The Sales_Fact_1997 dataset 

records 86,837 transactions in 1997 and the Sales_Fact_1998 dataset records 182,283 transactions in 1998. A 

purchase record in the transactional datasets includes transaction date, sales amount, whether or not 

promotion was involved, and so on. The 3M =  longitudinal behavioral variables, the amount spent on all 

product categories, the number of purchases, and the number of products purchased per month by each 

customer, are computed from these two datasets. The length of each longitudinal behavioral variable is 

' 24T =  months. The 1 11m =  static attributes derived from the customer dataset include age, gender, 

marital status, annual income, total number of children, number of children at home, education, membership 

card, occupation, homeowner, and the number of automobiles owned. 

The Adventure dataset is extracted from the database AdventureWorksDW2 in Microsoft SQL 
                                                      
2 available at: http://msftdbprodsamples.codeplex.com/releases/view/4004. 
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Server 2005. The datasets used in the experiments include the Reseller and the ResellerSales datasets. The 

Reseller dataset records 701 resellers, and the ResellerSales dataset records 60855 transactions about sales 

amount, order quantity per purchase, and so on. The experiments use 3M =  longitudinal behavioral 

variables with ' 36T =  time points and 1 7m =  static variables. 

The Telecom database is from a cell phone service company provided by the Center for CRM at 

Duke University3. The database contains 3M =  longitudinal behavioral variables, i.e., plan chosen, total 

minutes consumed each month, and whether or not a promotion was involved, for ' 20T =  months. 

6.2 Experimental design 

Fig. 5 shows the process of customer churn prediction using longitudinal behavioral data. The 

blocks of the process are described in the following.  

Figure 5 approximately here 

Data preprocessing: the demographic data can be directly obtained from the data warehouse of the 

businesses, while the longitudinal behavioral data need to be extracted from transactional datasets. Data 

preprocessing methods including normalization and sampling are applied to the static and longitudinal 

behavioral data (Crone et al., 2006). 

Model training and validation: A holdout validation approach is used in the computational 

experiments. Each dataset is randomly partitioned into a training set, a validation set and a testing set with 

10N  ( 3N ), 9 20N  ( 3N ) and 9 20N  ( 3N ) observations respectively for the Foodmart and 

Telecom (Adventure) datasets. The three phase, two phase, and the interior-point algorithms are used to train 

the H-MK-SVM, the MK-SVM and the SVM, respectively. These algorithms are implemented in the Matlab 

7.4 development environment. In the training process, the computational results are evaluated on the 

validation set to find the optimal kernel parameters and the regularization parameters. 

Model testing: The parameters and the sparse coefficients learned from model training and 

validation are used in the classification function to evaluate each observation in the testing set. Criteria used 

to measure performance include the percentage of correctly classified observations (PCC), the percentage of 

correctly classified observations in the positive class (Sensitivity), the percentage of correctly classified 

observations in the negative class (Specificity), the area under the receiver operating characteristic curve 

(AUC), the top 10% lift (Lift), the maximum profit (MP) and the H-measure (H). The LSSVMlab toolbox 
                                                      
3 available at: http://www.fuqua.duke.edu/centers/ccrm/datasets/download.html. 
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was used for the computation of the AUC. Verbeke et al. (2011) provided a detailed description of the 

computation of the MP criterion. The settings of the parameters used to compute the MP criterion are 

specified in Verbeke et al. (2011). Although the settings of these parameters are different for different 

applications, the fixed settings do not affect the performance comparison between the H-MK-SVM and the 

other classifiers. The results reported in the next section are the ones on the testing sets. 

6.3 Data preprocessing 

In the transactional datasets (Sales_Fact_1997 and Sales_Fact_1998, for example), each record 

represents a transaction of one product (service) category for one customer. Analysis Services of Microsoft 

SQL Server 2005 was used to transform the transactional datasets into the longitudinal behavioral datasets. 

For example, the amount of spending (volume), the number of purchases (frequency), and the number of 

products purchased (variety) are the three longitudinal behavior variables that represent the customer 

behavior varying over time in the Foodmart and the Adventure datasets.  

