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Abstract

This work revisits a simple model for geostatistical count data and make explicit the assumptions under

which the model is constructed. We review the parameter estimators and predictors for a latent that

appear in the literature, and propose new estimators and predictors. Finally, we plan to carry a detailed

simulation experiment to investigate and compare the statistical properties of the different parameter

estimators and predictors.
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1 Introduction

Spatial count data are routinely collected in many earth and social sciences, such as ecol-

ogy, epidemiology, demography and geography. For instance, death counts due to different

causes are collected on a regular basis by government agencies throughout the entire U.S. and

classified according to different demographic variables, such as age, gender and race. Among

the most common goals for the analysis of this kind of data are determining the effects on

mortality of spatially varying risk factors (regression problems) and estimation of unobserved

spatially varying quantities of interest (prediction problems). In this work I consider a model

for geostatistical count data.

Early attempts to model geostatistical count data include Gotway and Stroup (1997) and

McShane, Albert and Palmatier (1997), who proposed using generalized linear models and

generalized estimating equations. But the statistical basis and validity of these to model geo-

statistical data are somewhat questionable. In addition, prediction methodology in these works

is either lacking or ad-hoc, with no measures of prediction uncertainty. Many models of cur-

rent use for geostatistical count data use Gaussian random fields as building blocks. The prime

example is the hierarchical model proposed by Diggle, Tawn and Moyeed (1998), which can

be viewed as a generalized linear mixed model. Although currently this model seems to be

(arguably) the ‘state-of-the-art’ for modeling geostatistical count data, fitting this kind of hi-

erarchical model is a challenging task requiring computationally intensive numerical methods,

such as the EM or MCMC algorithms. This complexity is likely to preclude the use of this

model by most practitioners and spatial data analysts, so it is desirable to have alternative

simpler models that can be fitted using more or less traditional geostatistical methods.

We consider in this work a model for spatial count data proposed in the geostatistical

literature by Monestiez, Dubroca, Bonnin, Durbec, and Guinet (2006) and Goovaerts (2005).

A similar model was originally proposed by Zeger (1988) for the analysis of time series count

data, and later adapted by McShane, et al. (1997) to the analysis of spatial count data. The

main goal in these works was to perform regression analysis (i.e. to assess the effect of covariates

on the mean response). Later, essentially the same model was introduced in the geostatistical

literature by Monestiez, et al. (2006), but aimed at spatial prediction of a latent (unobserved)

process; see also Goovaerts (2005), Bellier, Monestiez and Guinet (2010), and Krivoruchko,

Gribov and Krause (2011) for extensions and generalizations.

In this work we revisit the aforementioned model and make explicit the assumptions under

which the model is constructed. We review methods to estimate the mean function of the count

data, and propose two methods to estimate the semivariogram function of the count data. We

also review the method proposed by Monestiez, et al. (2006) to predict the latent process,
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and proposed an alternative predictor. Finally, we plan to design a simulation experiment to

investigate the properties of the different proposed estimators and predictors.

2 A Model for Spatial Count Data

Let {Λ(s) : s ∈ D}, with D ⊂ R2, be a positive random field describing the spatial variation of

a quantity of interest over the domain D, usually a spatially varying intensity or risk, whose

values are not observable. To learn about this random field, spatial information is collected on

random variables Y1, . . . , Yn that take nonnegative integer values and whose mean values are

related to Λ(·). Two examples illustrate this situation. In the Rongelap dataset analyzed by

Diggle et al. (1998), Λ(s) is the level of the radionuclide Caesium (137Cs) at location s, and Yi

is the number of photon emissions collected at sampling location si by a gamma-ray counter

during a period of time ti. In the farming dataset analyzed by Christensen and Waagepetersen

(2002), Λ(s) is the intensity of weed (Viola arvensis) occurrence at s, and Yi is the number

of weeds observed within a circle of radius ti centered at si; the percentage of organic matter

at each location was used as covariate information. In both examples for a set of sampling

locations s1, . . . , sn within a region of interest D, a count measurement Yi is taken, together

possibly with measurements of p ≥ 1 location-dependent covariates. The main goal in both

examples is the prediction of Λ(·) throughout D based on the data Y = (Y1, . . . , Yn) and

covariates (if available).

