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ABSTRACT

By running the life tests at higher stress levels than normal operating conditions, accelerated life

testing quickly yields information on the lifetime distribution of a test unit. The lifetime at the design

stress is then estimated through extrapolation using a regression model. In constant-stress testing, a

unit is tested at a fixed stress level until failure or the termination time point of the test, while step-

stress testing allows the experimenter to gradually increase the stress levels at some pre-fixed time

points during the test. In this work, the optimal k-level constant-stress and step-stress accelerated life

tests are compared for the exponential failure data under complete sampling and Type-I censoring.

The objective is to quantify the advantage of using the step-stress testing relative to the constant-

stress one. A log-linear relationship between the mean lifetime parameter and stress level is assumed

and the cumulative exposure model holds for the effect of changing stress in step-stress testing. The

optimal design point is then determined under C-optimality, D-optimality, and A-optimality criteria.

The efficiency of step-stress testing compared to constant-stress testing is discussed in terms of the
∗Corresponding author: david.han@utsa.edu – The author would like to thank the support from the College of Business

research grant program.
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ratio of optimal objective functions based on the information matrix.

Keywords: Accelerated life testing; Change-point; Constant-stress testing; Cumulative exposure

model; Fisher information; Maximum likelihood estimation; Optimal allocation; Optimal regression

design; Step-stress testing; Type-I censoring
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1 Introduction

With increasing reliability and substantially long life-spans of products, it is often difficult for

standard life testing methods under normal operating conditions to obtain sufficient information about

the failure time distribution of the products. This difficulty is overcome by accelerated life test

(ALT) where the test units are subjected to higher stress levels than normal for rapid failures. By

applying more severe stresses, ALT collects information on the parameters of lifetime distributions

more quickly. Some key references in the area of ALT are Nelson (1990), Meeker and Escobar (1998),

and Bagdonavicius and Nikulin (2002). There are two special classes of ALT: constant-stress testing

and step-stress testing. In constant-stress testing, a unit is tested at a fixed stress level until failure

occurs or the life test is terminated, whichever comes first. On the other hand, step-stress testing

allows the experimenter to gradually increase the stress levels at some pre-fixed time points during

the test.

The optimal ALT design has attracted great attention in the reliability literature. Miller and Nelson

(1983) initiated research in this area by considering a simple step-stress model with exponential failure

time distribution under complete sampling. The fundamental model used was the one proposed by

Sedyakin (1966), which is known as the cumulative exposure model. This model was further discussed
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and generalized by Bagdonavicius (1978) and Nelson (1980). Bai, Kim and Lee (1989) extended the

results of Miller and Nelson (1983) to the time-censored situation while Khamis and Higgins (1996)

studied the case of three stress levels. Khamis and Higgins (1998) also considered the problem under

Weibull lifetime distribution for units subjected to stress. Khamis (1997) then compared constant-

stress ALT and step-stress ALT for Weibull failure data. Yeo and Tang (1999) investigated the

optimality problem in the situation when a target acceleration factor was pre-specified. Recently,

exact conditional inference for a step-stress model with exponential competing risks was studied by

Balakrishnan and Han (2008), Han and Balakrishnan (2010). Ng, Balakrishnan and Chan (2007)

discussed the problem of determining the optimal sample size allocation for a general k-level model

with extreme value regression while Gouno, Sen and Balakrishnan (2004), Balakrishnan and Han

(2009) discussed the problem of determining the optimal stress duration under progressive Type-I

censoring; see also Han et al. (2006) for some related comments.

The main focus of this article is to investigate the advantage of using step-stress ALT relative

to constant-stress ALT. Assuming a log-linear relationship between the mean lifetime parameter and

stress level, with the cumulative exposure model for the effect of changing stress in step-stress ALT,

the optimal design point is determined under various optimality criteria. In particular, the cases

of complete sampling and Type-I censoring are considered under exponential lifetime distribution

for units subjected to stress. Using the ratio of optimal objective functions as a measure of relative

efficiency, comparison of k-level step-stress testing to k-level constant-stress testing is discussed through

a numerical study.

The rest of the paper is organized as follows. Section 2 describes the model under study, derives

the MLEs of the model parameters and the associated Fisher information for k-level constant-stress

ALT and step-stress ALT. Section 3 then defines the three optimality criteria based on the Fisher

information (viz., variance, determinant, and trace) and talks about the existence of optimal design

points in each case under complete sampling and Type-I censoring. For the purpose of further com-
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parison between constant-stress and step-stress tests, the expected total time spent on test is also

obtained in Section 4. Finally, Section 5 provides the results of a numerical study and discusses the

relative efficiency of these two classes of ALT under consideration.

2 Model description, MLEs and Fisher information

Let us first define x1 < x2 < . . . < xk to be the ordered stress levels to be used in the test.

Then, the following assumptions form the basis of constructing both the constant-stress model and

the step-stress model.

Assumptions 2.1.

(i) For any stress level xi, the lifetime of a test unit follows an exponential distribution. That is,

the probability density function (PDF) and the corresponding cumulative distribution function

(CDF) of a test unit at stress level xi are

fi(t) =
1
θi

exp

(
− t

θi

)
, 0 < t <∞, (2.1)

Fi(t) = 1− Si(t) = 1− exp

(
− t

θi

)
, 0 < t <∞, (2.2)

respectively;

(ii) At stress level xi, the mean time to failure (MTTF) of a test unit, θi, is a log-linear function of

stress given by

log θi = α+ βxi, (2.3)

where the regression parameters α and β are unknown and need to be estimated.

No notational distinction is made in this article between the random variables and their corre-

sponding realizations. Also, we adopt the usual conventions that
∑m−1

j=m aj ≡ 0 and
∏m−1
j=m aj ≡ 1.
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2.1 k-level constant-stress test under Type-I censoring

A constant-stress test under Type-I censoring proceeds as follows. For i = 1, 2, . . . , k, Ni ≡ nπi

units are allocated on test at stress level xi such that
∑k

i=1Ni = n or equivalently,
∑k

i=1 πi = 1.

