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Abstract

Although devised in 1936 by Fisher, discriminant analysis is still rapidly evolving, as the
complexity of contemporary data sets grows exponentially. Our classification rules explore these
complexities by modeling various correlations in higher-order data. Moreover, our classification
rules are suitable to data sets where the number of response variables is comparable or larger
than the number of observations. We assume that the higher-order observations have a separa-
ble covariance matrix and two different Kronecker product structures on the mean vector. In
this article we develop quadratic classification rules among g different populations where each
individual has κth order (κ ≥ 2) measurements. We also provide the computational algorithm
to compute the sample classification rules.

Keywords: Higher-order data; Separable covariance structure; Separable covariance structure;
structured additive mean model; Discriminant function; structured multiplicative mean model;
Maximum likelihood estimates.

JEL Classification: C10,C13

1 INTRODUCTION

Higher-order data (HOD) analysis is a mathematical challenge of this 21st Century. Higher-order

data is data that can be arranged in hypercubes as opposed to matrices. Such HOD spaces

are frequently encountered in areas such as engineering, environmental, medical and biomedical

sciences. HOD sets often contain many variables, and in most cases the number of variables

∗Correspondence to: Anuradha Roy, Department of Management Science and Statistics, The University of Texas
at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA
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exceeds the sample size. Dimensionality is an issue that can arise almost in every scientific field.

Traditional modeling does not work quite as well when the order of the is high. Modeling such

HOD, poses many challenges, often involving complex data structures. The properties of high

dimensionality are often poorly understood or overlooked in data modeling and analysis. HOD are

increasingly enveloping, and bringing new problems and opportunities for statisticians and data

analysts. Many questions arise with these HOD. One may ask what kind of structure do these

HOD have? What kind of models should we select and how to reduce the dimensions of these

data? How do they compare to the traditional model? What kind of theory do we have to develop

to handle these data? And, the ultimate question is whether we need a supercomputer to find the

solutions?

These questions are the motivating force for the study of HOD. Instead of going for analytic

closed form solutions which may not even exist for these HOD, we exploit the blessings of high

speed computers or a supercomputer to use these tremendous information to develop computational

methods to compute the solutions numerically: we do not need any more explicit or exact solutions

in our present computer age.

We develop successful algorithms to avoid the curse of Higher-order, also at the same time taken

care of the computational efficiency. One of the challenging problems with the HOD is to deal with

the estimation of very large variance-covariance matrix, and the analysis of complex dependence

structures between the variables and over the time-space point where the number of samples is

much less than the number of total dimensions in the HOD. One can achieve this by imposing some

appropriate variance-covariance matrix so that it captures the “natural” structure of the data with

much less number of samples. This may be achieved by first selecting the essential variables (Yu

and Liu, 2003) and then choosing the appropriate covariance structure over time-space points of

the data. Reduction of dimensionality over time-space points of the data is also another option.

Pavlenko, Björkstrom and Tillander (2011) studied the classification problem in high dimensional

data based on exploring sparsity patterns in the data dependence first and then computing the es-

timate of inverse of the variance-covariance matrix using constrained maximum likelihood. In their

study, rather than restricting themselves to methods that completely ignore potential dependence

structure they tried to recover it in the data and then used it to their advantage. They used the

popular technique graphical Lasso or gLasso (Friedman, Hastie and Tibshirani, 2008) in learning

the sparsity patterns. Roy and Leiva (2007) and Leiva and Roy (2009, 2011a,b) have introduced

many covariance structures for 3rd order (variables × sites × time points) high-dimensional data

in the context of classification problem. Leiva and Roy (2009) studied the problem of classification

of 3rd order or three-level high-dimensional data by using an “equicorrelated (partitioned) matrix”

(Leiva, 2007) on the measurement vector over sites in addition to an AR(1) correlation structure

on the repeated measurements over time, whereas in Roy and Leiva (2007) and Leiva and Roy

(2011a,b) they used doubly exchangeable covariance structure. Doubly exchangeable covariance

structure allows to partition a covariance structure into three unstructured covariance matrices,
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corresponding to each of the three levels. Kroonenberg (2008) discussed practical issues in apply-

ing multi-level or multiway component techniques to multiway data with an emphasis on methods

for three-way data. Akdemir and Gupta (2011) have developed classification techniques for high

dimensional multiway data. In their paper Akdemir and Gupta presented a technique called slicing

for obtaining an approximate nonsingular estimate of the covariance matrix for high dimensional

data when sample size is less than the dimension of the vector variate random variable. Dudoit

et al. (2002) and Lai et al. (2006) developed classification rules for tumor samples using thou-

sands of gene expression profiles with at most hundreds of samples. By allowing the monitoring of

expression levels in cells for thousands of genes simultaneously, microarray experiments may lead

to a more complete understanding of the molecular variations among tumors and hence to a finer

and more reliable classification. Bhattacharya et al. (2003) proposed a classifier called Liknon

that simultaneously performs classification and relevant gene identification. Liknon is trained by

optimizing a linear discriminant function with a penalty constraint via linear programming. Most

recently, Kim and Simon (2011) developed probabilistic classifiers which use the probabilities in

conjunction with other information such as treatment options and patient preferences for making

complex integrated clinical decisions.