The proposed model for the spatial count variables Y1, . . . , Yn and the latent random field

{Λ(s) : s ∈ D} is defined hierarchically using only moments as follows:

1. For any set of distinct sampling locations s1, . . . , sn ∈ D, the counts Y1, . . . , Yn are con-

ditionally independent given Λ = (Λ(s1), . . . ,Λ(sn)), and

E{Yi | Λ} = var{Yi | Λ} = tiΛ(si), i = 1, . . . , n, (1)

where ti > 0 is known and represents the “observation/sampling effort” at sampling

location si. Many previous works have also assumed that, conditional on Λ(si), Yi has

Poisson distribution (Monestiez et al. 2006; Bellier et al. 2010), but this assumption has

little bearing on the model interpretation or statistical analysis described here.

2. For any s ∈ D,

Λ(s) = µ(s)ε(s),

where µ(s) > 0 is a deterministic function representing the spatial trend in Λ(·), and

{ε(s) : s ∈ D} is a positive random field with

E{ε(s)} = 1 and cov{ε(s), ε(u)} = Cε(s− u), (2)
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where Cε(s− u) is a given stationary and continuous covariance function in R2.

For the spatial trend we use a standard log-linear model

µ(s) := exp(β′f(s)),

where β ∈ Rp are unknown regression parameters and f(s) = (f1(s), . . . , fp(s))′ are known

location-dependent covariates, with f1(s) ≡ 1 (although exp(·) could be replaced by any other

continuous positive function). For the covariance function of ε(·) the common geostatistical

practice is to use one of the standard positive definite functions (e.g. Monestiez et al. 2006 used

the power exponential covariance function), but the question that arises is whether or not there

exist a positive random field satisfying (2) with such function as its covariance function. This

is a very difficult question with few definite answers. A way to avoid possible incompatibilities

between a proposed covariance function and the required features of ε(·) is to use a covariance

function of the form (Davis et al. 1999, 2000)

Cε(s− u) := exp(Cδ(s− u))− 1, (3)

where Cδ(s − u)) is an arbitrary parametric covariance function in R2 (e.g. Cδ(s − u)) =

σ2δ exp(−||s − u||/φδ)). This covariance function results when ε(s) = exp(δ(s)) and δ(·) is a

Gaussian random field with mean −Cδ(0)/2 and covariance function Cδ(s−u). Clearly, in this

case ε(·) is positive and (2) holds. Finally the semivariogram of ε(·) is

γε(s− u) =
1

2
var{ε(s)− ε(u)}

= exp(Cδ(0))− exp(Cδ(s− u)), (4)

when the covariance model (3) is used. We denote the model parameters by η = (β′,θ′), where

θ are the covariance parameters that appear in Cε(s− u) and γε(s− u).

Remark 1. The above model has several attractive features. First, it allows to account for

heterogeneous observation/sampling efforts which may greatly influence distributional features

of the observed counts. Second, it allows the inclusion of location-dependent covariates when

available. Finally, the proposed model makes no distributional assumptions since the model

specification only involves moments up to second order.

The second-order structure of the latent random field Λ(·) is

E{Λ(s)} = µ(s)

cov{Λ(s),Λ(u)} = µ(s)µ(u)Cε(s− u)

corr{Λ(s),Λ(u)} =
Cε(s− u)

Cε(0)

1

2
var{Λ(s)− Λ(u)} = µ(s)µ(u)γε(s− u) +

1

2

(
σ2ε (µ(s)− µ(u))2

)
,
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so Λ(·) is a nonstationary random field when µ(s) is not constant, but its correlation function

is always stationary. To simplify notation we write from now on µi instead of µ(si).

