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Abstract

This paper considers the problem of estimating, and testing for, a Kronecker
product covariance structure of three-level (multiple time points (p), multiple
sites (u), and multiple response variables (q)) multivariate data. Testing of
such covariance structures is potentially important when not enough samples
are available to estimate the unstructured variance-covariance matrix. This
hypothesis testing procedure not only can test the hypothesis on three-level
multivariate data, but also can test the hypotheses on two-level multivariate
data as special cases. We provide the maximum likelihood estimates of the
unknown population parameters. The test is implemented with a real data set.

AMS 2000 subject classification: Primary 62H15; Secondary 62H12.

Key words: Kronecker product covariance structure, maximum likelihood estimates,
equicorrelated partitioned matrix, three-level multivariate data.
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1 Introduction

In this article we develop a likelihood ratio test for a Kronecker product covariance

structure for three-level multivariate data, where more than one response variable is

measured on each experimental unit on more than one site at several time points

(spatial). It is very common in clinical trial study to collect measurements on more

than one response variable at different body positions (sites) repeatedly over time.
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Consider an example of clinical trial study of a clinical evaluation for a bone densit-

ometry study where bone mineral density (BMD) were obtained from each patient

on each femoral (right and left femoral, u = 2). Two BMD measurements (q = 2)

were taken, one in the femoral neck and the other one in the trochanter region. These

four measurements were observed over a period of two years (p = 2). Consider an-

other example, also from a clinical trial study, where researchers measure levels of

fat byproducts at different parts of the body repeatedly over time. These kinds of

data we name as three-level multivariate data or triply multivariate data. Different

time points as well as different sites may have different measurement variations for

the variables, and we must take these variations into account while analyzing these

kinds of data. Several authors (Boik, 1991; Chaganty and Naik, 2002; Galecki, 1994;

Naik and Rao, 2001; Roy and Khattree, 2003, 2005 a,b; Roy, 2006 a, b; Shults and

Morrow, 2002) have observed many advantages of using Kronecker product structure

or separable covariance structure over the usual unstructured variance-covariance ma-

trix for analyzing doubly multivariate data. Shults, Whitt and Kumanyika (2004)

and Roy and Leiva (2006) used Kronecker product structure while analyzing triply

multivariate data or three-level multivariate data. Shults et al. (2004) used Kronecker

product structure in the framework of generalized estimating equations, while Roy and

Leiva (2006) used the Kronecker product structure in developing classification rules

for three-level multivariate data. The main advantage of using Kronecker product

structured variance-covariance matrix over the unstructured one is that the number of

unknown parameters declines substantially; thus helps us in analyzing data in a small

sample set-up in expensive clinical trials such as alzheimer disease, parkinson decease

and AIDS. However, one needs to be very careful with the assumption of Kronecker

product structured variance-covariance matrix, especially for three-level multivariate

data, as incorrect assumption may result in invalid conclusion. Thus, testing of the

validity of the Kronecker product structure is crucial before using it for any statistical

analysis.

This article deals with the hypothesis testing of a Kronecker product structured

variance-covariance matrix for three-level multivariate data. Hypotheses testing prob-

lems on doubly multivariate data using Kronecker product structure have recently

been studied by many authors (Lu and Zimmerman, 2005; Roy and Khattree, 2003,

2005 b, c; Roy, 2006 c). Regrettably, none of them gave a solution for hypothesis

testing problem on three-level or three-factor multivariate data. Very recently Roy

and Leiva (2007) have studied the hypotheses testing problems on Kronecker prod-

uct covariance structures for triply multivariate data by assuming an autoregressive

of order one
(
AR(1)

)
as well as a compound symmetry (CS) correlation structure on
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repeated measurements over time. However, pattern on the repeated measurements

sometimes may not be of direct interest, or the covariance matrix does not follow one

of these standard structures. In this case one needs to work with the unstructured

variance-covariance matrix on repeated measurements over time instead of a restricted

AR(1) or CS structure. By unstructured variance-covariance matrix we mean the mean

vectors and the variances and covariances are arbitrary, in contrast to the structured

one. Lu and Zimmerman (2005) recommended an extension of the separability of

two-factor case Σ1 ⊗ Σ2 to three-factor case as Σ1 ⊗ Σ2 ⊗ Σ3, where Σi, i = 1, 2, 3

are three unstructured variance-covariance (positive definite) matrices for three levels.