Observations with missing values in either the static or the longitudinal behavioral variables were 

deleted. Observations with no transactions in the time periods of the training sets were also deleted. After 

data preprocessing, the Foodmart dataset contains 8842 observations and the Adventure dataset contains 633 

observations. All the 3399 observations in the Telecom datasets are retained. 

The Telecom dataset is in a contractual setting and the Foodmart and the Adventure datasets are not. 

The labels of the observations in the Telecom dataset are known because of the contractual nature of the 

telecommunications business (Zorn et al., 2010). The customer lifetime value (CLV) is used as the criterion 

to distinguish churners from non-churners in the Foodmart and the Adventure datasets. Details about the 

computation of the CLV are provided by Benoit and Van den Poel (2009). The time periods used in the 

testing set are different from those in the training and validation sets to reflect the temporal nature of the data. 

In the Foodmart (Adventure) dataset, the customer longitudinal behavioral data from January 1997 to 

December 1997 (from July 2002 to June 2004) are used to train and validate the models and those from July 

1997 to June 1998 (from January 2003 to December 2004) are used to test the models. A customer or reseller 

is labeled as a churner if the CLV in the last six months of the corresponding period is zero. 

In customer churn prediction, the number of churners is usually much smaller than the number of 

non-churners in the available datasets. Hence, the datasets are usually imbalanced. For example, only 

24.33% of the customers are churners in the Adventure dataset. One of the most commonly used techniques 

for dealing with imbalanced data is sampling, such as oversampling and undersampling (Burez and Van den 
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Poel, 2009; Verbeke et al., 2011). Undersampling is used in this experiment. The sampling ratio θ  is 

defined as the number of non-churners over the number of churners in a training set. The training set is 

balanced if 1θ = . In the computational experiments, both balanced and imbalanced training sets are used. 

Balanced training sets from all three datasets are used. Imbalanced training sets with 2θ = , 5θ =  and 

15θ =  from the Adventure dataset are used. The training and the validation sets of the Adventure dataset 

are pooled together first. The 3N  observations in the imbalanced training sets are obtained by sampling 

the pooled set. The rest of the observations in the pooled set are used as the validation set. All observations 

in the testing set are kept intact and used to test the models. 

6.4 Parameter tuning 

The grid search approach is used when selecting regularization parameters and kernel parameters for 

the H-MK-SVM, the MK-SVM, and the SVM. These parameters control the error margin tradeoff and play a 

crucial role in the performance and the sparseness of the models (Chen et al., 2007, 2011). 

In the experiments, the Gaussian kernel function (9) is used in the H-MK-SVM, the MK-SVM, and 

the SVM. For kernel methods, different kernel functions or a kernel function with different parameters 

correspond to different mappings and thus can be viewed as capturing different information in the data 

(Lanckriet et al., 2004b). In the multiple kernel function (13), the identical kernel parameter 21 σ  is used 

in each single kernel , ,( , )d i d j dk x x  for both feature selection and classification when learning the sparse 

coefficients dβ . In the H-MK-SVM, the static and longitudinal behavioral data have different domains. The 

static data are expressed as rectangular matrices and the longitudinal behavioral data are expressed as 

three-dimensional matrices in which each observation corresponds to a multivariate time series. Therefore, a 

kernel parameter 2
11 σ  is used for the multiple kernel function (27) for the static data and a different kernel 

parameter 2
21 σ  is used for the multiple kernel function (28) for the longitudinal behavioral data. 

Using the grid search approach in the three phase training algorithm for the H-MK-SVM, 

exponentially growing values for C , 2
11 σ  and 2

21 σ , i.e., C = 102− ,…, 02 ,…, 102  and 2
11 σ  

( 2
21 σ )=10 2× , 210 2× ,…, 1010 2× , are tried in phase 1; exponentially growing values for λ , i.e., λ  

= 102− ,…, 02 ,…, 102 , are tried in phase 2; and exponentially growing values for λ , i.e., λ  = 102− ,…, 

02 ,…, 102 , are tried in phase 3. The final values of these parameters used in the model are the ones with the 
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best performance. Since no more than three parameters are tuned at a time, the computational time needed to 

find the final values by this tuning strategy is acceptable. 