The second-order structure of the spatial counts Yis is obtained from (1) and the second-

order structure of the random field Λ(·) by using standard mean, variance and covariance

decompositions. Specifically, for any i, j = 1, . . . , n

E{Yi} = E{E(Yi | Λ(si))} = tiµi, (5)

var{Yi} = E{var(Yi | Λ(si))}+ var{E(Yi | Λ(si))}

= tiµi
(
1 + σ2ε tiµi

)
, (6)

cov{Yi, Yj} = E{cov(Yi, Yj | Λ(si),Λ(sj))}

+ cov{E(Yi | Λ(si),Λ(sj)),E(Yj | Λ(si),Λ(sj))}

= titjµiµjCε(si − sj), for i 6= j, (7)

where σ2ε := Cε(0). Note that, under this model, the second-order structure of the spatial

counts Yis is not affected by the (unspecified) bivariate distributions of ε(·). In addition, the

semivariogram of the spatial counts is give, for any i 6= j, by

1

2
var{Yi − Yj} =

1

2

(
var{Yi}+ var{Yj} − 2cov{Yi, Yj}

)
= titjµiµjγε(si − sj) +

1

2

(
σ2ε
(
tiµi − tjµj

)2
+ tiµi + tjµj

)
, (8)

where (6) and (7) and were used. Several properties of this semivariogram now follow. First,

the semivariogram of the spatial counts is not stationary when either the mean function is not

constant or the sampling efforts are unequal. Second, the semivariogram of the spatial counts

is the superposition of two positive terms, one due to the spatial variation of the latent random

field ε(·) and the other due to sampling variability of the observed counts. This in turn implies,

contrary to a claim in Bellier et al. (2010), that this semivariogram is discontinuous along the

diagonal line since for any si

lim
sj→si

1

2
var{Yi − Yj} = tiµi > 0,

(provided µ(·) is a continuous function and recalling that γε(·) is continuous, with γε(0) = 0).

Hence the semivariogram of the data is discontinuous along the diagonal line si = sj , and the

size of the discontinuity is E{Yi}. Hence, under this model there is very particular link between

the mean and covariance functions of the counts.

3 Parameter Estimation

For the purposes of assessing spatial association among the spatial counts and performing

prediction of the latent process Λ(·), to be described in the next section, µ(s) and either
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Cε(s−u) or γε(s−u) need to be estimated. We consider here two methods that parallel those

commonly used to estimate parameters based on continuous geostatistical data. The first

method uses a two-stage approach where the regression parameters are estimated first using a

pseudo-likelihood, and later the covariance parameters are estimated using a distribution-free

approach based on residuals. The second approach estimates all the parameters jointly using

a form of pseudo-likelihood for correlated data.

3.1 Mean Estimation

The regression parameters can be estimated by pseudo maximum likelihood, a method proposed

by Gourieroux, Monfort and Trognon (1984) and used by Brännäs and Johansson (1994) and

Davis et al. (1999, 2000) in the context of time series of counts. We consider below two variants

based on regression models for count data (Cameron and Trivedi, 1998).

The first variant consists on using as working assumption that the count variables are

independent and have Poisson distributions with means given by (5), which amounts to ignore

the latent process (i.e. setting σ2ε = 0). An estimator for β is then obtained as the vector

β̂
P ∈ Rp that maximizing the pseudo log-likelihood

lP(β) =

n∑
i=1

(
β′f(si)yi − ti exp(β′f(si))

)
;

this estimator can be computed using the R function glm. In the context of time series of counts,

Davis et al. (2000) provided a result that states conditions under which β̂
P

is consistent and

asymptotically normal, but it is unclear whether a similar result holds in the context of spatial

data where infill asymptotics appear to be the most natural regime (Stein, 1999).