In this paper we alternatively propose a covariance structure Ω (defined in (1.1)) for

three-factor or three-level multivariate data, which is also an extension of Σ1 ⊗ Σ2,

and at the same time more parsimonious than that of the extension suggested by Lu

and Zimmerman for u > q. Furthermore, our new covariance structure Ω not only is

an extension of Lu and Zimmerman (2005) and Roy and Khattree’s (2003) separable

covariance structures, where both the components of the Kronecker product have un-

structured variance-covariance matrix, but also is an extension of Roy and Khattree’s

(2005 c) separable covariance structure where one of its components has a CS structure

(explained in Section 3). Thus, our new covariance structure can be perceived as a

more general extension to three-level multivariate data. We will discuss later in this

section some of the interesting interpretations of this new covariance structure Ω. In

this paper we propose a likelihood ratio test for testing this new covariance structure

where repeated measurements over time has unstructured covariance matrix by using

an “equicorrelated (partitioned) matrix” (Leiva, 2007) on the measurement vector over

sites. This parsimonious covariance sytucture is very relevant in the context of many

statistical analyses, especially in discriminant analysis, when not enough samples are

available to estimate the unstructured variance-covariance matrix.

Let yr,ts be a q-variate vector of measurements on the rth individual at the sth site

(location) and at the tth time point; r = 1, . . . , n, s = 1, . . . , u, t = 1, . . . , p. Let yr,t be

the uq-variate vector of all measurements corresponding to the rth individual at the

tth time point, that is, for each r, and t, yr,t is obtained by stacking all q responses

of the rth individual at the tth time point at the first site (location), then stacking

all its q responses at the second site and so on. Let yr = (y′r,1,y
′
r,2, . . . ,y

′
r,p)
′ be the

puq-variate vector of all measurements corresponding to the rth individual. Finally, let

Y = [y1,y2, . . . ,yn] be random samples of size n from population Npuq (µ,Ω) , where

µ ∈ Rpuq and Ω is assumed to be a puq × puq−dimensional positive definite matrix.

Thus, the number of unknown parameters to be estimated is puq(puq + 1)/2; which

can increase very rapidly with the increase of the dimension of any of the factors. So,
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researchers typically rely on structured covariance matrix which depends on a smaller

set of unknown parameters. The problem, though, is knowing what the structure

is. A form of covariance structure Ω suitable for three-level multivariate data can be

assumed as

Ω
puq×puq

= V
p×p
⊗ Γ

uq×uq
, (1.1)

where V is an unstructured variance covariance matrix, and Γ is an equicorrelated

(partitioned) variance covariance matrix of the form

Γ = Iu ⊗ (Σ0 −Σ1) + Ju ⊗Σ1, (1.2)

where Iu is the u × u identity matrix, 1u is the u × 1 vector containing all elements

as unity, Ju = 1u1
′
u and ⊗ represents the Kronecker product. Σ0 is a positive definite

symmetric unstructured q×q matrix, and Σ1 is a symmetric q×q matrix. The matrix

Γ is called equicorrelated partitioned matrix with equicorrelation matrices Σ0 and

Σ1. The q × q block diagonals Σ0 represents the variance-covariance matrix of the q

response variables at any given site and at any given time point, whereas the q × q
block off diagonals Σ1 represents the covariance matrix of the q response variables

between any two site pairs and at any given time point. We assume Σ0 is constant for

all sites and time points. Also, Σ1 is the same for all site pairs and for all time points.

The p × p matrix V is the variance-covariance matrix of the repeated measurements

over time on a given response variable and at any given site, and is assumed to be

same for all response variables and for all sites. We assume V as positive definite and

symmetric.

Now, what are the merits of this new covariance structure (1.1) over the unstruc-

tured variance-covariance matrix? First of all, if the number of subjects n is not

greater than the number of repeated measurements puq, the estimate of the variance-

covariance matrix Ω becomes a singular one. If the number of subjects n ≥ puq, but

relatively small, the estimate of Ω becomes unstable. Moreover, if the dimension of Ω

is large, the estimation becomes computationally demanding. To avoid all these prob-

lems, one may model Ω as (1.1). This matrix has only p(p+1)
2

+ q(q + 1)− 1 unknown

parameters, which is much less than puq(puq+1)
2

. The apparent advantage of this model

(1.1) is that the number of parameters to be estimated is greatly reduced, and thus

the statistical analysis can be accomplished in a small sample set-up. Furthermore,

if the covariance structure (1.1) is the correct one and the unstructured covariance

matrix is used, the estimates will be most awful.