However, there has been much less work on methods of discrimination of datasets that are

large at all levels, for example, having data points that exist in many variables over many time-

space points representing numerous populations. The goal of the study in this article is to develop

discriminant functions which are suitable for these kinds of data. For example, in classifying genes

in tumors, one can use any of the techniques mentioned in the previous paragraph in identifying

genes and then use these identified genes along with the intensity values in other gene probes

simultaneous and over a selected period of time. If we introduce more levels of gene expression in

our discriminant analysis the classification performance is bound to improve. Gene expression from

a diseased tissue would change over the time, whereas gene expression from a healthy tissue would

not change. The variance-covariance matrix should capture this information for the analysis of this

data set. Our new method with separable covariance structure and a suitably selected structure

on mean vector can handle this kind of data for better classification than just using the intensity

levels of genes taken at once. More and more HOHDD with different types of structures will come

in future and we must analyze them by developing appropriate methodologies for a particular data

set. A range of different models with varying complexity should be developed for a specific type

of structured data set and a model that is best in some sense (AIC or BIC) needs to be chosen

from a set of candidate models. Many of these HOHDD analysis problems require new or different

mathematics as well as different computational algorithms for solutions.

In this article we present new discriminant functions for discriminating g populations with

κ−separable covariance structures along with two different structured (additive and multiplicative)

mean vectors for κth order high-dimensional data. Recently, Ohlson, Ahmad and von Rosen (2010)

have studied separable covariance structure of several matrices, nonetheless separable covariance
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structure of two matrices was studied by many authors in the past,

2 PROBLEM FORMULATION

Let x
(p)
r,s be an mκ−variate vector of measurements of the rth replicate (individual) in the pth popu-

lation on the s = (s1, . . . , sκ−1) time-space point, r = 1, . . . , n(p), p = 1, . . . , g, si = 1, . . . ,mi, with

i = 1, . . . , κ−1. The first component s1 of the subindex vector s = (s1, . . . , sκ−1) indicates the time

coordinate of the time-space point (s1, . . . , sκ−1). Let x
(p)
r = (x

(p)′
r,(1,...,1),x

(p)′
r,(1,...,2), . . . ,x

(p)′
r,(m1,...,mκ−1)

)
′

be the m•-variate vector, where m• =
κ∏

i=1
mi, of all measurements corresponding to the rth indi-

vidual in the pth population obtained by stacking all mκ responses of the rth individual in the

pth population on the first time-space point (1, 1, . . . , 1), then stacking all its mκ responses on the

second time-space point (1, 1, . . . , 2), and so on until its mκ responses on the last time-space point

(m1,m3, . . . ,mκ−1) has been stacked. Let x
(p)
1 , . . . ,x

(p)

n(p) be a random sample of size n(p) from

the pth population with distribution Nm• (µx(p) ,Γx(p)), where Γx(p) has a κ−separable covariance

structure and the mean vector

µx(p) = (µ
(p)′
(1,...,1),µ

(p)′
(1,...,2), . . . ,µ

(p)′
(m1,...,mκ−1)

)
′
. (1)

In this article we develop a discriminant function with κ−separable covariance structure in addition

to two different mean vector structures: κ−separable additive and κ−separable multiplicative

structures. In the κ−additive mean structure we have that for each of the m• random variables

x
(p)
r , measured on the rth individual in the pth population, the mean of each of m• random variables

x
(p)
r can be expressed as

E
[
x(p)r

]
= µx(p) =

κ∑
i=1

mi∑
si=1

µ
(p)
isi

zisi ,

where µ
(p)
i =

(
µ
(p)
i1 , . . . , µ

(p)
imi

)′
∈ ℜmi , for i = 1, . . . , κ, with some identifiability constraints, for

instance µ
(p)
i1 = 0 or µ

(p)
imi

= 0 for i = 1, . . . , κ− 1. With the identifiability constraints µ
(p)
imi

= 0 for

i = 1, . . . , κ− 1 the model reduces to

E
[
x(p)r

]
=

κ∑
i=1

mi−1∑
si=1

µ
(p)
isi

zisi + µ(p)
κmκ

zκmκ

For each i = 1, . . . , κ, the terms zi1, . . . , zimi are used to indicate to which of the mi categories