The second variant consists on using as working assumption that the count variables are

independent and have negative binomial distributions with means and variances given by,

respectively, (5) and (6), which amounts to assume that the Yi | ε(si) have Poisson distributions

and ε(s1), . . . , ε(sn) are i.i.d with Ga(1/σ2ε , σ
2
ε ) distribution. This variant also provides an

estimate for the covariance parameter σ2ε . An estimator for (β, σ2ε ) is then obtained as the

vector (β̂
NB
, σ̂2,NB

ε ) ∈ Rp × (0,∞) that maximizes the pseudo log-likelihood

lNB(β, σ2ε ) =
n∑
i=1

{(
log(σ2ε ) + β′f(si)

)
yi −

(
yi +

1

σ2ε

)
log
(
1 + tiσ

2
ε exp(β′f(si))

)
+

yi−1∑
j=0

log
( 1

σ2ε
+ j
)}

;

this estimator can be computed using the R function glm.nb, which is part of the library MASS.

Once an estimate β̂ is obtained, the resulting trend estimate is µ̂(s) = exp(β̂′f(s)), s ∈ D.
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3.2 Semivariogram Estimation

The standard nonparametric geostatistical methods for semivariogram estimation, such as those

described in Cressie (1993, section 2.4), are not directly applicable for the current model due

to the heteroscedasticity and nonstationarity of the process of counts, and this is still so when

these methods use standard residuals. Nevertheless, the basic ideas and methods used to derive

these nonparametric semivariogram and covariogram estimators can be adapted and extended

to the current data framework; below we describe this adaptation. The semivariogram will

be estimated using the classical geostatistical approach: model-free estimates of the semivar-

iogram are first obtained for a finite set of distances, and then the parameters of a proposed

semivariogram model are estimated by least squares.

All the semivariogram and covariogram estimators to be described here require the availabil-

ity of estimates for the trend at the sampling locations, to be denoted by µ̂i = µ̂(si), i = 1, . . . , n.

From these trend estimates we can compute residuals in the form of ratios, rather than the

usual differences, defined as

Ri :=
Yi
tiµ̂i

, i = 1, . . . , n.

Throughout this section trend estimates are treated as if they were known true values, i.e. their

sampling variability is ignored, so we have that for any i

E{Ri} ≈ 1 , var{Ri} ≈ σ2ε +
1

tiµi
, (9)

and it follows from (7) and (9) that for any i 6= j

cov{Ri, Rj} ≈ Cε(si − sj) ,
1

2
var{Ri −Rj} ≈ γε(si − sj) +

1

2

( tiµi + tjµj
titjµiµj

)
. (10)

For the case when γε(·) is isotropic, Monestiez et al. (2006) and Bellier et al. (2010)

proposed the following semivariogram estimator

γ̂Mε (d) =

∑
(i,j)∈N(d)

(
titj µ̂iµ̂j
tiµ̂i+tj µ̂j

)(
(Ri −Rj)2 − tiµ̂i+tj µ̂j

titj µ̂iµ̂j

)
2
∑

(i,j)∈N(d)
titj µ̂iµ̂j
tiµ̂i+tj µ̂j

, d > 0

=

∑
(i,j)∈N(d)

(
titj µ̂iµ̂j
tiµ̂i+tj µ̂j

(Ri −Rj)2 − 1
)

2
∑

(i,j)∈N(d)
titj µ̂iµ̂j
tiµ̂i+tj µ̂j

, (11)

where

N(d) = {(i, j) : ||si − sj || ≈ d}.

It follows from (9) and (10) that γ̂Mε (d) is an (approximate) unbiased estimator of γε(d). An-

other semivariogram estimator, also motivated by the approximate relation (10), is given by

γ̂Uε (d) =
1

2|N(d)|
∑

(i,j)∈N(d)

(
(Ri −Rj)2 −

tiµ̂i + tjµ̂j
titjµ̂iµ̂j

)
,
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where |N(d)| is the number of pairs in N(d); γ̂Uε (d) is also an (approximately) unbiased esti-

mator of γε(d).

