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Abstract

This work proposes a non-stationary random field model to describe the spatial variability of housing

prices that are affected by a localized externality. The model allows for the effect of the localized

externality on house prices to be represented in the mean function and/or the covariance function of the

random field. The correlation function of the proposed model is a mixture of an isotropic correlation

function and a correlation function that depends on the distances between home sales and the localized

externality. The model is fit using a Bayesian approach via a Markov chain Monte Carlo algorithm. A

dataset of 437 single family home sales during 2001 in the city of Cedar Falls, Iowa, is used to illustrate

the model.
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1 Introduction

A variety of statistical techniques have been proposed in the literature to model housing prices

in a certain region/market over a particular period of time, which are generically called hedonic

regression models. These include linear regression models and random field models. This work

proposes a model from the latter class intended for situations where there is a localized exter-

nality in the region that influences the selling price of a house. Examples of such externalities

include proximity to a major highway, a nuclear power plant and an airport.

Numerous factors affect the selling price of a house. The most obvious are house-specific

characteristics, such as living area, number of rooms, size of the parcel of land and age of

the dwelling. Unless the region is urbanistically homogeneous, there will be neighborhood-

specific characteristics that would also affect the selling price of the house, such as quality of

schools, quality of public services and median travel time to main job centers. These house

and neighborhood characteristics used in hedonic regression models explain a large fraction

of the selling price variability, but many studies have found that there is still substantial

unexplained variability (Pace, Barry and Sirmans, 1998; Bowen, Mikelbank and Prestegaard,

2001). This unexplained variability is mainly attributable to the exclusion of some relevant

house/neighborhood characteristics from the model (due to lack of such information) and the

methods currently employed to appraise houses’ value that use nearby ‘comparables’. As a

result housing prices are also influenced by spatial effects, meaning that, ceteris paribus, two

houses located near each other tend to appraise more similarly than two houses located far

apart.

Spatial effects have been modeled using random fields, such as lattice models (Pace and

Gilley, 1997; Kim, Philips and Anselin, 2003) and geostatistical models (Basu and Thibodeau,

1998; Dubin, 1998). The latter class provides some advantages over lattice models in terms of

model interpretability and ability for prediction. Some comparisons between the two modeling

approaches appear in Case, Clapp, Dubin and Rodriguez (2004) and Militino, Ugarte and

Garcia-Reinaldos (2004). Models for spatio-temporal data have been proposed by Pace, Barry,

Gilley and Sirmans (2000) and Gelfand, Ecker, Knight and Sirmans (2004).

For traditional geostatistical models, the spatial association between the selling price of

two houses is modeled as a function of the distance between their locations (called isotropic

association). This is a reasonable assumption in many situations, but not so for situations
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when there is a localized externality in the region that exerts an effect on housing prices. For

the problem considered here it is expected that, ceteris paribus, two houses located about the

same distance of the externality location tend to appraise similarly, even if they are not located

near each other. Isotropic and stationary models do not represent such behavior.

We consider a cross-section of housing prices data collected during 2001 in Ceder Falls,

Iowa, a region that contains a hoglot. It is anticipated that the distance of a house to the

hoglot exerts a (negative) effect on its selling price, and as a result the mean structure of

housing prices and/or the covariance structure between housing prices would depend on the

distance to the hoglot. Modeling this kind of data requires the use of non-stationary processes

that posses the aforementioned behavior.

A review of the spatial modeling literature reveals a scarcity of models to describe this type

of data. In modeling spatial environmental data driven by a ‘point source’, Hughes-Oliver,

Gonzalez-Farias, Lu and Chen (1998) proposed a correlation model that accounts for this kind

of effect, but it lacks practical motivation and the model parameters must satisfy somewhat

awkward restrictions to guarantee validity. Hughes-Oliver and Gonzalez-Farias (1999) also

proposed to model the effect of an externality in the form of a point source by combining

two basic independent processes. One stationary representing what the process would be

in the case the point source were absent (interpreted as a base line), and the other non-

stationary representing a ‘shock’ to the system exerted by the presence of the point source.