(cells) of the ith level E(x
(p)
r ) belongs, that is, only one term at a time of these z’s is equal to

one in each of these κ levels and all the others are zero. For κ = 1, the above model reduces

to the commonly used additive mean model for one-way multivariate data or univariate repeated

measures data.
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The additive mean model can also be expressed using “Kronecker sum” of two vectors (see

(A4)). With this notation the additive mean model can be expressed as

E
[
x(p)
r

]
= µx(p) =

κ⊕
i=1

µ
(p)
i :=

κ∑
i=1

(
i−1⊗
h=1

1mh
⊗ µ

(p)
i ⊗

κ⊗
h=i+1

1mh

)
,

where x
(p)
r indicates them•−dimensional vector of all the measurements taken on the rth individual

in the pth population. We use the notation
0⊗

h=1

1mh
= 1 =

κ⊗
h=κ+1

1mh
.

In the κ−separable multiplicative mean vector structure we have that the mean of them•−vector

x
(p)
r can be expressed as

E
[
x(p)
r

]
= µx(p) =

κ⊗
i=1

µ
(p)
i ,

with µ
(p)
imi

= 1, for i = 1, . . . , κ − 1, as identifiability conditions. Similarly to the additive mean

model, this model can also be written as

E
[
x(p)r

]
=

κ∏
i=1

mi∏
si=1

(
µ
(p)
isi

)zisi
,

where again x
(p)
r indicates a generic random variable of the m• random variables measured on the

rth individual in the pth population, and the z exponents are used to indicate to which of the mi

categories (cells) of the ith level E(x
(p)
r ) belongs.

In both separable mean vector structures (additive and multiplicative), the mean vectors vary

over the time-space points with suitably (additive and multiplicative) constants. The number of

unknown free parameters in each of these separable mean vector structures in the pth population is

(m1+m2+· · ·+mκ)−(κ− 1). In this article we develop discriminant functions with separable mean

vector structures: both additive and multiplicative, along with separable covariance structure. We

also develop a discriminant function with the unstructured mean vectors along with separable

covariance structure.

Section 3 defines separable covariance structure. The maximum likelihood estimates (MLEs) of

the mean vector and separable variance covariance matrix in a single population case are obtained

in Section 4. The proposed classification rules with structured and unstructured mean vectors

are presented in Section 5. Finally, Section 6 concludes with several comments. Technical proofs

of the MLEs of all unknown parameters and derivatives of Kronecker sum are presented in four

appendices.

3 BASIC RESULTS FOR SEPARABLE COVARIANCE STRUC-
TURE ANALYSIS

Definition 1. Let xr = (x′
r,(1,...,1), . . . ,x

′
r,(m1,...,mκ−1)

)′ be an m•−variate partitioned real-valued

random vector where xr,s = xr,(s1,...,sκ−1) = (xr,s1, . . . , xr,smκ)
′ for si = 1, . . . ,mi, with i =
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1, . . . , κ− 1. Let µx∈ ℜm• be the mean vector, and Γx be the (m• ×m•)−dimensional partitioned

covariance matrix Γx = Cov [x] . The mκ−variate vectors xr,(1,...,1), . . . ,xr,(m2,...,mκ−1) are said to

have a κ−separable covariance structure if Γx is given by

Γx =

κ⊗
i=1

Vi,

where Vi, i = 1, . . . , κ are mi × mi−dimensional κ unstructured variance-covariance (positive

definite and symmetric) matrix at ith level for any other fixed jth (j ̸= i) level.

Note that if Γx = V 1 ⊗ V 2 ⊗ · · · ⊗ V κ, then Γx =
(

1
α2···ακ

V 1

)
⊗ (α2V 2) ⊗ · · · ⊗ (ακV κ),

for any non zero real numbers α2, . . . , ακ, and therefore parameters in each variance-covariance

matrix V i are not jointly identifiable unless we impose an appropriate condition. There are

several possible ways to handle this. It is always possible to obtain an estimate of either of

Vi, i = 1, . . . , κ by taking one of the diagonal elements of either of the component matrices V i

for i = 1, 2, . . . , κ to be one. Normally, the first or the last diagonal element of V i is taken to

be one. It must be noted that for classification purposes the variance-covariance matrices Vi for

i = 1, . . . , κ do not need to be unique, but V 1 ⊗V 2 ⊗ · · · ⊗V κ does. Therefore, the total number

of parameters in Γx is
∑κ

r=1mi (mi + 1) /2, but the total number of free parameters in Γx is∑κ
r=1 (mi (mi + 1) /2) − (κ − 1). This covariance structure can be justified as follows. Let Vi

represent the mi×mi−dimensional unstructured variance-covariance (positive definite) matrix on

all mi repeated measurements at the ith level. It is assumed that it does not depend on the jth

level, j ̸= i. The apparent advantage is that the number of parameters to be estimated is greatly

reduced, and thus the statistical analysis can be accomplished in small sample set-up.