The number of unknown parameters in model (1.1) is p(p+1)
2

+ q(q+1)−1, whereas

the number of unknown parameters under three-factor separability is p(p+1)
2

+ q(q+1)
2

+
u(u+1)

2
− 2. Thus, if u is greater than q, the model (1.1) is more parsimonious than
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the three-factor separability model, the extension suggested by Lu and Zimmerman

(2005). Therefore, the model (1.1) not only is a more general extension to three-level

multivariate data, but also is more parsimonious if u is greater than q.

2 Matrix Results

It is known form Lemma 4.3 of Ritter and Gallegos (2002), and Leiva (2007) that a

uq × uq matrix of the form

Γ = Iu ⊗ (Σ0 −Σ1) + Ju ⊗Σ1,

is non singular, if both Σ0 −Σ1 and Σ0 + (u− 1)Σ1 are non singular matrices. Then

the inverse of Γ is given by

Γ−1 = Iu ⊗ (Σ0 −Σ1)−1 + Ju ⊗ 1

u

[
(Σ0 + (u− 1)Σ1)−1 − (Σ0 −Σ1)−1] .

That is, Γ−1 also has the form

Γ−1 = Iu ⊗H + Ju ⊗K, (2.3)

where

H = (Σ0 −Σ1)−1 ,

and

K =
1

u

[
(Σ0 + (u− 1)Σ1)−1 − (Σ0 −Σ1)−1] .

This result generalizes the one given by Bartlett (1951) for the case q = 1. The

determinant of Γ is given by

|Γ| = |Σ0 −Σ1|u−1 |Σ0 + (u− 1)Σ1| . (2.4)

3 The Hypothesis and the likelihood ratio test

We consider the likelihood ratio test for the following general hypothesis testing (a)

for three-level multivariate data, where Γ is an uq × uq equicorrelated (partitioned)

variance-covariance matrix as defined in (1.2). We assume that n > puq.

(a) H1 : Ω = V ⊗ Γ, V unstructured vs. K1 : Ω unstructured.

In particular, when q = 1, the data reduces to doubly multivariate data and the

hypothesis (a) reduces to

(b) H2 : Ω = V ⊗∆, V unstructured vs. K2 : Ω unstructured,
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where ∆ is a u× u CS variance-covariance matrix. This hypothesis tests the separa-

bility of the variance-covariance matrix of doubly multivariate data with structured

correlation (CS) in one multivariate level. Thus, the data corresponding to any given

time point are equicorrelated across sites, i.e., spatially equicorrelated. This kind of

situation may occur when repeated measurements are made at different parts of the

body. For example the measurements in both the eyes, or the measurements in both

the kidneys, or the measurements of fat byproducts at different parts of the body.

This hypothesis is discussed in detail in Roy and Khattree (2005 c).

Likewise, when u = 1, the data reduces to doubly multivariate data too and the

hypothesis (a) reduces to

(c) H3 : Ω = V ⊗Σ0, V unstructured vs. K3 : Ω unstructured,

where Σ0 is a q×q positive definite unstructured variance-covariance matrix as defined

earlier. This hypothesis (c) tests the separability of the variance covariance matrix of

doubly multivariate data with unstructured variance-covariance matrices in both the

multivariate levels. This hypothesis is discussed by Roy and Khattree in 2003, and by

Lu and Zimmerman in detail in 2005. Thus, we see that the model (1.1) is a natural

extension to three-level multivariate data from two-level multivariate data. In this

article we discuss the general hypothesis (a) which is implemented with a real data

set.

We obtain a likelihood based test procedure for testing the Kronecker product co-

variance structure as defined in (1.1) over the unstructured variance covariance matrix

Ω. The likelihood ratio Λ =
maxH1

L

maxK1
L

, or a function of it, is used as the test statistic

to test the null hypothesis H1. It is well known that for large sample size and under

normality assumption, −2 ln Λ is approximately distributed as χ2
ν under H1. The de-

grees of freedom ν is equal to the number of parameters estimated under K1 minus

the number estimated under H1.