The two process components can be combined multiplicatively or additively. Hughes-Oliver

and Gonzalez-Farias (1999) proposed a particular form of non-stationary ‘shock’ process by

combining it multiplicatively with the baseline stationary process. More recently, Martin, Di

Battista, Ippoliti and Nissi (2006) proposed a model for situations where there are several

point sources, focusing on modeling the mean function of the process. They considered the

cases when the locations of the point sources are known or unknown, but in the latter case

serious estimation and identification problems were reported.

In this work we propose a model similar to the one studied by Hughes-Oliver and Gonzalez-

Farias (1999), but combine the two process components additively rather multiplicatively. The

effect of the localized externality on housing prices is modeled through the mean and covari-

ance functions of the process. For the resulting process, the correlation between the prices

of two houses depends on both the distance between the houses and the difference between

the distances of the houses to the localized externality. A Bayesian approach is used to make
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Figure 1: Locations of houses sold in Cedar Falls in 2001 (◦) and the hoglot.

inference about the model parameters using a Markov chain Monte Carlo algorithm.

The organization of the paper is as follows. Section 2 describes the housing prices dataset

in Cedar Falls, a region with a hoglot, and carries an exploratory data analysis that motives the

model construction. Section 3 describes the proposed non-stationary geostatistical model that

represents the spatial variation suggested by the exploratory data analysis. Section 4 describes

the model fitting and presents the results of applying the model to the Cedar Falls dataset.

Conclusions are given in Section 5 and an Appendix provides some technical details.

2 Data and Exploratory Analysis

The dataset used in this analysis consists of 437 arms-length single family home sales during

2001 in the small mid-western city of Cedar Falls, Iowa. A schematic description of the region

and the location of the sold houses are displayed in Figure 1. The region contains a hoglot

located in the northeast, with all parcels located within 8.4 miles of it, and an average distance

to the hoglot of about 6 miles. There are 18 other hoglots in the Black Hawk County (to
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Table 1: Summary statistics

Variable Mean Standard Deviation

Living Area (square feet) 1320.2 486.3

Number of Rooms 5.75 1.55

Parcel Size (acres) 0.24 0.61

Year Built 1958 27.85

Distance to Hoglot (miles) 6.05 0.80

Selling Price (U.S. dollars) 135548 70727

which Cedar Falls belongs), but the one in Figure 1 is the closest to the city. The dataset

was obtained from the Black Hawk County Board of Supervisors. Besides the selling price, the

variables collected with each sale were: living area, number of rooms, size of the parcel of land

on which the house is built, year the dwelling was built and the location of the house (with

spatial coordinates in units of 10000 feet).

The original sales were parced by selecting homes with a selling price between $32000 and

$400000, with at least 3 rooms and no more than 12 rooms, with at least 500 square feet of

living area and lot sizes of at least 3000 square feet. The typical house was built in 1958, with

a mean price of about $136000 and a median price of about $109000. Most homes were sold in

the downtown area, where the mean parcel size and living area were only about a quarter of

an acre and 1320 square feet, respectively. Newer and much larger houses have been built in

the northwest and southern portions of the city. Summary statistics are given in Table 1.

An ordinary least squares regression was run using log selling price as the response variable

and log living area, number of rooms, log parcel size, year built and the distance to the hoglot

as explanatory variables; Table 2 summarizes the regression results. All explanatory variables

are strongly significant (at the 0.001 level) and the signs of their corresponding regression

coefficients are all positive (as expected), so larger and newer houses tend to sell for more.

Also, the estimated coefficient corresponding to distance to the hoglot is positive, so houses

closer to the hoglot tend to sell for less. An R2 statistic of 0.71 indicates that, overall, these

explanatory variables provide a reasonable explanation for home log selling prices.