Result 1 : The inverse of Γx is given by

Γ−1
x =

κ⊗
i=1

V−1
i , (2)

and the determinant of Γx is given by

|Γx| =
κ∏

i=1

|Vi|
m•
mi . (3)

4 MAXIMUM LIKELIHOOD ESTIMATES OF THEMEANVEC-
TOR AND THE COVARIANCEMATRIX IN A SINGLE POP-
ULATION

Let x1, . . . ,xn be an m•−variate random sample of size n from a population with distribution

Nm• (µx,Γx) . We assume that the covariance matrix Γx has the κ−separable structure as defined

in Section 3. We consider structured as well as the unstructured mean vectors. The structured

additive mean vector case is discussed in Section 4.1, the structured multiplicative mean vector

case is discussed in Section 4.2, and the unstructured mean vector case in Section 4.3.
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4.1 STRUCTURED ADDITIVE MEAN VECTOR

As in Definition 1 we partition the m•−variate vector xr as xr = (x′
r,(1,...,1), . . . ,x

′
r,(m1,...,mκ−1)

)
′
,

for r = 1, . . . , n, where xr,s = xr,(s1,...,sκ−1) = (xr,s1, . . . , xr,smκ)
′∈ ℜmκ , for si = 1, . . . ,mi with

i = 1, . . . , κ − 1. In this case we assume that for sκ = 1, . . . ,mκ, the sthκ component of the mean

vector E[xr,s] = µs = (µs,sκ)
mκ

sκ=1 is the sum µs,sκ =
κ∑

h=1

µhsh , where µhsh ∈ ℜ, with µimi = 0 for

i = 1, . . . , κ− 1. That is, the sthκ component µs,sκ of the mean µs of xr,s is discomposed into a sum

of κ summands: the sthκ component of a (base) mκ−vector µκ∈ ℜmκ , plus µisi (an effect due to

the ith level) for each i = 1, . . . , κ − 1. Therefore, µx =
κ⊕

i=1
µi where µi = (µi1, . . . , µimi)

′ ∈ ℜmi ,

for i = 1, . . . , κ, with µimi = 0 for i = 1, . . . , κ− 1.

4.1.1 MAXIMUM LIKELIHOOD SYSTEM OF EQUATIONS

The following theorem yields a system of equations to obtain the MLEs of the structured additive

mean vector µx and the separable covariance matrix Γx.

Theorem 1. Under the above assumptions and using the notation λi =
(
µ1, . . . ,µi−1,µi+1, . . . ,µκ

)
,

the maximum likelihood estimates of µ1, . . . ,µκ and Γx are given by

µ̂i = Dλi

x−
κ∑

i̸=j=1

j−1⊗
h=1

1mh
⊗ µj ⊗

κ⊗
h=j+1

1mh

 , for i = 1, . . . , κ, (4)

and

Γ̂x =

κ⊗
i=1

V̂i, (5)

where

Dλi
=

( i−1⊗
h=1

1mh
⊗ Imi ⊗

κ⊗
h=i+1

1mh

)′

Γ−1
x

(
i−1⊗
h=1

1mh
⊗ Imi ⊗

κ⊗
h=i+1

1mh

)−1

·

(
i−1⊗
h=1

1mh
⊗ Imi ⊗

κ⊗
h=i+1

1mh

)′

Γ−1
x , (6)

and

V̂i =
mi

nm•
Ci,

where Ci is given in (A12) for i = 1, . . . , κ.

The proof of this theorem which is simple but tedious, is given in Appendix B. We see that

the MLEs of (µi,Vi) , for i = 1, . . . , κ have implicit equations, and therefore are not tractable

analytically. The computation of these MLEs can be carried out by solving the above implicit

equations by the following fixed point iteration algorithm.