Let a random sample of size n, Y = [y1,y2, . . . ,yn] be drawn from Npuq(µ,Ω).

The log likelihood function lnL(µ,V ,Γ;Y ) under H1 is given by

lnL(µ,V ,Γ;Y ) = −npuq
2

ln (2π)− n

2
ln |V ⊗ Γ| − 1

2
tr (V ⊗ Γ)−1 S

−n
2

tr (V ⊗ Γ)−1 (y − µ) (y − µ)′ ,

where

S =
n∑
r=1

(yr − y) (yr − y)′ , (3.5)

and y = 1
n

∑n
i=1 yi. For arbitrary values of V and Γ, the maximum of lnL(µ,V ,Γ;Y )
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is attained when µ = y. Therefore, the MLE of µ is

µ̂ = y. (3.6)

Consequently, by replacing µ by µ̂ the log likelihood function reduces to

lnL(µ̂,V ,Γ;Y ) = −npuq
2

ln (2π)− n

2
ln (|V |uq |Γ|p)− 1

2
tr
(
V −1 ⊗ Γ−1

)
S. (3.7)

Using (2.3) and (2.4) an alternative expression for lnL is given by

lnL(µ̂,V ,Γ;Y ) = −npuq
2

ln (2π)− nuq

2
ln |V | − np (u− 1)

2
ln |Σ0 −Σ1|

−np
2

ln |Σ0 + (u− 1) Σ1|

−1

2

n∑
r=1

p∑
m=1

p∑

l=1

u∑
s=1

vlm
(
yr,ls − yls

)′
H
(
yr,ms − yms

)

−1

2

n∑
r=1

p∑
m=1

p∑

l=1

u∑
s=1

u∑
s∗=1

vlm
(
yr,ls − yls

)′
K
(
yr,ms∗ − yls∗

)
,

where vlm represents the (l,m)th element of V −1. This can also be written as

lnL = −npuq
2

ln (2π)− nuq

2
ln |V | − np (u− 1)

2
ln
∣∣H−1

∣∣− np

2
ln
∣∣M−1

∣∣

−1

2
trHB1 − 1

2
trKB2, (3.8)

where

H−1 = Σ0 −Σ1,

M−1 = Σ0 + (u− 1) Σ1,

B1 =
n∑
r=1

p∑
m=1

p∑

l=1

u∑
s=1

vlm
(
yr,ls − yls

) (
yr,ms − yms

)′
,

and B2 =
n∑
r=1

p∑
m=1

p∑

l=1

u∑
s=1

u∑
s∗=1

vlm
(
yr,ls − yls

) (
yr,ms∗ − yms∗

)′
.

Using (3.8) we get

lnL = −npuq
2

ln (2π)− nuq

2
ln |V | − np (u− 1)

2
ln
∣∣H−1

∣∣− np

2
ln
∣∣M−1

∣∣

−1

2
trH

(
B1 − 1

u
B2

)
− 1

2
trM

1

u
B2.

Differentiating the above equation with respect to H−1 and M−1 separately, and then

equating them to zero we get

Ĥ−1 =
1

np (u− 1)

(
B1 − 1

u
B2

)
,
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and

M̂−1 =
1

npu
B2.

Therefore

Ĥ = (Ĥ−1)−1, (3.9)

and

K̂ =
1

u

(
M̂ − Ĥ

)
. (3.10)

After some simplifications for each V we get

Σ̂0 =
1

npu
B1, (3.11)

and

Σ̂1 =
1

npu (u− 1)
(B2 −B1) . (3.12)

From (3.7) we get

lnL(µ̂,V ,Γ;Y ) = −npuq
2

ln (2π)− nuq

2
ln (|V |)− np

2
ln (|Γ|)− 1

2
tr
(
V −1 ⊗ Γ−1

)
S.

Substituting the value of Γ−1 from (2.3) we get

lnL(µ̂,V ,Γ;Y ) = −npuq
2

ln (2π)− nuq

2
ln (|V | − np

2
ln (|Γ|)

− 1

2
tr
(
V −1 ⊗ Iu ⊗H

)
S − 1

2
tr
(
V −1 ⊗ Ju ⊗K

)
S.