To investigate how the mean and variance of log selling price of a house might vary with

distance to the hoglot, we performed a similar regression analysis as before, but now omitting
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Table 2: OLS regression results

Variable Parameter Estimate P-value

Log Living Area 0.4159 < 0.0001

Number of Rooms 0.0857 < 0.0001

Log Parcel Size 0.0896 < 0.0001

Year Built 0.0052 < 0.0001

Distance to Hoglot 0.1189 < 0.0001

the distance to the hoglot as an explanatory variable. All the other explanatory variables

remained strongly significant. The plot of residuals versus distance to the hoglot, given in

Figure 2a, indicates that almost all houses within about five miles of the hoglot have negative

residuals, so these houses tends to sell for less after adjusting for house-specific characteristics.

For houses located more than about five miles from the hoglot the distribution of the residuals

Distance to Hoglot)

R
es

id
ua

l

4 5 6 7 8

-1
.5

-0
.5

0.
5

1.
0

a)

Distance to Hoglot)

Sq
ua

re
d 

R
es

id
ua

l

4 5 6 7 8

0.
0

0.
5

1.
0

1.
5

2.
0

b)

Figure 2: (a) Residuals versus distance to the hoglot, and (b) Squared residuals versus distance

to the hoglot.
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Table 3: Concentric circle effects of distance

Distance to Hoglot Number of Sales γ2 Estimate

8.5 437 0.7644

8 429 0.7643

7.5 412 0.7844

7 400 0.7784

6.5 331 0.8231

6 216 0.6025

5.5 74 0.1326

5 39 0.4945

is close to being symmetric around zero. Hence, a distance of about five miles to the hoglot

seems to act as a ‘change point’ for the mean log selling price of a house.

The plot of squared residuals versus distance to the hoglot, given in Figure 2b, suggests

a moderate increase in variability as houses get closer to the hoglot. A possible explanation

for this variability increase is that when sellers or buyers are aware of presence of the hoglot,

the house might sell at a significant discount (compared to properties whose seller and buyer

are unaware of the presence of the hoglot). To investigate from another point of view this

apparent increase in variability with proximity to the hoglot, we considered concentric circles

of increasing radii centered at the hoglot. For each circle and with all houses located within

it, we linearly regressed log selling price on all explanatory variables, except distance to the

hoglot. Then we used the squared residuals from this analysis, e2, to fit the model e2 =

γ1 +exp(−γ2 ∗distance to hoglot)+ ε; the results are displayed in Table 3. All the estimates

of γ2 are significant at the 0.01 level, and the estimates of γ2 from the data in the circles of

radii 6 or larger are close in magnitude. This provides additional support to the findings in

Figure 2b, suggesting that house log selling price variability increases with proximity to the

hoglot.

We now examine the data to explore for evidence and nature of spatial correlation. For that

we use the Empirical Semivariogram Contour (ESC) plot (Ecker and Gelfand, 1999) based on

residuals from the OLS regression that omits the hoglot variable. This plot provides information

on how the correlation structure changes with direction. Let h = s − u be the separation
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Figure 3: Empirical semivariogram contour plot

vector for the pair of locations s,u. To construct the ESC plot the plane of separation vectors

h = (hx, hy) is divided into cells, and for each cell squared differences are averaged for all pairs

of residuals corresponding to locations whose separation vector falls within the cell; we require

hx ≥ 0 to remove dependence on the arbitrary ordering of two sites.

The ESC plot in Figure 3 indicates reasonably strong spatial correlation, with the highest

variability in the north east corner of Figure 3. Since the hoglot is in this direction for all sites

in the region, Figure 3 graphically supports a model having the covariance structure for home

selling prices being a function of the hoglot distance.

We now investigate how the correlation between log selling prices of two houses may depend

on their distance to the hoglot. For that we computed an empirical semivariogram plot based

on residuals from the regression on all explanatory variables (including hoglot distance) that is

tailored to detect the kind of spatial correlation described above. The distance range (0, 3) was

divided into bins, and for each bin squared differences are averaged for all pairs of residuals

corresponding to locations where the absolute value of the difference between the distances

of the houses to the hoglot falls within the bin. This empirical semivariogram plot, given in
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Figure 4, displays the classical rising up and leveling off that is typically modeled with a sill,

range and nugget in the geostatistical literature (see Cressie, 1993). Figure 4 indicates that

(log) selling price of houses with similar distances to the hoglot tend to be more correlated

than (log) selling price of houses with not so similar distances to the hoglot. Together, Figures

2, 3 and 4 indicate that the distance to the hoglot affects not only the mean structure of (log)

selling prices of houses, but also their covariance structure.