7



4.1.2 ITERATION ALGORITHM

We simultaneously calculate the maximum likelihood estimates (MLEs) of a total of
(∑κ

r=1mi −
(κ−1)

)
+
∑κ

r=1mi (mi + 1) /2 unknown parameters in the separable additive mean vector and the

separable variance-covariance matrix. The solutions satisfy the fully implicit and coupled equa-

tions with µi and Vi for i = 1, 2, . . . , κ.

Step 1: Calculate the global sample mean x = 1
n

∑n
r=1 xr as

x =
(
x′
(1,...,1,1), . . . ,x

′
(1,...,1,mκ−1)

, . . . ,x′
(1,m2,...,mκ−1)

, . . . ,x′
(m1,m2,...,mκ−1)

)′
.

It is a partitionedm•−dimensional vector, where xs denotes the sample mean vector corresponding

to time-space point s = (s1, . . . , sκ−1) , and is given by xs =
1
n

∑n
r=1 xr,s. The initial value µ̂0

1 of

µ̂1 is taken as µ̂0
1 = x(1,...,1,1). Compute the initial values of µ0

x =
κ⊕

i=1
µ0
i by assuming the initial

values of µ0
i = 1mi for i = 2, . . . , κ.

Step 2: Compute A from (B3).

Step 3: Compute the initial estimates V0
i of Vi for i = 1, . . . , κ from the data.

Step 4: Compute Ws from (A8).

Step 5: Compute A∗
s from (A9) and then compute Cs from (A12).

Step 6: Compute the revised estimate of Vi for i = 1, . . . , κ from (B5).

Step 7: Compute the estimate of Γ−1
x from (2).

Step 8: Compute Dλi
for i = 1, . . . , κ from (6) using Γ−1

x in Step 7.

Step 9: Compute the estimate µ̂i from (4).

Step 10: Repeat Steps 2-9 until convergence is attained. This is ensured by verifying if the

maximum of the absolute difference among the L1 distance between two successive values of µ̂i, i =

1, . . . , κ, and the absolute difference among the two successive values of trace of V̂i, i = 1, . . . , κ,

is less than a pre-determined number ϵ.

4.2 STRUCTURED MULTIPLICATIVE MEAN VECTOR

Using the same notation as in Section 4.1, in this case we assume that the sthκ component of the

mean vector E [xr,s] = µs = (µs,sκ)
mκ

sκ=1 is factorized into κ factors, that is, µs,sκ =
κ∏

h=1

µhsh , where

µhsh ∈ ℜ, with µimi = 1 for i = 1, . . . , κ − 1. That is, the sthκ component µs,sκ of the mean µs of

xr,s is the product of the s
th
h effect of the hth level for each h = 1, . . . , κ−1. Therefore, µx =

κ⊗
i=1

µi

where µi = (µi1, . . . , µimi)
′ ∈ ℜmi , for i = 1, . . . , κ, with µimi = 1 for i = 1, . . . , κ− 1.

4.2.1 MAXIMUM LIKELIHOOD SYSTEM OF EQUATIONS

The following theorem gives a system of equations whose solutions (iteratively obtained) are the

MLEs of the structured multiplicative mean vector µx and of the separable covariance matrix Γx.
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Theorem 2. Under the above assumptions and indicating with λi =
(
µ1, . . . ,µi−1,µi+1, . . . ,µκ

)
,

the maximum likelihood estimates of µi : i = 1, . . . , κ and Γx are given by

µ̂i = Eλi
· x,

for i = 1, . . . , κ, and

Γ̂x =

κ⊗
i=1

V̂i,

where

Eλi
=

( i−1⊗
h=1

µh ⊗ Imi ⊗
κ⊗

h=i+1

µh

)′

Γ−1
x

(
i−1⊗
h=1

µh ⊗ Imi ⊗
κ⊗

h=i+1

µh

)−1

·

(
i−1⊗
h=1

µh ⊗ Imi ⊗
κ⊗

h=i+1

µh

)′

Γ−1
x ,

and

V̂i =
ms

nm•
Ci,

where Ci is given in (C2) for i = 1, . . . , κ.

The proof of this theorem is similar to the one of theorem 1. A sketch of this proof is given in

Appendix C. Note that MLEs of (µi,Vi) , for i = 1, . . . , κ, have not explicit closed form, and the

estimates are obtained by a similar algorithm similar to Algorithm 4.1.2.

4.3 UNSTRUCTURED MEAN VECTOR

In this case we don’t assume any structure for the mean vector µx, that is, µx could be any vector

of ℜm• .

4.3.1 MAXIMUM LIKELIHOOD SYSTEM OF EQUATIONS

Using the same notation as in the above sections, we have the following theorem:

Theorem 3. Under the above assumptions, the maximum likelihood estimates of µx and Γx are

given by

µ̂x = x,

and

Γ̂x =
κ⊗

i=1

V̂i,

where

V̂i =
ms

nm•
Ci,

where Ci is given in (A12) for i = 1, . . . , κ.