7. Computational Results 

Computational results are reported in this section and the results answer the questions posted in the 

previous section. These results focus on customer churn prediction performance of the H-MK-SVM, the 

SVM and the MK-SVM. The SVM and the MK-SVM are used as benchmarks for comparisons because they 

are among the most effective methods and because they are the basis on which the H-MK-SVM is developed. 

Some other classifiers are also used as benchmarks for comparisons. All computations were performed on a 

laptop computer with an Intel Core i3 processor with a 2.40 GHz clock speed and 2GB of RAM. 

The input data 1[ , ]i i i m×=x s ts and 
11 ( )[ , ]i i i m M T× + ×=x s tb  are both used in these methods, i.e., the 

frameworks in Fig. 1a and Fig. 1b, except in the H-MK-SVM. The results are reported in separate columns 

in the following tables. In these tables, D  represents the dimension of the input data. For the standard 

framework in Fig. 1a, the input for observation i  is 1[ , ]i i i m×=x s ts  and thus D m=  (14, 10, and 3 for 

the three datasets, respectively). For the framework in Fig. 1b, the input for observation i  is 

11 ( )[ , ]i i i m M T× + ×=x s tb , and thus 1D m M T= + ×  (47, 79, and 60 for the three datasets, respectively). The 

best result for each measure and for each dataset is highlighted in these tables. 

7.1 Performance of the H-MK-SVM, the MK-SVM and the SVM on balanced data 

As previously stated, longitudinal behavioral data can be used in three ways for customer churn 

prediction. The SVM, the MK-SVM and many other traditional methods can be used within the standard 

framework and the framework with feature construction techniques, and the H-MK-SVM can be used within 

the framework with ensemble techniques. Therefore, the comparisons among the SVM, the MK-SVM and 

the H-MK-SVM are also the comparisons among these three ways of using longitudinal behavioral data. 

Results using balanced data for the three datasets are reported in Table 2. In addition to the performance 

criteria discussed earlier, the computational time (Time) in seconds is also reported in this table. 

Tables 2 and 3 approximately here 

 As shown in Table 2, the AUC ranges between 76.31% and 98.70%; the Lift ranges between 4.16 

and 9.15; the MP ranges between 2.39 and 22.50; and the H-measure ranges between 76.54% and 97.87% 

for the H-MK-SVM on these three datasets. The H-MK-SVM obtained the highest PCC, Sensitivity, AUC, 
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Lift, MP and H-measure on these three datasets. In customer churn prediction, the misclassification of a 

churner may result in the loss of the customer but the misclassification of a non-churner may result in some 

extra marketing cost. Because the former is more costly than the latter, Sensitivity is a more important 

measure than Specificity. While Sensitivity and Specificity measure how accurate the methods can identify 

the observations in a single class, the AUC measures how well the methods discriminate the two classes. The 

H-MK-SVM does not obtain the highest Specificity, but it obtains the highest AUC. The computational time 

taken to train the H-MK-SVM is from 2 to 4 times of that taken to train the MK-SVM or the SVM. 

The AUC, the Lift and the H-measure of the MK-SVM and the SVM are a bit higher using D =14 

attributes than using D =47 attributes on the Foodmart dataset and a bit lower using D =3 attributes than 

using D =60 attributes on the Telecom dataset. Therefore, the performance of the MK-SVM and the SVM 

using rectangularized longitudinal behavioral data, i.e., the framework in Fig. 1b, is not obviously superior 

to that using the transformed static data, i.e., the framework in Fig. 1a. 

The number of selected static attributes ( m′′ ), the number of selected longitudinal behavioral 

attributes ( M ′′ ), and the number of selected time points in all the longitudinal behavioral attributes (T ), 

along with 1m , M  and M T× , are listed in Table 3 for the H-MK-SVM. For example, 2m′′ =  static 

attributes are selected from a total of 1 11m = ; 2M ′′ =  longitudinal behavioral attributes are selected from 

a total of 3M = ; and 7T =  time points are selected from a total of 36M T× =  for the Foodmart dataset. 