πi = Ni/n is the allocation proportion of units (out of total n units under the test) assigned to stress

level xi. The allocated units are then tested until time τi at which point all the surviving items are

withdrawn, thereby terminating the life test. Let ni denote the number of units failed at stress level

xi in time interval [0, τi) and yi,l denote the l-th ordered failure time of ni units at xi, l = 1, 2, . . . , ni

while Ni − ni denotes the number of units censored at time τi. Obviously, when there is no right

censoring (viz., τi =∞ and ni = Ni), this situation corresponds to the k-level constant-stress testing

under complete sampling as a special case.

Now, under the assumption (i), the joint probability density function (JPDF) of n = (n1, n2, . . . , nk)

and y = (y1,y2, . . . ,yk) with yi = (yi,1, yi,2, . . . , yi,ni) is obtained as

fJ(y,n) =

[
k∏
i=1

Ni!
(Ni − ni)!

][
k∏
i=1

θ−nii

]
exp

(
−

k∑
i=1

Ui
θi

)
, (2.4)

where

Ui =
ni∑
l=1

yi,l + (Ni − ni)τi, i = 1, 2, . . . , k. (2.5)

Note that Ui in (2.5) is the Total Time on Test statistic at stress level xi. Now, using (2.4) and the

assumption (ii), the log-likelihood function of (α, β) can be written as

l(α, β) = −α
k∑
i=1

ni − β
k∑
i=1

nixi −
k∑
i=1

Ui exp
[
− (α+ βxi)

]
. (2.6)

Upon differentiating (2.6) with respect to α and β, the MLEs α̂ and β̂ are obtained as simultaneous

solutions to the following two equations:[
k∑
i=1

ni

][
k∑
i=1

Uixi exp (−β̂xi)

]
=

k∑
i=1

nixi

k∑
i=1

Ui exp (−β̂xi), (2.7)

α̂ = log

(∑k
i=1 Ui exp (−β̂xi)∑k

i=1 ni

)
. (2.8)
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As shown above, α̂ and β̂ are non-linear functions of random quantities and thus, statistical in-

ference with these MLEs can be based on the asymptotic distributional result that the vector (α̂, β̂)

is approximately distributed as a bivariate normal with mean vector (α, β) and variance-covariance

matrix I−1
n (α, β), where In(α, β) is the Fisher information matrix. By using the following properties

of the counts and order statistics, In(α, β) is obtained.

Properties 2.1.

(1) For i = 1, 2, . . . , k, the random variable ni has a binomial distribution with parameters (Ni, Fi(τi)).

(2) For i = 1, 2, . . . , k, given ni, the random variables yi,l, l = 1, 2, . . . , ni, are distributed jointly as

order statistics from a random sample of size ni from a right-truncated exponential distribution

with PDF fi,τi(z) =
fi(z)
Fi(τi)

for 0 ≤ z ≤ τi.

Theorem 2.1. Under this setup of the constant-stress test with Type-I censoring, the Fisher infor-

mation matrix is

In(α, β) = n


k∑
i=1

Ai

k∑
i=1

Aixi

k∑
i=1

Aixi

k∑
i=1

Aix
2
i

 , (2.9)

where

Ai = πiFi(τi), i = 1, 2, . . . , k. (2.10)

2.2 k-level step-stress test under Type-I censoring

For i = 1, 2, . . . , k, let us first define ni to be the number of units failed at stress level xi in

time interval [τi−1, τi) and yi,l to be the l-th ordered failure time of ni units at xi, l = 1, 2, . . . , ni.

Furthermore, let Ni denote the number of units operating and remaining on test at the start of stress

level xi
(
viz., Ni = n−

∑i−1
j=1 nj

)
. Then, a step-stress test under Type-I censoring proceeds as follows.
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A total of N1 ≡ n test units is initially placed at stress level x1 and tested until time τ1 at which

point the stress is changed to x2. The test is continued on remaining N2 = n − n1 units until time

τ2 at which the stress is changed to x3, and so on. Finally, at time τk, all the surviving items are

withdrawn, thereby terminating the life test. Note that the number of surviving items at time τk is

n−
∑k

i=1 ni = Nk −nk. Obviously, when there is no right censoring (viz., τk =∞ and nk = Nk), this

situation corresponds to the k-level step-stress testing under complete sampling as a special case.

Now, under the cumulative exposure model along with the assumption (i), the PDF and CDF of

a test unit are

f(t) =

[
i−1∏
j=1

Sj(∆j)

]
fi(t− τi−1) if


τi−1 ≤ t ≤ τi for i = 1, 2, . . . , k − 1

τk−1 ≤ t <∞ for i = k

, (2.11)

F (t) = 1−

[
i−1∏
j=1

Sj(∆j)

]
Si(t− τi−1)

if


τi−1 ≤ t ≤ τi for i = 1, 2, . . . , k − 1

τk−1 ≤ t <∞ for i = k

, (2.12)

where ∆j = τj − τj−1 is the step duration at stress level xj , and fi(t) and Fi(t) are as given in

(2.1) and (2.2), respectively. Then, using (2.11) and (2.12), the JPDF of n = (n1, n2, . . . , nk) and

y = (y1,y2, . . . ,yk) with yi = (yi,1, yi,2, . . . , yi,ni) is obtained as in (2.4) where

Ui =
ni∑
l=1

(yi,l − τi−1) + (Ni − ni)∆i, i = 1, 2, . . . , k. (2.13)

Again, note that Ui in (2.13) is the Total Time on Test statistic at stress level xi. Using (2.4) and

the assumption (ii), the log-likelihood function of (α, β) can be written as in (2.6) and as a result, we

obtain the MLEs α̂ and β̂ as simultaneous solutions to (2.7) and (2.8) with Ui given in (2.13).