A sketch of the proof is given in Appendix D. Note that MLEs of (µi,Vi) , for i = 1, . . . , κ, have

explicit closed form, and the estimates are obtained easily.
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5 DISCRIMINATIONWITH SEPARABLE COVARIANCEMA-
TRIX

In this section we derive the Bayesian decision rule for g populations with structured mean vectors.

Using the same notations as in the introduction, we assume that the component vectors of the

partitionedm•-variate vector x
(p)
r = (x

(p)′
r,(1,...,1),x

(p)′
r,(1,...,2), . . . ,x

(p)′
r,(m1,...,mκ−1)

)
′
have jointly separable

covariance matrix with factor matrices V
(p)
i , for i = 1, . . . , κ, with mean vector E[x

(p)
r ] = µx(p) ,

for p = 1, . . . , g. Three different cases of mean vector are considered:

1. Separable additive model: µx(p) =
κ⊕

i=1
µ
(p)
i , where µ

(p)
i =

(
µ
(p)
i1 , . . . , µ

(p)
imi

)′
∈ ℜmi , for i =

1, . . . , κ, with µ
(p)
imi

= 0 for i = 1, . . . , κ− 1.

2. Separable multiplicative model: µx(p) =
κ⊗

i=1
µ
(p)
i , with µ

(p)
imi

= 1 for i = 1, . . . , κ− 1.

3. Unstructured model: µx(p) ∈ ℜm• .

Let x
(p)
1 , . . . ,x

(p)

n(p) be a random sample of size n(p) from the pth population with distribution

Nm•

(
µx(p) ,Γ

(p)
x

)
, for p = 1, . . . , g. These g random training samples are independent among each

other.

Now we consider the problem of assigning a new individual with m•−variate partitioned mea-

surement vector x0 to one of the g groups in a Bayesian framework. The previous set-up leads to

a quadratic discriminant function as follows:

Under the assumptions of equal prior probabilities and equal costs of misclassification, the sample

classification rule is given by

Allocate an individual with response x0 to population i if

q(i) (x0) = largest of
{
q(p) (x0) : p = 1, . . . , g

}
, for i = 1, . . . , g, (7)

where the quadratic score q(p) is defined by

q(p) (x0) = −1

2
ln
∣∣∣Γ̂(p)

x

∣∣∣− 1

2
(x0 − µ̂x(p))

′ · Γ̂(p)−1
x · (x0 − µ̂x(p)) ,

and Γ̂
(p)−1
x and µ̂x(p) , for p = 1, . . . , i, are the MLEs of Γ

(p)−1
x and µx(p) corresponding to the

considered mean model. These estimates are obtained by using a similar fixed point iteration

algorithm as described in the respective section. The MLE Γ̂
(p)
x of Γ

(p)
x is given in (5). This

quadratic rule has been extensively studied by many authors. See McLachlan (1992).

6 CONCLUDING REMARKS

While discriminant analysis has a long history and a large number of classification rules have al-

ready been developed, significant challenges still remain. In this article we establish discriminant

10



functions with separable covariance structure along with different structures on mean vector that

are suitable for higher-order high-dimensional data, e.g., for better understanding of progressive

diseases. Models for high-dimensional data analysis is a challenging task and discriminating HO-

HDD sets is a contemporary challenge. We should always take the design consideration of the

data structure for selecting an appropriate classification rule. Since the distribution theory associ-

ated with the quadratic rule is particularly difficult, several authors (Park and Kshirsagar, 1994;

Paranjpe and Gore, 1994) proposed linear solutions to this problem. This article is restricted to

quadratic classification rule, however one can use modified linear classification rule (See Roy and

Leiva, 2007) by using the average of the variance-covariance matrices.

A KRONECKER PRODUCTDERIVATIVES ANDKRONECKER
SUM DERIVATIVES

Definition 2. Kronecker product: Let xh
mh×1

= (xh1, . . . , xhmh
)′ be an (mh×1)−dimensional vector

of real variables for h = 1, . . . , n, and let w be the Kronecker product of them. That is w is the

(
∑n

h=1mh)× 1 dimensional vector and is given by

w n∑
h=1

mh

×1

=

n⊗
h=1

xh =

(
n−1⊗
h=1

xh

)
⊗ xn = x1 ⊗ x2 ⊗ · · · ⊗ xn

=

(j−1⊗
h=1

xh

)
⊗ Imj ⊗

 n⊗
h=j+1

xh

xj (A1)

Now, the following formulas can be easily proved:

1. The quantity ∂w
∂xj

can be calculated as follows:

∂
⊗n

h=1 xh

∂xj
=

(
j−1⊗
h=1

x′
h

)
⊗ Imj ⊗

 n⊗
h=j+1

x′
h

 for j = 1, . . . , n, (A2)

where it is assumed that
i⊗

h=k

xh = 1 if k > i.