The most discriminative predictors in the Foodmart dataset are the two longitudinal behavioral variables, 

volume and frequency, and two static variables, annual income and occupation. 

7.2 Performance comparison of different classifiers on balanced data 

More computations are conducted to further compare the performance of the H-MK-SVM, the 

MK-SVM, the SVM and other methods. The eight other methods used in the experiments are least squares 

SVM (LS-SVM), feed-forward artificial neural network (FANN), radial basis function neural network 

(RBFNN), decision tree (DT), random forest (RF), AdaBoosting (Boosting), logistic regression (LR) and the 

proportional hazard model (Cox). The randomforest and GML AdaBoost Matlab toolboxes were used to 

implement the RF and the Boosting methods, respectively. Matlab 7.4 and the corresponding Matlab 

toolboxes are used to implement the other methods. 

The AUC and the Lift of these methods are presented in Table 4. The H-MK-SVM obtained the 

highest AUC on the Adventure and Telecom datasets and the highest Lift on the Foodmart and the Adventure 
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datasets, LR obtained the highest AUC on the Foodmart dataset, while DT, RF and Boosting obtained the 

highest Lift on the Telecom dataset. These results show that the use of the longitudinal behavioral data in the 

H-MK-SVM without transformation improves the performance of customer churn prediction. 

Table 4 approximately here 

Results in Table 4 also show that the performances of the other eight methods using rectangularized 

longitudinal behavioral attributes, i.e., the framework in Fig. 1b, are not obviously superior to those using 

aggregated attributes, i.e., the framework in Fig. 1a. Specially, the AUC and Lift of LR and Cox using 

rectangularized longitudinal behavioral attributes are far lower than those using aggregated attributes on the 

Foodmart and Adventure datasets. 

7.3 Performance on imbalanced data 

The undersampling approach produces small subsets of data for model construction when the dataset 

is small. Classification techniques may not perform well on high dimensional small datasets because the 

classification functions may be overfit and, therefore, have poor generalization properties. Therefore, 

imbalanced data may be used directly for model construction without sampling to obtain a balanced training 

set. A classifier with good performance on both balanced and imbalanced data is robust and is more 

preferred. The Adventure dataset is used to test the performance of the classification methods on imbalanced 

data because it has relatively a small number of observations and a high dimension. 

The performances of the H-MK-SVM, the MK-SVM and the SVM, as well as the other eight 

methods, using the AUC and the Lift as criteria on the Adventure dataset with θ =1, 2, 5 and 15 are reported 

in Table 5. The H-MK-SVM obtained the highest AUC and Lift with θ =1, 2 and 15. The AUC of the 

H-MK-SVM, the MK-SVM, the SVM and the LS-SVM are all larger than 90% for θ =1, 2, 5 and 15. The 

AUCs of these four methods deceased by no more than 5%, while those of the FANN, the RBFNN, the DT 

and Boosting deceased by more than 10% as the sampling ratio θ  increased. Hence, the H-MK-SVM, the 

MK-SVM, the SVM and the LS-SVM are robust with imbalanced data while the H-MK-SVM performs the 

best. Cox with D =10 also obtained an AUC larger than 90% for θ =1, 2, 5 and 15. 

Table 5 approximately here 

8.  Conclusions 

In this study, the frameworks for customer churn prediction using longitudinal behavioral data are 

developed, the H-MK-SVM model is formulated, and a three phase training algorithm is developed. The 

H-MK-SVM uses multiple kernels to construct a classification function with static and longitudinal 
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behavioral data as input. The training process of the H-MK-SVM is also a feature selection process because 

the sparse non-zero coefficients correspond to the selected variables.  