Just like in the case of constant-stress testing, α̂ and β̂ are non-linear functions of random quan-

tities and hence, inference using these MLEs are based on the asymptotic distributional result
(
viz.,(

α̂, β̂
)′ .∼ BV N((α, β)′, I−1

n (α, β)
))

. Again, by using the following properties of the counts and order

statistics (which include Properties 2.1 as a special case), we can derive the expression of In(α, β) as
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well as the expectation of Ni.

Properties 2.2.

(1) The random variable n1 has a binomial distribution with parameters (n, F1(∆1)). For i =

2, 3, . . . , k, given n1, n2, . . . , ni−1, the random variable ni has a binomial distribution with pa-

rameters (Ni, Fi(∆i)).

(2) Given n1, n2, . . . , ni, the random variables (yi,l − τi−1), l = 1, 2, . . . , ni, are distributed jointly as

order statistics from a random sample of size ni from a right-truncated exponential distribution

with PDF fi,∆i(z) =
fi(z)
Fi(∆i)

for 0 ≤ z ≤ ∆i and i = 1, 2, . . . , k.

Lemma 2.1. For i = 1, 2, . . . , k,

E[Ni] = n
i−1∏
j=1

Sj(∆j). (2.14)

Theorem 2.2. Under this setup of the step-stress test with Type-I censoring, the Fisher information

matrix is as in (2.9) where

Ai =

[
i−1∏
j=1

Sj(∆j)

]
Fi(∆i), i = 1, 2, . . . , k. (2.15)

3 Optimality criteria and existence of optimal design points

In this section, we define different optimality criteria for determining the optimal design points,

which then can be used to compare between the multi-level constant-stress test and step-stress test.

For the k-level constant-stress testing, the focus is to determine the optimal allocation proportions

π∗ = (π∗1, π
∗
2, . . . , π

∗
k) with π∗k = 1 −

∑k−1
i=1 π

∗
i while it is to determine the optimal stress durations

∆∗ = (∆∗1,∆
∗
2, . . . ,∆

∗
k) for the k-level step-stress testing. These objective functions are purely based

on the Fisher information matrix In(α, β) derived in the preceding section. Unlike Ai defined in
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Gouno, Sen and Balakrishnan (2004), Ai’s in (2.10) and (2.15) are always positive, and this, in turn,

eliminates any disconcerting anomalies and ensures a positive determinant of In(α, β) as well as a

positive variance function. Therefore, there is no particular restriction on the search region for the

optimal design points in these cases.

3.1 C-optimality

In an ALT experiment, researchers often wish to estimate the parameters of interest with maximum

precision and minimum variability possible. In both the constant-stress and step-stress settings under

consideration here, such a parameter of interest is the mean lifetime of a unit at the use-condition

(viz., θ0). For this purpose, we consider an objective function given by

φ(·) = n AVar
(

log θ̂0

)
= n AVar

(
α̂+ β̂x0

)
= n (1 x0)I−1

n (α, β)
(

1
x0

)

=

2
k∑
i=1

Ai(xi − x0)2

k∑
i=1

k∑
j=1

AiAj(xi − xj)2

, (3.1)

where AVar stands for asymptotic variance and x0 is the normal use-stress (i.e., x0 < x1). The C-

optimal design points are the ones that minimize φ(·) in (3.1). In the case of k = 2 (i.e., the case of a

simple stress testing), the objective function in (3.1) reduces to

φ(·) =
A1(x1 − x0)2 +A2(x2 − x0)2

A1A2(x2 − x1)2

=
(1 + ξ0)2

A1
+
ξ2

0

A2
, (3.2)

where ξ0 =
x1 − x0

x2 − x1
.

Theorem 3.1. In the case of a simple constant-stress test under Type-I censoring, the C-optimal

allocation proportions are

π∗1 =
1

1 + ρ
and π∗2 =

ρ

1 + ρ
,
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where ρ2 =
ξ2

0

(1 + ξ0)2

F1(τ1)
F2(τ2)

=
(
x1 − x0

x2 − x0

)2F1(τ1)
F2(τ2)

.

Corollary 3.1. In the case of a simple constant-stress test under Type-I censoring, the C-optimality al-

locates an equal number of test units at each stress level (viz., π∗1 = π∗2 = 1/2) when (x1−x0)2F1(τ1) =

(x2 − x0)2F2(τ2).

Theorem 3.2. In the case of a k-level constant-stress test under complete sampling (i.e., no right

censoring by letting τi →∞ for i = 1, 2, . . . , k), the C-optimal allocation proportions are

π∗1 =
1

1 + ρ
, π∗i = 0 for i = 2, 3, . . . , k − 1, and π∗k =

ρ

1 + ρ
,

where ρ =
x1 − x0

xk − x0
.

Corollary 3.2. In the case of a simple constant-stress test under complete sampling, the C-optimal

allocation proportions are

π∗1 =
1

1 + ρ
and π∗2 =

ρ

1 + ρ
,

where ρ =
ξ0

1 + ξ0
=
x1 − x0

x2 − x0
.

Theorem 3.3. In the case of a simple step-stress test under Type-I censoring with an equal step

duration (viz., ∆1 = ∆2 = ∆), there exists a C-optimal step duration ∆∗ which is the unique solution

to the equation φ′(∆) = 0.