A third estimator is based on (8) and is motivated by a regression argument. From this

relation and after some rearrangement of terms follow that for i 6= j

E
{

(Yi − Yj)2 − (tiµi + tjµj)
}

= 2titjµiµjγε(dij) + (tiµi − tjµj)2σ2ε1, (12)

where dij = ||si − sj || and σ2ε1 = σ2ε + 1. If we compute the summaries

Vij = (Yi − Yj)2 − (tiµ̂i + tjµ̂j) , uij,1 = 2titjµ̂iµ̂j , uij,2 = (tiµ̂i − tjµ̂j)2,

then an estimate of γε(d) (d > 0) can be obtained by regressing Vij on (uij,1, uij,2) without an

intercept, using all the summaries for which (i, j) ∈ N(d). The resulting estimator is

γ̂Rε (d) =

∑
(i,j)∈N(d) u

2
ij,2 ·

∑
(i,j)∈N(d) uij,1Vij −

∑
(i,j)∈N(d) uij,1uij,2 ·

∑
(i,j)∈N(d) uij,2Vij∑

(i,j)∈N(d) u
2
ij,1 ·

∑
(i,j)∈N(d) u

2
ij,2 −

(∑
(i,j)∈N(d) uij,1uij,2

)2 .

(13)

This method also provides estimates for σ2ε1, one for each d > 0, which can be combined (say

by averaging) to get a single estimate for σ2ε .

Once the model for the mean response of the counts has been estimated and its fit to the

data considered adequate, (12) suggests a simple graphical way to assess the adequacy of the

other model components. For a distance 0 < d < max{dij} construct the data summaries

Zij =
(Yi − Yj)2 − (tiµ̂i + tjµ̂j)

(tiµ̂i − tjµ̂j)2
, uij =

2titjµ̂iµ̂j
(tiµ̂i − tjµ̂j)2

, for (i, j) ∈ N(d),

and draw the scatterplot of Zij versus uij . We can construct k such scatterplots corresponding

to distances d1 < . . . < dk. If the model fits the data well it is expected that all these scatterplots

display close to linear relations, with slopes (approximately) increasing with distance and all

having about the same intercept at the origin.

Another semivariogram estimator can be obtained by noting that the residuals follow an

additive model with heteroscedastic errors. Specifically, the residuals can be written as

Ri = T (si) + ξi,

where T (s) := Λ(s)/µ(s) and ξi := Ri − T (si). If the Yis and ε(·) satisfy (1) and (2), then T (·)
is an intrinsically stationary process with

E{T (s)} = 1 ,
1

2
var{T (s)− T (u)} = γε(s− u), s,u ∈ D,
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and from (5)–(7) follow that for any i, j

E{ξi} = 0 , cov{ξi, ξj} =

{
1
tiµi

if i = j

0 if i 6= j
,

and

cov{ξi, T (sj)} = 0.

Hence each residual Ri can be interpreted as the sum of an (unobserved) “signal” T (si) and a

“measurement error” ξi, where the latter are uncorrelated among themselves and with the sig-

nal, and have unequal variances. Such a model was recently studied by Christensen (2011) who

proposed methods for semivariogram estimation and signal’s prediction. The semivariogram

estimate proposed in that paper is

γ̂Cε (d) =
1

2|N(d)|
∑

(i,j)∈N(d)

(Ri −Rj)2 −
1

n

n∑
i=1

1

tiµ̂i
, d > 0, (14)

which is also (approximately) unbiased.

Note that when µi = µ and ti = t for all i, all of the above semivariogram estimators

γ̂Mε (d), γ̂Uε (d), γ̂Rε (d) and γ̂Cε (d) agree and are qual to

1

2|N(d)|
∑

(i,j)∈N(d)

(Ri −Rj)2 −
1

tµ̂
.