3 Model Specification

We propose a model for the log selling price of every actual or potential arms-length single

family house sale over the region of interest during the year 2001, that mimics the features of

the data revealed in the previous exploratory analysis. We assume houses are located at ‘single

points’ in the region, a mathematical simplification that would have no real bearing on the

conclusions since the region is predominately a residential neighborhood with lot and house

sizes negligible compared to the size of the region.
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We consider a model constructed under the premise that the main effects on housing prices

described in the Introduction are additive. Several of these additive components explain house-

specific characteristics effects and purely spatial effects on log selling prices under the hypothet-

ical scenario that, were no hoglot were in the neighborhood, a baseline process would result.

In addition, a model component explains the effect of the hoglot on log housing prices as a

‘shock’ process. We adopt the following notation: D ⊂ R2 represents the region of interest,

s ∈ D denotes a generic location with coordinates x and y say, and s∗ denotes the location of

the hoglot. Also, ||s|| denotes the (Euclidean) norm of s and |x| the absolute value of x ∈ R.

Let Y (s) represent the log selling price of a house located at s. Then

Y (s) =

p
∑

j=0

βjfj(s) + g1(ds;α) + W1(s) + W2(s) + ε(s), s ∈ D, (1)

where f0(s) = 1, f1(s), . . . , fp(s) are known house-specific characteristics, (β0, . . . , βp) ∈ Rp+1

and α ∈ Rq are unknown regression parameters, g1(·;α) is function of ds = ||s − s∗|| and

{ε(s) : s ∈ D} is white noise with variance τ 2 ≥ 0 representing unstructured (non-spatial)

variation. The random fields {W1(s) : s ∈ D} and {W2(s) : s ∈ D} are zero-mean Gaussian

and independent, as well as independent of ε(·), with respective covariance functions given by

cov{W1(s),W1(u)} = (1 − λ)(g2(ds;γ)g2(du;γ))
1

2 K1(||s − u||; θ1),

cov{W2(s),W2(u)} = λ(g2(ds;γ)g2(du;γ))
1

2 K2(|ds − du|; θ2),

where g2(·;γ) is a positive function of ds, with γ and λ ∈ [0, 1] unknown parameters. K1(·; θ1)

is an isotropic correlation function in R2 and K2(·; θ2) is a stationary correlation function

in R1, with θ1, θ2 unknown correlation parameters. The motivation for the latter correlation

function and its validity as a correlation function in R2 is given in the Appendix. The process

W1(·) can be loosely interpreted as the baseline spatial random effect while the process W2(·)

can be loosely interpreted as the hoglot random effect. The random field Y (·) is Gaussian and

non-stationary with

E{Y (s)} =

p
∑

j=0

βjfj(s) + g1(ds;α) and var{Y (s)} = g2(ds;γ) + τ2.

Hence g2(·;γ) models how the variance of log selling prices varies with location. We may have

g2(ds;γ) = γ1, in the case of homogeneous variability, or g2(ds;γ) varying with ds, as suggested
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by the data analysis in Section 2. Also, note that when τ 2 = 0, the correlation structure of

Y (·) is given by

corr{Y (s), Y (u)} = (1 − λ)K1(||s − u||; θ1) + λK2(|ds − du|; θ2),

which is a mixture between K1(·; θ1) that depends on the distance between the houses, and

K2(·; θ2) that depends on the absolute value of the differences between distances of houses and

the hoglot; the parameter λ quantifies the importance of K2(·; θ2) in the above mixture relative

to K1(·; θ2). A similar correlation structure occurs when τ 2 > 0, but the above interpretation

would not be so straightforward.