Theorem 3.4. In the case of a simple step-stress test under complete sampling (i.e., no right censoring

by letting τ2 →∞), the C-optimal stress change point is

∆∗1 = θ1 log
(

1 +
1
ρ

)
,

where ρ =
ξ0

1 + ξ0
=
x1 − x0

x2 − x0
.
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3.2 D-optimality

Another optimality criterion often used in planning ALT is based on the determinant of the Fisher

information matrix, which equals to the reciprocal of the determinant of the asymptotic variance-

covariance matrix. Note that the overall volume of the Wald-type joint confidence region of (α, β) is

proportional to |I−1
n (α, β)|1/2 at a fixed level of confidence. In other words, it is inversely proportional

to |In(α, β)|1/2, the square root of the determinant of In(α, β). Consequently, a larger value of |In(α, β)|

would correspond to a smaller asymptotic joint confidence ellipsoid of (α, β) and thus a higher joint

precision of the estimators of α and β. Motivated by this, our second objective function is simply

given by

δ(·) = n−2|In(α, β)|

=
1
2

k∑
i=1

k∑
j=1

AiAj(xi − xj)2. (3.3)

The D-optimal design points are obtained by maximizing (3.3) for the maximal joint precision of(
α̂, β̂

)
. For k = 2, the objective function (3.3) reduces to

δ(·) = A1A2(x2 − x1)2. (3.4)

Theorem 3.5. In the case of a simple constant-stress test under Type-I censoring, the D-optimality

allocates an equal number of test units at each stress level (viz., π∗1 = π∗2 = 1/2).

Theorem 3.6. In the case of a k-level constant-stress test under complete sampling (i.e., no right

censoring by letting τi →∞ for i = 1, 2, . . . , k), the D-optimal allocation proportions are

π∗1 =
1
2
, π∗i = 0 for i = 2, 3, . . . , k − 1, and π∗k =

1
2
.

Corollary 3.3. In the case of a simple constant-stress test under complete sampling, the D-optimality

allocates an equal number of test units at each stress level (viz., π∗1 = π∗2 = 1/2).
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Theorem 3.7. In the case of a simple step-stress test under Type-I censoring with an equal step

duration (viz., ∆1 = ∆2 = ∆), there exists a D-optimal step duration ∆∗ which is the unique solution

to the equation θ1F1(∆)S2(∆) = θ2[1− 2S1(∆)]F2(∆).

Theorem 3.8. In the case of a simple step-stress test under complete sampling (i.e., no right censoring

by letting τ2 →∞), the D-optimal stress change point is the median of the distribution at stress level

x1 (viz., ∆∗1 = θ1 log 2).

3.3 A-optimality

Another optimality criterion considered in our study is based on the trace of the first-order ap-

proximation of the variance-covariance matrix of the MLEs. It is identical to the sum of the diagonal

elements of I−1
n (α, β). The A-optimality criterion provides an overall measure of the average variance

of the parameter estimates and gives the sum of the eigenvalues of the inverse of the Fisher information

matrix. The A-optimal design points minimize the objective function defined by

a(·) = n tr
(
I−1
n (α, β)

)

=

2
k∑
i=1

Ai(1 + x2
i )

k∑
i=1

k∑
j=1

AiAj(xi − xj)2

. (3.5)

In the case of the simple stress testing (k = 2), the objective function in (3.5) becomes

a(·) =
A1(1 + x2

1) +A2(1 + x2
2)

A1A2(x2 − x1)2

=
ξ2

2

A1
+
ξ2

1

A2
, (3.6)

where ξi =

√
1 + x2

i

x2 − x1
for i = 1, 2.

Theorem 3.9. In the case of a simple constant-stress test under Type-I censoring, the A-optimal

allocation proportions are

π∗1 =
1

1 + ρ
and π∗2 =

ρ

1 + ρ
,
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where ρ2 =
ξ2

1

ξ2
2

F1(τ1)
F2(τ2)

=
(

1 + x2
1

1 + x2
2

)
F1(τ1)
F2(τ2)

.

Corollary 3.4. In the case of a simple constant-stress test under Type-I censoring, the A-optimality

allocates an equal number of test units at each stress level (viz., π∗1 = π∗2 = 1/2) when (1+x2
1)F1(τ1) =

(1 + x2
2)F2(τ2).

Theorem 3.10. In the case of a k-level constant-stress test under complete sampling (i.e., no right

censoring by letting τi →∞ for i = 1, 2, . . . , k), the A-optimal allocation proportions are

π∗1 =
1

1 + ρ
, π∗i = 0 for i = 2, 3, . . . , k − 1, and π∗k =

ρ

1 + ρ
,

where ρ2 =
1 + x2

1

1 + x2
k

.

Corollary 3.5. In the case of a simple constant-stress test under complete sampling, the A-optimal

allocation proportions are

π∗1 =
1

1 + ρ
and π∗2 =

ρ

1 + ρ
,

where ρ2 =
ξ2

1

ξ2
2

=
1 + x2

1

1 + x2
2

.

Theorem 3.11. In the case of a simple step-stress test under Type-I censoring with an equal step

duration (viz., ∆1 = ∆2 = ∆), there exists an A-optimal step duration ∆∗ which is the unique solution

to the equation a′(∆) = 0.

Theorem 3.12. In the case of a simple step-stress test under complete sampling (i.e., no right cen-

soring by letting τ2 →∞), the A-optimal stress change point is

∆∗1 = θ1 log
(

1 +
1
ρ

)
,

where ρ2 =
ξ2

1

ξ2
2

=
1 + x2

1

1 + x2
2

.

Remark 3.1. It is of interest to note that for a simple constant-stress test, the D-optimal design

allocates an equal number of test units at each stress level regardless of the stress levels used, the

presence of Type-I censoring nor the time points of censoring at any stress level.
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Remark 3.2. From the results above, we see that in planning a k-level constant-stress test under

complete sampling, there is no need to assign the test units at any stress level other than the lowest

(x1) and the highest (xk) levels. If the D-optimality is concerned, one should allocate 50% of the units

to stress level x1 and the remaining 50% to stress level xk. If the C-optimality is considered, then one

should allocate 100π∗1% of the units to stress level x1 and the remaining 100(1 − π∗1)% to stress level

xk where π∗1 is defined accordingly. Although using only two extreme stress levels does not allow us

to check the linearity assumption in the model, the methodology developed here can be used to design

a different optimal allocation plan subject to a particular allocation constraint; see for example Ng,

Balakrishnan and Chan (2007).