After some simplifications we get

lnL(µ̂,V ,Γ;Y ) = −npuq
2

ln (2π) +
nuq

2
ln
∣∣V �1

∣∣− np

2
ln (|Γ|)− 1

2
tr
(
V −1(A+B)

)
,

where the (l,m)th element of the matrix A is given by

alm =
n∑
r=1

u∑
s=1

(yr,ls − yls)′H(yr,ms − yms), for l,m = 1, . . . , p,

and the (l,m)th element of the matrix B is given by

blm =
n∑
r=1

u∑
s=1

u∑
s?=1

(yr,ls − yls)′K(yr,ms? − yms?), for l,m = 1, . . . , p.

Differentiating the above log likelihood function with respect to V −1 and equating it

to zero we get

V̂ =
1

nuq
(A+B) . (3.13)
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Note that V̂ depends on Γ through H and K, and that the maximum value of

lnL(µ̂, V̂ ,Γ;Y ) also depends on Γ. The maximum likelihood estimates Σ̂0, Σ̂1 and

V̂ are obtained by simultaneously and iteratively solving (3.11), (3.12) and (3.13).

The computations can be carried out by the algorithm presented below. The MLE of

Γ is obtained as

Γ̂ = Iu ⊗
(
Σ̂0 − Σ̂1

)
+ Ju ⊗ Σ̂1. (3.14)

Therefore, the maximum of log likelihood function under H1 is given by

max
H1

L(µ,V ,Γ;Y ) = (2π)−
npuq

2 |V̂ |−uqn2 |Γ̂|− pn2 e−
1

2
tr(V̂ ⊗ Γ̂)−1S

.

The maximum of log likelihood function under K1 is straight forward and is given by

max
K1

L(µ,Ω;Y ) = (2π)−
npuq

2 |S|−n2 nnpuq
2 e−

npuq
2 ,

where S has been defined before in (3.5). Therefore, the likelihood ratio is given by

Λ =
maxH1 L

maxK1 L
=
|V̂ |−uqn2 |Γ̂|− pn2 e−

1

2
tr(V̂ ⊗ Γ̂)−1S

|S|−n2 nnpuq
2 e−

npuq
2

.

The associated degrees of freedom ν for the null distribution of −2 ln Λ is given by,

ν =
puq(puq + 1)

2
− p(p+ 1)

2
− q(q + 1) + 1.

This is because, without loss of generality V ⊗ Γ can be constraint to v11 = 1, where

v11 is the first diagonal element of V .

4 An example

In this section we demonstrate the proposed hypothesis testing (a) procedure with

a real data set. The data is given by Fernando Sarav́ı, MD, PhD, at the Nuclear

Medicine School, Mendoza, Argentina. Twelve patients (n = 12) were chosen for a

bone densitometry study. Bone mineral density (BMD) were obtained by a technique

known as dual X-ray absorptiometry (DXA) using a GE Lunar Prodigy machine. The

measurements were obtained from the hip region. In each femoral (right and left

femoral, u = 2) two BMD measurements (q = 2) were taken, one at the femoral neck

and the other one at the trochanter region. These four measurements were observed

over a period of two years (p = 2). We find that the covariance structure of the two

measurements at femoral neck and trochanter region at two sites over the period of
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two years is V ⊗ Γ with p−value = 0.1352. The test statistic value −2 ln Λ is 36.2954

with 28 degrees of freedom. The maximum likelihood estimate of V is

V̂ =

[
1 0.9196

0.9196 1.0755

]
.

We see that the variance of the BMD measurements both at the femoral neck and the

trochanter region at the 2nd year is slightly higher than the variance at the 1st year,

and this is true for both the sites. The maximum likelihood estimate of Γ is

Γ̂ =




0.0057 0.0045 0.0029 0.0036
0.0045 0.0072 0.0036 0.0060
0.0029 0.0036 0.0057 0.0045
0.0036 0.0060 0.0045 0.0072


 .

This shows that the variance of the BMD measurements at the trochanter region is

slightly higher than the variance of the same at the femoral neck. Also, the covariance

of the BMD measurements in each femoral at the trochanter region is higher than the

covariance of the same in each femoral at the femoral neck.

5 Concluding Remarks

In this article, we study the hypothesis testing of a Kronecker product structured co-

variance matrix for three-level multivariate data. This covariance structure is very

important for statistical analysis, in particular for high dimensional data, where com-

putation of the unstructured variance covariance matrix is practically impossible. The

proposed methodology can readily be generalized to more than three levels.
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