Finally, once the model-free semivariogram estimates γ̂ε(d1), . . . , γ̂ε(dk) are obtained for

distances d1 < . . . < dk, the parameters of the proposed semivariogram model, γε(d;θ) say, are

estimated by least squares:

θ̂ = arg minθ

k∑
j=1

(
γ̂ε(dj)− γε(dj ;θ)

)2
.

3.3 Estimation of σ2
ε

As mentioned in Section 2, the model proposed by Monestiez et al. (2006) for spatial data

is essentially the same as the model proposed by Zeger (1988) for time series data. Based

on the moment relations (6) and (7), Zeger (1988) proposed estimators for σ2ε (as well as

ρε(d) = Cε(d)/σ2ε ) with a method-of-moments flavor. Adapting these estimators to the spatial

setting result in the estimator

σ̂2,Mε =

∑n
i=1

[
(Yi − tiµ̂i)2 − tiµ̂i

]
∑n

i=1 t
2
i µ̂

2
i

=

∑n
i=1 t

2
i µ̂

2
i

[
(Ri − 1)2 − 1

tiµ̂i

]
∑n

i=1 t
2
i µ̂

2
i

. (15)
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Also, another estimator for σ2ε suggested by the moment relations in (9) is given by

σ̂2,Uε =
1

n

n∑
i=1

(
(Ri − 1)2 − 1

tiµ̂i

)
.

A different estimator was proposed by Brännäs and Johansson (1994) with a regression

flavor, based on results from Gourieroux et al. (1984). From (6) follows that

(Yi − tiµ̂i)2 − tiµ̂i = t2i µ̂
2
iσ

2
ε + ξi, i = 1, . . . , n,

where ξi are random variables with mean 0. Then the ordinary least squares estimator of σ2ε

based on the ‘pseudo data’ on the left hand side of the above equation is

σ̂2,Rε =

∑n
i=1 t

2
i µ̂

2
i

[
(Yi − tiµ̂i)2 − tiµ̂i

]
∑n

i=1 t
4
i µ̂

4
i

=

∑n
i=1 t

4
i µ̂

4
i

[
(Ri − 1)2 − 1

tiµ̂i

]
∑n

i=1 t
4
i µ̂

4
i

.

3.4 Joint Estimation: Gaussian Estimation

Gaussian estimation is a method that uses a Gaussian likelihood as a working objective function,

for situations when the data are not Gaussian and the true likelihood is unknown. It can be

viewed as a form of pseudo maximum likelihood estimation and it is potentially useful when the

data are dependent. Unlike the previous methods, this method allows for the joint estimation

of all model parameters. It was originally proposed by Whittle (1961) for estimation in time

series, and was also used by Crowder (1985) for longitudinal binary data; see Al-Rawwash

and Pourahmadi (2006) for connections between Gaussian estimation and other methods of

estimation (e.g. generalized estimating equations). We plan to explore the applicability of this

method for estimation in spatial models, as it does not seem to have been previously used.

Let y = (y1, . . . , yn)′ be the observed count data, β the regression parameters and θ the

covariance parameters that identify Cε(·) (such as θ = (σ2δ , φδ). From (5)–(7) we have

E{Y} = (t1µ(s1), . . . , tnµ(sn))′,

var{Y} = MΣM +M,

where M = M(β) = diag(E{Y}) and (Σ)ij = (Σ(θ))ij = Cε(si − sj), i, j = 1, . . . , n. An

estimator for (β,θ) can then be obtained as the vector (β̂
G
, θ̂

G
) ∈ Rp×R2 that minimizes the

pseudo negative log-likelihood

lG(β,θ) = log(|var{Y}|) + (y − E{Y})′(var{Y})−1(y − E{Y})

= 2

n∑
i=1

β′f(si) + log(|Ψ|) + (r̃− 1)′Ψ−1(r̃− 1), (16)
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where r̃ = r̃(β) = M(β)−1y, 1 = (1, . . . , 1)′ and Ψ = Ψ(β,θ) = Σ(θ) + M(β)−1; the second

expression for the pseudo log-likelihood is obtained by writing var{Y} = MΨM . This estimator

can be computed using any algorithm for numerical maximization, e.g., the R function optim.