Remark 3.3. For a multi-level constant-stress test under complete sampling, it is observed that under

the C-optimality and A-optimality criteria, 0 < ρ < 1 since x0 < x1 < x2, and therefore π∗1 =
1

1 + ρ
>

1
2

. This means that the C-optimal and A-optimal designs allocate more test units at the lower stress

level than does the D-optimal design.

Remark 3.4. For a simple step-stress test under complete sampling, it is observed that under the

C-optimality and A-optimality criteria, 0 < ρ < 1 since x0 < x1 < x2, and therefore F1(∆∗1) =

1
1 + ρ

>
1
2

. This means that the C-optimal and A-optimal stress change time points are larger than

the D-optimal point, which is the median of the lifetime distribution at stress level x1.

Remark 3.5. For a simple step-stress test under complete sampling, it is noted that for each optimality

considered here, as θ1 increases, ∆∗1 increases in a manner such that the ratio of ∆∗1 to θ1 stays constant

across the values of θ1. This is because the optimal stress change point is a fixed percentile from the

distribution at stress level x1, irrespective of the MTTF at that level. From the numerical study of

Balakrishnan and Han (2009), the same feature also prevailed in the case of a k-level step-stress test

under Type-I censoring as well as under progressive Type-I censoring.

All the optimality criteria considered here, as well as some other information-based criteria, have
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been used extensively in the design selection process for linearly designed experiments. From a practi-

tioner’s point of view, the choice of the optimality criterion will be certainly guided by the objective of

the experiment. In cases where the planner is more interested in the precise estimation of the MTTF

θ0 at normal use-condition, the C-optimality is surely the criterion of choice. On the other hand, if

one is more concerned about estimating the mean function given in assumption (ii) or estimating the

regression parameters α and β with high precision, a more reasonable criterion of choice should be

the D-optimality or A-optimality.

4 Expected total time on test

In order to compare the total time spent on test between the constant-stress test and the step-

stress test, the expected total time spent on test is computed. In general, for a life test under Type-I

censoring with the sample size n and the censoring time point τ , the expected total time spent on test

is

T ε = E[Yn:n|Yn:n < τ ]Pr(Yn:n < τ) + τ Pr(Yn:n ≥ τ), (4.1)

where Yn:n is the largest order statistic from a lifetime distribution characterized by, say, the PDF f(t)

and the CDF F (t). Note that given Yn:n < τ , Yn:n is distributed as the largest order statistic from a

random sample of size n from a right-truncated distribution with PDF fτ (t) =
f(t)
F (τ)

for 0 ≤ t ≤ τ .

Using this property, the conditional expectation above is expressed as

E[Yn:n|Yn:n < τ ] = n

∫ τ

0
y

[
F (y)
F (τ)

]n−1[ f(y)
F (τ)

]
dy

=
n

[F (τ)]n

n−1∑
l=0

(
n− 1
l

)
(−1)l

∫ τ

0
y[S(y)]lf(y) dy. (4.2)

Since Pr(Yn:n < τ) = [F (τ)]n, we now have

T ε =
n∑
l=1

(
n

l

)
(−1)l+1l

∫ τ

0
y[S(y)]l−1f(y) dy + τ

(
1− [F (τ)]n

)
. (4.3)
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4.1 k-level constant-stress test under Type-I censoring

From (4.3), the expected time spent at stress level xi is

T εi = θi

Ni∑
l=1

(
Ni

l

)
(−1)l+1

l

(
1− [Si(τi)]l

)
= θi

Ni∑
l=1

(
Ni

l

)
(−1)l+1

l
Fi(lτi) (4.4)

for i = 1, 2, . . . , k. When there is only one facility available for constant-stress testing, the life tests

at different stress levels have to proceed in a sequential way. Then, the expected total time spent on

test is simply the sum of the expected time spent at each stress level.

Theorem 4.1. In the case of a k-level constant-stress test under Type-I censoring, the expected total

time spent on test is

T ε =
k∑
i=1

T εi =
k∑
i=1

θi

Ni∑
l=1

(
Ni

l

)
(−1)l+1

l
Fi(lτi).

Corollary 4.1. In the case of a simple constant-stress test under Type-I censoring, the expected total

time spent on test is

T ε = θ1

N1∑
l=1

(
N1

l

)
(−1)l+1

l
F1(lτ1) + θ2

N2∑
l=1

(
N2

l

)
(−1)l+1

l
F2(lτ2).

Theorem 4.2. In the case of a k-level constant-stress test under complete sampling (i.e., no right

censoring by letting τi →∞ for i = 1, 2, . . . , k), the expected total time spent on test is

T ε =
k∑
i=1

θi

Ni∑
l=1

(
Ni

l

)
(−1)l+1

l
.

Corollary 4.2. In the case of a simple constant-stress test under complete sampling, the expected

total time spent on test is

T ε = θ1

N1∑
l=1

(
N1

l

)
(−1)l+1

l
+ θ2

N2∑
l=1

(
N2

l

)
(−1)l+1

l
.

Remark 4.1. When there are k multiple facilities available for constant-stress testing, the life tests

at different stress levels may proceed in a partially or completely parallel way. If the test proceeds in
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a completely parallel way with the same starting time point, the total time spent on the entire test is

determined by the longest time taken among tests at different stress levels. For a k-level constant-stress

test under complete sampling, the expected total time spent on test is

T ε =
∫ ∞

0
t fpar(t) dt,

where

Fpar(t) =
k∏
i=1

[Fi(t)]Ni , 0 < t <∞,

fpar(t) =
d

dt
Fpar(t) =

k∏
i=1

[Fi(t)]Ni
k∑
i=1

Ni
fi(t)
Fi(t)

, 0 < t <∞.