From the results of the exploratory analysis in Section 2 we use the model with p = 4 where

{fj(s)}
4
j=1 are the four house-specific characteristics, and

g1(ds;α) = α × min(ds, 5.25) , g2(ds;γ) = γ1 + exp(−γ2ds),

and the correlation functions of the W1(·) and W2(·) processes are assumed to be exponential

K1(h; θ1) = exp(−θ1h) , K2(h; θ2) = exp(−θ2h); θ1, θ2 > 0.

Let Y = (Y (s1), . . . , Y (sn))′ denote the n = 437 log selling prices of houses at locations

s1, . . . , sn ∈ D. Then we have

Y ∼ Nn(X1β + X2α,Σ(λ,γ,θ) + τ 2In), (2)

where X1 is a known n × 5 matrix defined by (X1)i1 = 1 and (X1)ij = fj−1(si), 2 ≤ j ≤ 5,

X2 is a known n × 1 matrix defined by (X2)i1 = min(dsi
, 5.25), In is the identity matrix and

Σ(λ,γ,θ) is an n × n non-negative definite matrix defined by

Σ(λ,γ,θ)ij =
(

g2(dsi
;γ)g2(dsj

;γ)
)

1

2

(

(1 − λ)K1(||si − sj ||; θ1) + λK2(|dsi
− dsj

|; θ2)
)

.

Remark. For any combination of parameters, sample size and sampling locations the covari-

ance matrix of the data is positive definite, but this is not necessarily so for Σ(λ,γ,θ); for

computational reasons we then require τ 2 > 0. The fact that linear combinations of positive

definite functions are not necessarily positive definite was pointed out by Myers and Journel

(1990).
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To complete the model specification, we assume the model parameters are independent a

priori with marginal distributions given by

p(β) ∝ 1 , p(α) ∝ 1 , λ ∼ unif[0, 1]

τ2 ∼ IG(2, a) , γi ∼ IG(2, bi) , θi ∼ IG(2, ci), i = 1, 2, (3)

where a, bi, ci > 0 are known and IG(p1, p2) denotes the inverse gamma distribution with

mean (p2(p1 − 1))−1. The priors for the model parameters are intended to be vague, where in

particular the marginal prior variances of τ 2, γi and θi are infinite. Additional inverse gamma

distributions could be placed on the hyper-parameters, if an extra layer of prior uncertainty

were desired.

4 Model Fitting and Results

We use the Bayesian approach to fit the proposed model from Section 3, where posterior

inference about the model parameters relies on a standard Monte Carlo Markov Chain (MCMC)

algorithm, a Gibbs sampler with a Metropolis step. The mean parameters µ = (β, α) are

simulated using a Gibbs sampler step, while the covariance parameters ∆ = (λ,γ,θ, τ 2) are

simulated using a Metropolis sampler step. The posterior distribution of the model parameters

is determined by (2) and (3) and the full conditional distribution of µ is

p(µ | ∆,y) = Np+2((X
′(Σ + τ2In)−1X)−1(X ′(Σ + τ2I)−1y), (X ′(Σ + τ2In)−1X)−1),

where X = [X1 X2] and Σ = Σ(λ,γ,θ) are given in (2). Likewise, the full conditional distri-

bution of ∆ is

p(∆ | µ;y) ∝ |(Σ + τ 2In)|−
1

2 exp{(y − Xµ)′(Σ + τ2In)−1(y − Xµ)}

× π(τ2)π(γ1)π(γ2)π(θ1)π(θ2),

where π(·) represent the inverse gamma prior densities of τ 2, γ1, γ2, θ1 and θ2 respectively given

in (3). This complete conditional distribution is not of standard form, so we use a Metropolis

step to simulate ∆ as a block. As proposal distribution for log(∆), we used a multivariate

normal distribution with mean vector equal to previous iteration and diagonal covariance matrix

with variances chosen by trial and error. Four chains were run for 25000 iterations each. Trace

plots of the regression parameters (not shown) and the covariance parameters in Figure 5

suggest very reasonable mixing and convergence.
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Figure 5: MCMC strings for covariance parameters

Posterior summaries for the mean parameters are given in Table 4. The 95% credible

intervals of β1 through β4 contain only positive values, confirming the significance of all the

house-specific explanatory variables. The regression parameter estimates in Table 4 are (as

expected) all positive and the interpretation of the effect of the corresponding explanatory

variables on log selling price is the same as that given in Section 2. In particular, Living

area (through the β1 parameter) and number of rooms (through the β2 parameter) positively

influence the selling price of a house; the bigger the house, the more value. Parcel size (β3

parameter) is interpreted as the larger the lot size, the more valuable the home built upon it.