Computational experiments are conducted on three real-world databases. The experimental results 

show that the H-MK-SVM exhibits superior performance on both balanced and imbalanced data as 

compared to the MK-SVM, the SVM and eight other existing methods. The use of longitudinal behavioral 

data in the H-MK-SVM without transformation improves the performance of customer churn prediction. 

Furthermore, good prediction results are obtained in both contractual and non-contractual settings. 

Large datasets are usually used for customer churn prediction in practice. The SVM, the MK-SVM 

and the H-MK-SVM are computationally more intensive than other more traditional methods. Therefore, 

more efficient optimization techniques need to be developed to reduce the computation time needed to train 

the H-MK-SVM. Collaborative pattern mining (Zhu et al., 2011) is an emergent framework for large-scale 

computation in a distributed environment. The development of a collaborative optimization method for 

coefficient estimation and parameter tuning will be a direction for future work. Selecting useful attributes 

from a large number of prediction variables in the framework with feature construction techniques will also 

be a direction for further research. 

A good customer churn prediction model should identify potential churners not only as accurately as 

possible but also as early as possible. When longitudinal behavioral data are available, a dynamic model can 

be constructed to update customer information and to provide prediction results frequently. A new criterion 

can be developed to measure the performance of the model using the time period from the time of correct 

prediction to that of churn. Hence, dynamic customer churn prediction is another research direction. 
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Figure 1. Frameworks for customer churn prediction: (a) the standard framework; (b) a framework with 

feature construction techniques; (c) a framework with ensemble techniques. 
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Figure 2. SVM for customer churn prediction: (a) the standard framework; (b) the framework with feature 

construction techniques. 
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Figure 3. MK-SVM for customer churn prediction: (a) the standard framework; (b) the framework with 
feature construction techniques. 
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Figure 4. H-MK-SVM for customer churn prediction using longitudinal behavioral data 
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Figure 5. The process of the H-MK-SVM for customer churn prediction using longitudinal behavioral data 
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Table 1. Database characteristics 

Dataset N  1m  M  'T  T  p  

Foodmart 8842 11 3 24 12 20.90 
Adventure 633 7 3 36 24 24.33 
Telecom 3399 0 3 20 20 47.71 

 

Table 2. Results of the H-MK-SVM, the MK-SVM and the SVM on the Foodmart, Adventure and Telecom datasets 

Criterion 
Foodmart  Adventure  Telecom 

H-MK-
SVM 

MK-SVM SVM  H-MK-S
VM 

MK-SVM SVM  H-MK-
SVM 

MK-SVM SVM 
D = 14 D = 47 D = 14 D = 47  D = 14 D = 47 D = 14 D = 47  D = 14 D = 47 D = 14 D = 47 

PCC 70.67 61.00 65.81 62.81 65.00  96.67 96.67 96.67 95.83 96.67  97.92 83.43 97.92 82.75 97.50 
Sensitivity 95.63 88.00 71.50 92.63 72.25  100.00 95.00 93.33 93.33 95.00  95.83 80.33 95.83 80.50 95.83 
Specificity 45.75 34.00 60.12 32.81 57.75  93.33 98.33 100.0 98.33 93.33  100.00 86.50 100.0 85.00 99.17 

AUC 76.31 70.65 69.32 72.02 68.40  99.19 98.83 97.75 99.03 98.25  98.70 90.60 98.18 90.70 98.24 
Lift 9.15 8.42 6.84 8.88 6.94  8.22 8.22 8.22 8.22 8.22  4.16 3.37 4.12 3.37 4.12 
MP 2.39 1.32 –0.99 1.97 –0.88  5.30 5.30 5.30 5.30 5.30  22.50 14.70 22.50 14.70 22.22 
H 76.54 69.29 67.65 71.30 67.37  96.77 96.60 96.55 95.72 94.21  97.87 82.89 97.87 82.35 97.46 

Time 240.16 64.05 122.14 56.01 112.88  3.69 2.81 2.96 1.20 3.11  136.61 35.38 35.92 31.94 33.06 
 