For a simple constant-stress test under complete sampling, this is

T ε =
2∑
i=1

θi

Ni∑
l=1

Ni′∑
l′=0

(
Ni

l

)(
Ni′

l′

)
(−1)l+l

′+1

l

(
1 +

l′θi
lθi′

)−2

,

where i′ = 1, 2 and i′ 6= i.

4.2 k-level step-stress test under Type-I censoring

Using (4.3) again, the expected total time spent on a step-stress test is derived.

Theorem 4.3. In the case of a k-level step-stress test under Type-I censoring (or under complete

sampling), the expected total time spent on test is

T ε =
n∑
l=1

(
n

l

)
(−1)l+1l

k∑
i=1

∫ τi

τi−1

y

θi

[
i−1∏
j=1

Sj(∆j)

]l
[Si(y − τi−1)]l dy + τk

(
1− [F (τk)]n

)
=

k∑
i=1

θi

n∑
l=1

(
n

l

)
(−1)l+1

l
[S(τi−1)]l

(
1− [Si(∆i)]l

)
=

k∑
i=1

θi

n∑
l=1

(
n

l

)
(−1)l+1

l

[
i−1∏
j=1

Sj(∆j)

]l
Fi(l∆i).

Corollary 4.3. In the case of a simple step-stress test under Type-I censoring, the expected total time

spent on test is

T ε =
n∑
l=1

(
n

l

)
(−1)l+1

l

(
θ1F1(l∆1) + θ2S1(l∆1)F2(l∆2)

)
.
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Corollary 4.4. In the case of a simple step-stress test under complete sampling, the expected total

time spent on test is

T ε =
n∑
l=1

(
n

l

)
(−1)l+1

l

(
θ1F1(l∆1) + θ2S1(l∆1)

)
.

5 Numerical results

A numerical study was conducted in order to investigate the relative efficiency of step-stress testing

compared to constant-stress testing and to evaluate it as a function of varying parameters (i.e., the

sample size, MTTF, and the number of stress levels). For the purpose of illustration, we considered

equi-spaced stress levels as xi = x0 + id with the use-stress level x0 = 10 and the stress increment

d = 5. Under this setup, optimizing with respect to any optimality criterion under considerations is

independent of the values of x0 and d. We also chose the ordered MTTF as

θi+1 = ρθi, i = 1, 2, . . . , k − 1, 0 < ρ < 1,

with selected choices of θ1 and ρ. Hence, a decreasing geometric sequence of MTTF was simulated

with an increasing arithmetic sequence of stress levels.

For a k-level step-stress test under Type-I censoring with an equal step duration ∆, Table 1 presents

the values of the optimal step duration ∆∗C , ∆∗D and ∆∗A, which are independent of the sample size

n. Rather than the specific values of the optimal stress durations, the table is intended to provide a

qualitative insight into the way the optimal choice changes as a function of the relevant parameters.

Table 2 presents the corresponding optima of each objective function described in Section 3. These

optima are independent of the values of θ1 as well as the sample size n. From Table 1, it is observed

that ∆∗C > ∆∗A > ∆∗D except for the simple step-stress case with ρ = 0.5. This order, however, is a

consequence of the specific setting chosen and does not necessarily hold for general stress levels. Also,

for a given k and ρ, the ratios ∆∗C/∆
∗
D and ∆∗D/∆

∗
A remain constant over varying ranges of θ1. The

dependence of the optimal values on ρ is less noticeable for smaller values of k. The behavior of the
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optimal ∆ as a function of the MTTF values is also interesting. For fixed k and ρ, as θ1 increases,

∆∗C , ∆∗D and ∆∗A increase in a manner such that the ratios ∆∗C/θ1, ∆∗D/θ1 and ∆∗A/θ1 are constant

across the values of θ1. This translates to ∆∗C , ∆∗D and ∆∗A being fixed percentiles from the stage-1

distribution, irrespective of the value of θ1. The same observation was made in Balakrishnan and Han

(2009) under progressive Type-I censoring.

Using the optimal step durations obtained in Table 1 as the censoring time points at each stress

level, the allocation proportions π = (π1, π2, . . . , πk) were then optimized for a k-level constant-stress

test under Type-I censoring. Table 3 presents the values of these optimal allocation proportions π∗C ,

π∗D and π∗A, and Table 4 presents the corresponding optima of each objective function described in

Section 3. These optimal allocation proportions and the corresponding optima are independent of

the values of θ1 as well as the sample size n. From Table 3, it is observed that π∗1,C > π∗1,A > π∗1,D

regardless of the values of k and ρ. It is also interesting to note that except for the first and last stress

levels, the C-optimality and the D-optimality do not allocate any test units in the intermediate stress

levels. The same observation was analytically proven under complete sampling as stated in Theorems

3.2 and 3.10. The D-optimality on the other hand allocates an equal number of test units at two

stress levels with no units allocated in any other stress levels.

In order to compare the total time taken between the constant-stress test and the step-stress test

under the optimal conditions, the expected total time spent on each test was computed based on the

results derived in Section 4 with the optimal step durations in Table 1 and the optimal allocation

proportions in Table 3. The results are given in Tables 5 and 6, respectively. It is observed that

in either testing schemes alone, the expected total test time does not change much as k increases.