Year built (β4 parameter) indicates that newer homes (larger values of year built) are worth

more, all other things being equal. A similar conclusion holds for the explanatory variable

involving the distance to the hoglot, whereby homes in closer proximity to the hoglot are worth

less.
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Table 4: Posterior summaries for the model mean parameters.

Mean Standard Deviation 95% Interval

β0 -4.146 1.893 (-7.460,-0.157)

β1 0.323 0.058 (0.206,0.431)

β2 0.204 0.034 (0.142,0.275)

β3 0.068 0.013 (0.038,0.090)

β4 0.005 0.001 (0.004,0.007)

α 0.457 0.120 (0.221,0.689)

Table 5: Posterior summaries for the model covariance parameters.

Mean Standard Deviation 95% Interval

γ1 0.087 0.033 (0.025,0.147)

γ2 1.338 0.904 (0.676,5.321)

θ1 27.820 7.881 (14.358,46.530)

θ2 0.053 0.033 (0.015,0.136)

τ2 0.015 0.004 (0.009,0.023)

λ 0.6591 0.0001 (0.6588,0.6593)

The Bayesian estimates are close to the corresponding ordinary least squares (OLS) es-

timates in Table 2, except for the estimate of β2. We note that the OLS analysis uses ds

as explanatory variable, while the Bayesian analysis uses min(ds, 5.25), which together with

the moderate correlations between some of the explanatory variables could potential cause the

discrepancy between the two estimates of β2.

Posterior summaries for the covariance parameters are given in Table 5. Note that the

estimate of θ2 is close to zero while the estimate of θ1 is far from zero, which means the spatial

correlation between the (log) selling price of two houses depends much more on their relative

distance to the hoglot, |ds − du|, than on the distance between them, ||s−u||. This conclusion

is also supported by the estimate of λ being larger than 0.5. Therefore, the purely spatial vari-

ability of (log) selling prices (that beyond what is explained by house-specific characteristics)

is mostly due to the hoglot effect.
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5 Conclusions

Recent advances on the modeling of real estate data has shown the importance of including

spatial effects to describe housing prices variability in a certain region/market. The commonly

used random fields with isotropic and stationary covariance functions do not adequately rep-

resent the housing prices variability in regions/markets that contain a localized externality

affecting housing prices. For this situation this work proposes a new non-stationary random

field to model the spatial variation of housing prices. The effect of the localized externality on

housing prices can be modeled through the mean function, the covariance function or both. In

particular, the variability of housing prices may depend on the distance to the localized exter-

nality, and the proposed correlation structure combines isotropic and non-isotropic correlations

functions.
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Appendix

Motivation and Validity of K2(·).

Let X(t) be a zero-mean stationary process in R1 with covariance function given by C(|h|) =

cov{X(t + h), X(t)}. For an arbitrary transformation T : R2 → R1, define X̃(s) = X(T (s)),

s ∈ R2. Then X̃(·) is a zero-mean random field in R2 with covariance function

cov{X̃(s), X̃(u)} = cov{X(T (s)), X(T (u))} = C(|T (s) − T (u)|).

A distinctive feature of the random field so constructed is that, for any y in the range of the

transformation T , X̃(s) is constant for all s in T−1({y}). Then the random field W2(·) defined

in Section 3.1 can be obtained, using T (s) = ds, as W2(s) = (λg2(T (s);γ))
1

2 X̃(s), and hence

K2(|ds − du|; θ2) is a correlation function in R2. The random field W2(·) takes the same value

for all locations at the same distance from s∗.
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