Implementing this method is computationally intensive since requires numerical computation

of |Ψ| and Ψ−1, so it is not practical for large datasets.

3.5 Joint Estimation: Pseudo-Composite Likelihood

A less computationally intensive variant of the above approach consists of constructing an

objective function by combining bivariate normal densities, which is in the spirit of composite

(or pairwise) likelihood estimation; see Varin, Reid and Firth (2011) for an overview.

Using as working assumption, for i 6= j, that (Yi, Yj) have a bivariate normal distribution

with their correct second-order structure given in (5)–(7), a pseudo pairwise negative log-

likelihood based on this pair of observations is

lPCij (β,θ) = 2
(
β′f(si) + β′f(sj)

)
+ log

(
∆ij(β,θ)

)
+

(
σ2ε + 1

tjµj

)(
r̃i − 1

)2
+
(
σ2ε + 1

tiµi

)(
r̃j − 1

)2 − 2Cε(si − sj)
(
r̃i − 1

)(
r̃j − 1

)
∆ij(β,θ)

,

where r̃i = yi/tiµi and

∆ij(β,θ) =
(
σ2ε +

1

tiµi

)(
σ2ε +

1

tjµj

)
− C2

ε (si − sj).

An estimator for (β,θ) can then be obtained as the vector (β̂
PC
, θ̂

PC
) ∈ Rp×R2 that minimizes

a pseudo pairwise negative log-likelihood based on the entire data is given by

lPC(β,θ) =
∑

1≤i<j≤n
wijl

PC
ij (β,θ),

where wij are nonnegative weights that indicates what pairs of observations to include and seek

to balance computational effort and statistical efficiency. We consider the estimators obtained

by using the weights wij = 1 and wij = 1{||si − sj || < dm}, with dm > 0 fixed and 1{A}
denotes the indicator function of A.

4 Prediction of the Latent Process

We now describe a method, originally proposed by Monestiez et al. (2006) and later extended by

Bellier et al. (2010), to predict the latent process Λ(·) based on the residuals R = (R1, . . . , Rn)′

defined in the previous section. The method uses optimal linear prediction that mixes aspects

of simple and ordinary kriging. Like simple kriging, the method assumes that both the trend

11



µ(s) and the covariance function Cε(s − u) are known, but the predictor is derived along the

lines of ordinary kriging. Specifically, for any s0 ∈ D these authors considered the family of

predictors of the form

F0 =
{

Λ̂(s0) = µ(s0) · a′0R : a0 ∈ Rn, a′01 = 1
}
, (17)

and we want to find the best predictor within this family. The predictors in F0 are unbiased for

Λ(s0) under the assumption that µ(s) is known (see (9)); we continue assuming this throughout

the rest of this section. By a standard calculation, similar to that for deriving ordinary kriging

predictors, the mean squared prediction error of a predictor in F0 can be written as

MSPE(Λ̂(s0)) = E{
(
Λ(s0)− µ(s0)

n∑
i=1

a0iRi
)2} (18)

= E{
(
Λ(s0)− µ(s0)− µ(s0)

n∑
i=1

a0i(Ri − 1)
)2}

= var{Λ(s0)}+ µ2(s0)
n∑
i=1

n∑
j=1

a0ia0jcov{Ri, Rj} − 2µ(s0)
n∑
i=1

a0icov{Λ(s0), Ri}

= µ2(s0)
(
σ2ε +

n∑
i=1

a20i
tiµi

+
n∑
i=1

n∑
j=1

a0ia0jCε(si − sj)− 2
n∑
i=1

a0iCε(si − s0)
)
,

where (6) and (7) were used, as well as

cov{Λ(s0), Yi} = µ(s0)tiµiCε(si − s0), s0 ∈ D; i = 1, . . . , n.