However, the step-stress testing takes longer than the constant-stress testing as k increases although

they are quite similar when k = 2. In both cases, it takes longer to complete the test as the sample

size n increases. From Tables 5 and 6, it is also observed that T εC > T εA > T εD regardless of the values

of other parameters. As observed similarly in Table 1, for fixed k and ρ, as θ1 increases, T εC , T εD and
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Table 1: Optimal step durations for a step-stress test under Type-I censoring

k = 2 k = 3 k = 4

∆∗C ∆∗D ∆∗A ∆∗C ∆∗D ∆∗A ∆∗C ∆∗D ∆∗A

ρ = 0.1 109.87 69.78 84.73 109.82 8.18 84.16 109.82 8.08 84.16

θ1 = 100 ρ = 0.3 111.91 82.85 88.94 56.47 27.09 34.29 54.44 9.26 15.35

ρ = 0.5 114.83 94.06 93.18 72.10 45.03 51.05 50.35 23.13 29.89

ρ = 0.1 329.60 209.35 254.18 329.00 24.53 252.47 329.00 24.24 252.47

θ1 = 300 ρ = 0.3 335.73 248.56 266.82 169.42 81.27 102.87 163.33 27.79 46.04

ρ = 0.5 344.48 282.18 279.55 216.31 135.08 153.15 151.06 69.39 89.67

ρ = 0.1 549.33 348.92 423.64 549.00 40.88 421.00 550.00 40.40 421.00

θ1 = 500 ρ = 0.3 559.56 414.27 444.70 282.37 135.45 171.45 272.21 46.32 76.74

ρ = 0.5 574.14 470.31 465.91 360.51 225.13 255.25 251.77 115.65 149.44

Table 2: Corresponding optima of the objective functions

for a step-stress test under Type-I censoring

k = 2 k = 3 k = 4

φ∗ss δ∗ss a∗ss φ∗ss δ∗ss a∗ss φ∗ss δ∗ss a∗ss

ρ = 0.1 9.00 6.24 49.17 9.00 9.44 49.13 9.00 9.45 49.13

ρ = 0.3 9.08 5.76 50.42 7.87 13.00 31.57 7.85 19.65 28.76

ρ = 0.5 9.36 5.04 53.63 6.55 13.32 27.50 6.04 23.88 20.55
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Table 3: Optimal allocation proportions for a constant-stress test under Type-I censoring

π∗C π∗D π∗A

ρ = 0.1 (0.710, 0.290) (0.500, 0.500) (0.638, 0.362)

k = 2 ρ = 0.3 (0.707, 0.293) (0.500, 0.500) (0.628, 0.372)

ρ = 0.5 (0.697, 0.303) (0.500, 0.500) (0.611, 0.389)

ρ = 0.1 (0.786, 0, 0.214) (0, 0.500, 0.500) (0.688, 0, 0.312)

k = 3 ρ = 0.3 (0.820, 0, 0.180) (0.500, 0, 0.500) (0.753, 0, 0.247)

ρ = 0.5 (0.803, 0, 0.197) (0.500, 0, 0.500) (0.711, 0, 0.289)

ρ = 0.1 (0.830, 0, 0, 0.170) (0, 0.500, 0, 0.500) (0.726, 0, 0, 0.274)

k = 4 ρ = 0.3 (0.861, 0, 0, 0.139) (0, 0.500, 0, 0.500) (0.841, 0, 0, 0.159)

ρ = 0.5 (0.863, 0, 0, 0.137) (0.500, 0, 0, 0.500) (0.789, 0, 0, 0.211)

Table 4: Corresponding optima of the objective functions

for a constant-stress test under Type-I censoring

k = 2 k = 3 k = 4

φ∗cs δ∗cs a∗cs φ∗cs δ∗cs a∗cs φ∗cs δ∗cs a∗cs

ρ = 0.1 11.90 3.14 68.97 5.46 3.49 23.24 3.87 13.86 13.36

ρ = 0.3 11.90 3.30 68.98 7.75 5.64 38.00 5.72 6.43 39.81

ρ = 0.5 12.07 3.23 70.81 6.80 7.57 31.01 6.03 9.79 24.88
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Table 5: Expected total time on test for the optimal step-stress test under Type-I censoring

k = 2 k = 3 k = 4

T εC T εD T εA T εC T εD T εA T εC T εD T εA

ρ = 0.1 118.54 85.19 98.04 118.50 17.60 97.56 118.50 17.43 97.56

θ1 = 100 ρ = 0.3 143.01 121.74 126.64 99.56 62.52 73.14 97.46 29.36 42.49

ρ = 0.5 161.74 146.26 145.50 136.30 106.22 114.27 115.14 73.77 86.54

ρ = 0.1 355.62 255.56 294.13 355.15 52.80 292.68 355.15 52.28 292.68

n = 5 θ1 = 300 ρ = 0.3 429.03 365.22 379.93 298.68 187.56 219.42 292.38 88.09 127.47

ρ = 0.5 485.23 438.78 436.51 408.91 318.67 342.81 345.43 221.30 259.61

ρ = 0.1 592.70 425.94 490.22 592.44 87.99 487.98 593.23 87.13 487.98

θ1 = 500 ρ = 0.3 715.06 608.70 633.21 497.80 312.59 365.70 487.31 146.81 212.45

ρ = 0.5 808.71 731.29 727.51 681.51 531.11 571.35 575.72 368.83 432.68

ρ = 0.1 127.92 92.04 105.50 127.88 18.37 104.99 127.88 18.20 104.99

θ1 = 100 ρ = 0.3 163.68 138.06 144.02 112.26 68.56 80.72 109.71 31.54 46.23

ρ = 0.5 188.80 167.28 166.23 158.29 119.50 129.87 132.12 81.73 97.25

ρ = 0.1 383.77 276.12 316.50 383.24 55.12 314.96 383.24 54.59 314.96

n = 10 θ1 = 300 ρ = 0.3 491.04 414.17 432.06 336.79 205.68 242.15 329.13 94.61 138.69