2. Let D be a
(∑n

h=1mh ×
∑n

h=1mh

)
−dimensional symmetric matrix. Then ∂(D·w)

∂xj
and

∂(w′·D·w)
∂xj

are given by

∂(D·
⊗n

h=1 xh)

∂xj
=

(j−1⊗
h=1

x′
h

)
⊗ Imj ⊗

 n⊗
h=j+1

x′
h

 ·D′, forj = 1, . . . , n.
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and

∂ (
⊗n

h=1 xh)
′ ·D· (

⊗n
h=1 xh)

∂xj
= 2

j−1⊗
h=1

x′
h ⊗ Imj ⊗

 n⊗
h=j+1

x′
h

 ·D·

(
n⊗

h=1

xh

)
,

for j = 1, . . . , n. When y = a − w = a −
⊗n

h=1 xh, where a is a constant vector, and

q = y′ ·D · y = (a − w)′ ·D· (a − w) , then

∂q

∂xj
=

∂ (y′ ·D · y)
∂xj

=
∂
[
(a−

⊗n
h=1 xh)

′ ·D · (a−
⊗n

h=1 xh)
]

∂xj

=

(
∂
⊗n

h=1 xh

∂xj

)
·
(
∂ [y′ ·D · y]

∂y

)

= −2

(j−1⊗
h=1

x′
h

)
⊗ Imj ⊗

 n⊗
h=j+1

x′
h

 ·D ·

(
a−

n⊗
h=1

xh

)
. (A3)

Definition 3. Kronecker sum: Let xh
mh×1

= (xh1, . . . , xhmh
)′ be an mh × 1 vector of real variables,

for h = 1, . . . , n, then the Kronecker sum of these vectors is the (
∑n

h=1mh)× 1− vector v given by

v n∑
h=1

mh

×1

=
n⊕

k=1

xk = x1 ⊕ x2 ⊕ · · · ⊕ xn

=

n∑
k=1

(
k−1⊗
h=1

1mh
⊗ xk ⊗

n⊗
h=k+1

1mh

)

=

n∑
k=1

(
k−1⊗
h=1

1mh
⊗ Imk

⊗
n⊗

h=k+1

1mh

)
xk (A4)

Using the previous Kroncker product derivatives, the following formulas can be easily proved:

1. The quantity ∂v
∂xj

can be calculated as follows:

∂
n⊕

k=1

xk

∂xj
=

(
j−1⊗
k=1

1′mk

)
⊗ Imj ⊗

 n⊗
h=j+1

1′mk

 for j = 1, . . . , n, (A5)

where again it is assumed that

i⊗
h=k

xh = 1 if k > i.

2. Let D is a
(∑n

h=1mh×
∑n

h=1mh

)
−dimensional symmetric matrix. Then ∂(D·v)

∂xj
and ∂(v′·D·v)

∂xj

are given by

∂D·
n⊕

k=1

xk

∂xj
=

(j−1⊗
k=1

1′mk

)
⊗ Imj ⊗

 n⊗
k=j+1

1′mk

 ·D′, forj = 1, . . . , n,
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and

∂

∂xj

[(
n⊕

k=1

xk

)′

·D·
n⊕

k=1

xk

]

=
∂

∂xj

j−1⊗
h=1

1mh
⊗ xj⊗

n⊗
h=j+1

1mh

′

·D·

j−1⊗
h=1

1mh
⊗ xj⊗

n⊗
h=j+1

1mh


+2

∂

∂xj

n∑
j ̸=k=1

(
k−1⊗
h=1

1mh
⊗ xk⊗

n⊗
h=k+1

1mh

)′

·D·

j−1⊗
h=1

1mh
⊗ xj⊗

n⊗
h=j+1

1mh


= 2

j−1⊗
h=1

1mh
⊗Imj⊗

n⊗
h=j+1

1mh

′

·D·

j−1⊗
h=1

1mh
⊗ xj⊗

n⊗
h=j+1

1mh


+2

j−1⊗
h=1

1mh
⊗Imj⊗

n⊗
h=j+1

1mh

′

·D·
n∑

j ̸=k=1

(
k−1⊗
h=1

1mh
⊗ xk⊗

n⊗
h=k+1

1mh

)