Then, the optimal predictor within F0 is obtained by minimizing over a0 ∈ Rn and m0 ∈ R
the objective function G(a0,m0) = MSPE(Λ̂(s0)) − 2m0

(∑n
i=1 a0i − 1

)
, so they are obtained

by solving the linear system of n+ 1 equations
a0j
tjµj

+
∑n

i=1 a0iCε(si − sj)−m0 = Cε(sj − s0); for j = 1, . . . , n∑n
i=1 a0i = 1

, (19)

which can be equivalently written as a′0Ψ−m01
′ = c′0

a′01 = 1
, (20)

with (Ψ)ij = Cε(si − sj) + 1
tiµi

1{si = sj} and c′0 = (Cε(s1 − s0), . . . , Cε(sn − s0)). The solution

of (20) is then unique and given by (Cressie, 1993 p. 123)

a∗0 = Ψ−1
(
c0 +

(1− 1′Ψ−1c0)

1′Ψ−11
1
)

, m∗0 =
(1− 1′Ψ−1c0)

1′Ψ−11
.

12



The predictor Λ̂∗(s0) = µ(s0)
∑n

i=1 a
∗
0iRi has been called the Poisson kriging predictor of Λ(s0)

(Monestiez et al. 2006; Goovaerts, 2006). Finally, from (18) and (19) follow that the mean

squared prediction error of Λ̂∗(s0) is given by

MSPE(Λ̂∗(s0)) = µ2(s0)
(
σ2ε −

n∑
i=1

a∗0iCε(si − s0) +m∗0

)
.

Remark 2.

(a) For the case when µ(s) is unknown, the above expression for MSPE(Λ(s0)) is still exact

when µ(s) is constant, while it is only approximate when µ(s) is nonconstant.

(b) The system of equations (20) is readily identified as the ordinary kriging system based on

the covariance function Cε(s−u), for the case when the data contains measurement error with

location-dependent variance of size (t(·)µ(·))−1 and s0 6= si for all i. This observation allow us

to compute Λ̂∗(s0) and MSPE(Λ̂∗(s0)) using some publicly available software.

4.1 An Alternative Predictor

Given that µ(s) is assumed known, it is also possible to compute the simple kriging predictor for

Λ(·) based on the residuals R. Specifically, for any s0 ∈ D we consider the family of predictors

of the form

G0 =
{

Λ̂(s0) = µ(s0) · (b′0R + k0) : b0 ∈ Rn, k0 ∈ R
}
, (21)

and seek the best predictor within G0. By a standard calculation similar to the one detailed

above (see e.g. Cressie (1993 pp 109-110)), the simple kriging predictor of Λ(s0) based on R is

Λ̂?(s0) = µ(s0)
(
1 + c′0Ψ

−1(R− 1)
)
,

and its mean squared prediction error is

MSPE(Λ̂?(s0)) = µ2(s0)
(
σ2ε − c′0Ψ

−1c0
)
.

We call Λ̂?(s0) the simple Poisson kriging predictor of Λ(s0). It is clear that this predictor is

unbiased for Λ(s0), and MSPE(Λ̂?(s0)) ≤ MSPE(Λ̂∗(s0)) since F0 ⊂ G0.

5 Summary

This work provides a detailed description of the simple model for geostatistical count data

proposed by Monestiez, et al. (2006), which is more likely to be used by practitioners and

spatial data analysts than the more complex hierarchical model proposed by Diggle, et al.

(1998). In addition, new estimators for the mean and semivariogram functions of the count

data were proposed. In follow up work we plan to investigate the statistical properties of the

several estimators of model parameters and predictors of the latent process under this model.
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