ρ = 0.5 566.41 501.83 498.69 474.86 358.50 389.61 396.36 245.20 291.74

ρ = 0.1 639.61 460.21 527.50 639.32 91.87 525.13 640.20 90.98 525.13

θ1 = 500 ρ = 0.3 818.40 690.28 720.10 561.32 342.80 403.59 548.55 157.68 231.14

ρ = 0.5 944.02 836.39 831.15 791.44 597.50 649.35 660.60 408.67 486.23

ρ = 0.1 134.85 98.69 112.21 134.81 19.05 111.70 134.81 18.87 111.70

θ1 = 100 ρ = 0.3 181.74 151.33 158.65 122.02 73.44 86.69 119.03 33.24 49.04

ρ = 0.5 209.67 180.89 179.51 176.33 128.52 141.38 146.28 87.34 105.57

ρ = 0.1 404.56 296.07 336.64 404.02 57.14 335.10 404.02 56.60 335.10

n = 20 θ1 = 300 ρ = 0.3 545.21 453.98 475.96 366.05 220.31 260.06 357.08 99.71 147.11

ρ = 0.5 629.00 542.67 538.53 529.00 385.57 424.13 438.85 262.01 316.70

ρ = 0.1 674.27 493.45 561.07 673.97 95.23 558.70 674.87 94.34 558.70

θ1 = 500 ρ = 0.3 908.69 756.63 793.26 610.09 367.19 433.44 595.13 166.19 245.18

ρ = 0.5 1048.33 904.45 897.56 881.67 642.62 706.88 731.42 436.69 527.84
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Table 6: Expected total time on test for the optimal constant-stress test under Type-I censoring

k = 2 k = 3 k = 4

T εC T εD T εA T εC T εD T εA T εC T εD T εA

ρ = 0.1 113.71 77.83 94.68 104.67 8.64 80.72 103.77 7.23 81.94

θ1 = 100 ρ = 0.3 134.62 113.47 125.02 64.99 39.17 43.04 56.74 12.91 18.04

ρ = 0.5 167.40 139.88 146.50 94.43 72.41 72.50 62.34 37.76 41.22

ρ = 0.1 341.12 233.50 284.05 313.64 25.93 242.16 310.94 21.69 245.82

n = 5 θ1 = 300 ρ = 0.3 403.86 340.40 375.06 194.96 117.51 129.11 170.22 38.72 54.11

ρ = 0.5 502.19 419.65 439.51 283.30 217.23 217.49 187.02 113.27 123.65

ρ = 0.1 568.54 389.17 473.42 523.27 43.22 403.79 519.58 36.14 409.90

θ1 = 500 ρ = 0.3 673.10 567.33 625.11 324.93 195.85 215.18 283.69 64.53 90.18

ρ = 0.5 836.99 699.41 732.51 472.17 362.05 362.49 311.70 188.79 206.08

ρ = 0.1 126.97 92.10 104.98 110.58 10.36 85.71 109.23 8.22 84.06

θ1 = 100 ρ = 0.3 163.43 141.41 144.75 69.93 45.52 47.39 57.14 15.00 19.38

ρ = 0.5 190.60 173.55 168.76 106.79 84.47 87.75 62.63 43.24 46.40

ρ = 0.1 380.92 276.29 314.93 331.31 31.08 257.12 327.26 24.65 252.17

n = 10 θ1 = 300 ρ = 0.3 490.29 424.22 434.24 209.79 136.57 142.18 171.42 45.01 58.14

ρ = 0.5 571.81 520.64 506.29 320.38 253.41 263.25 187.89 129.72 139.21

ρ = 0.1 634.87 460.48 524.88 552.83 51.79 428.76 547.04 41.08 420.51

θ1 = 500 ρ = 0.3 817.15 707.03 723.74 349.65 227.62 236.96 285.70 75.02 96.90

ρ = 0.5 953.02 867.73 843.82 533.97 422.35 438.76 313.15 216.20 232.02

ρ = 0.1 134.32 98.97 110.64 111.88 11.10 86.60 109.99 8.37 84.38

θ1 = 100 ρ = 0.3 181.17 154.15 156.68 75.16 49.47 53.86 59.39 16.36 20.27

ρ = 0.5 210.56 184.50 180.82 118.82 88.64 95.65 72.61 45.45 51.66

ρ = 0.1 402.97 296.92 331.91 335.20 33.30 259.81 329.52 25.11 253.15

n = 20 θ1 = 300 ρ = 0.3 543.52 462.45 470.03 225.47 148.40 161.59 178.18 49.08 60.81

ρ = 0.5 631.68 553.49 542.47 356.47 265.92 286.96 217.83 136.35 154.97

ρ = 0.1 671.62 494.86 553.18 559.34 55.49 433.23 550.86 41.85 422.13

θ1 = 500 ρ = 0.3 905.86 770.75 783.38 375.78 247.33 269.32 296.96 81.80 101.35

ρ = 0.5 1052.80 922.49 904.11 594.12 443.20 478.27 363.04 227.25 258.28

23



Table 7: Efficiency of the step-stress testing to the constant-stress testing under Type-I censoring

k = 2 k = 3 k = 4

Optimality C D A C D A C D A

ρ = 0.1 1.32 1.99 1.40 0.61 2.70 0.47 0.43 0.68 0.27

ρ = 0.3 1.31 1.75 1.37 0.99 2.30 1.20 0.73 3.06 1.38

ρ = 0.5 1.29 1.56 1.32 1.04 1.76 1.13 1.00 2.44 1.21

T εA increase in a manner such that the ratios T εC/θ1, T εD/θ1 and T εA/θ1 are constant across the values

of θ1, irrespective of the value of n.

To formally assess the efficiency of the step-stress testing compared to the constant-stress testing

under the optimal condition discussed in this section, pairwise ratios of the optima under each criterion

were computed using the results obtained in Tables 2 and 4. The values are tabulated in Table 7 where

the number greater than 1 indicates higher efficiency of the step-stress test compared to the constant-

stress one. As expected, these ratios are invariant across the values of θ1 and the sample size n. It is

also observed from Table 7 that the highest efficiency is achieved by the D-optimality, followed by the

A-optimality, and then by the C-optimality in general. In most cases, the step-stress testing is proven

to be more superior compared to the corresponding constant-stress testing even under the optimal

situations.
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