Table 3. Results for feature selection and time subsequence selection 

Dataset 1m  ''m  M  ''M  M T×  T  
Foodmart 11 2 3 2 36 6 
Adventure 7 3 3 2 72 7 
Telecom 0 0 3 3 60 9 
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Table 4. Results of different classifiers using the AUC and the Lift criteria on balanced data 

Methods 
AUC  Lift 

Foodmart Adventure Telecom  Foodmart Adventure Telecom 
H-MK-SVM 76.31 99.19 98.70  9.15 8.22 4.16 

D  14 47 10 79 3 60  14 47 10 79 3 60 
MK-SVM 70.65 69.32 98.83 97.75 90.60 98.18  8.42 6.84 8.22 8.22 3.37 4.12 

SVM 72.02 68.40 99.03 98.25 90.70 98.24  8.88 6.94 8.22 8.22 3.37 4.12 
LS-SVM 83.64 76.58 97.92 97.58 68.70 97.82  8.67 7.72 8.22 8.22 4.19 4.02 

FANN 84.37 69.88 98.06 99.06 83.70 97.92  8.61 5.69 8.22 8.22 4.09 4.05 
RBFNN 53.50 50.76 93.64 90.36 78.34 81.20  3.73 1.67 6.86 7.52 3.81 4.02 

DT 60.12 55.95 97.50 97.50 87.45 95.41  6.03 5.98 8.01 8.01 3.44 4.19 
RF 59.00 57.69 95.83 95.00 83.42 97.92  7.22 6.75 6.86 6.86 3.40 4.19 

Boosting 53.56 54.75 97.50 97.50 82.08 97.75  6.03 5.07 7.81 7.81 3.33 4.19 
LR 84.78 73.18 98.78 68.83 82.27 82.27  8.76 6.89 8.22 0.00 3.81 3.81 
Cox 83.17 71.71 96.86 74.44 82.23 97.61  8.43 5.98 8.22 6.85 3.84 4.02 
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Table 5. Results of different classifiers using the AUC and the Lift criteria on the Adventure dataset with θ =1, 2, 5 and 15 

Methods 
AUC  Lift 

θ =1 θ =2 θ =5 θ =15  θ =1 θ =2 θ =5 θ =15 
H-MK-SVM 99.19 97.28 94.31 96.33  8.22 8.22 8.22 8.22 

D  10 79 10 79 10 79 10 79  10 79 10 79 10 79 10 79 
MK-SVM 98.83 95.06 93.67 93.06 98.83 91.72 94.78 93.31  8.22 3.56 8.22 8.22 8.22 8.22 8.22 8.22 

SVM 99.03 96.58 92.81 92.86 91.19 87.78 91.44 92.25  8.22 3.42 8.22 7.53 8.22 7.53 8.22 8.22 
LS-SVM 97.92 97.58 94.94 92.83 90.72 90.42 91.25 92.72  8.22 8.22 8.22 8.22 8.22 8.22 8.22 8.22 

FANN 98.06 99.06 93.36 94.86 88.56 88.56 85.33 79.61  8.22 8.22 8.22 8.22 8.22 7.53 8.22 8.22 
RBFNN 93.64 90.36 89.36 71.17 84.22 60.83 68.72 75.44  6.86 7.52 7.19 3.08 6.17 6.89 7.53 6.85 

DT 97.50 97.50 94.17 94.17 94.17 95.75 85.83 85.83  8.01 8.01 8.22 8.22 8.22 8.22 8.22 8.22 
RF 95.83 95.00 92.50 89.17 77.50 87.50 90.00 67.50  6.86 6.86 7.53 7.88 6.89 6.89 8.22 8.22 

Boosting 97.50 97.50 94.17 94.17 93.33 93.33 86.67 86.67  7.81 7.81 8.22 8.22 7.53 7.53 8.22 8.22 
LR 98.78 68.83 90.82 74.65 93.11 82.67 83.90 86.99  8.22 0.00 7.53 0.00 7.53 7.53 8.22 6.17 
Cox 96.86 74.44 94.08 72.03 92.39 77.86 95.42 84.78  8.22 6.85 8.22 4.80 8.22 4.11 8.22 7.53 
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