= 2

j−1⊗
h=1

1mh
⊗Imj⊗

n⊗
h=j+1

1mh

′ ·D·
n⊕

k=1

xk,

for j = 1, . . . , n. Therefore, if y = a − v = a −
n⊕

k=1

xk, where a is a constant vector, D is

a (
∑n

h=1mh ×
∑n

h=1mh)−dimensional symmetric matrix, and q = y′ · D · y = (a − v)′ ·
D· (a − v) then

∂q

∂xj
=

∂ (y′ ·D · y)
∂xj

=

∂

[(
a−

n⊕
k=1

xk

)′
·D·

(
a−

n⊕
k=1

xk

)]
∂xj

=

∂

[(
a−

n⊕
k=1

xk

)′
·D·

(
a−

n⊕
k=1

xk

)]
∂xj

=

∂

(
a−

n⊕
k=1

xk

)
∂xj

 ·
(
∂ [y′ ·D · y]

∂y

)

= −2

(j−1⊗
k=1

1′mk

)
⊗ Imj ⊗

 n⊗
h=j+1

1′mk

 ·D·

(
a−

n⊕
k=1

xk

)
(A6)

If Vk
mk×mk

= (vk,ij) , for k = 1, . . . , κ, and A
m•×m•

are symmetric matrices, where m• =
∏κ

k=1mk.

Let n−
s =

∏s
k=1mk and n+

s =
∏κ

k=smk = m•
n−
s−1

. The matrix A will be considered (when necessary)

as an appropriate partitioned matrix in square submatrices, that is, for each k = 1, . . . , κ we

have A
m•×m•

=

 As,ij
m•
mk

×m•
mk


i,j=1,...,mk

=

 As,ij

n−
k−1n

+
k+1×n−

k−1n
+
k+1


i,j=1,...,mk

. With this notation and
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since

κ⊗
k=1

Vk = Kn−
s−1,n

+
s

(
κ⊗

k=s

Vk ⊗
s−1⊗
k=1

Vk

)
Kn+

s ,n−
s−1

= Kn−
s−1,n

+
s

[
Vs ⊗

(
κ⊗

k=s+1

Vk ⊗
s−1⊗
k=1

Vk

)]
Kn+

s ,n−
s−1

,

we have

tr

[(
κ⊗

k=1

Vk

)
·A

]

= tr

[(
Kn−

s−1,n
+
s

[
Vs ⊗

(
κ⊗

k=s+1

Vk ⊗
s−1⊗
k=1

Vk

)]
Kn+

s ,n−
s−1

)
·A

]

= tr

[(
Vs ⊗

(
κ⊗

k=s+1

Vk ⊗
s−1⊗
k=1

Vk

))
·
(
Kn+

s ,n−
s−1

·A ·Kn−
s−1,n

+
s

)]
= tr [(Vs ⊗Ws) ·A∗

s] (A7)

where

Ws =

κ⊗
k=s+1

Vk ⊗
s−1⊗
k=1

Vk (A8)

and

A∗
s= Kn+

s ,n−
s−1

·A ·Kn−
s−1,n

+
s
, (A9)

where W1 =
⊗κ

k=2Vk, Wκ =
⊗κ−1

k=1 Vk and Kn−
0 ,n+

1
= In+

1
. The matrices K are called vec-

permutation matrices or commutation matrices
(
see Section 16.3, pp. 343-350 in Harville (1997)

)
.

In particular Km,n
mn×mn

is the matrix such that

vec
(
H′) = Km,nvec (H) ,

for any given m× n−matrix H, and it turns up to be

Km,n =

m∑
i=1

n∑
j=1

[
ei (m) e′j (n)

]
⊗
[
ei (m) e′j (n)

]′
, (A10)

where ei (h) is the hth column of the identity matrix Ih. The operation vec(·) stacks the columns

of a matrix on top of each other. Then we have

∂

∂Vs
tr

[(
κ⊗

k=1

Vk

)
·A

]
=

∂

∂Vs
tr [(Vs ⊗Ws) ·A∗

s]

=
∂

∂Vs
tr
[
Vs ·

(
tr
[
WsA

∗
s,ij

])
i,j=1,...,p

]
=

∂

∂Vs
tr [Vs ·Cs]

= 2Cs − diag (Cs) , (A11)
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where

Cs=
(
tr
[
WsA

∗
s,ij

])
i,j=1,...,p

, (A12)

where Ws and A∗
s are given by (A8) and (A9), respectively.

B MAXIMUM LIKELIHOOD ESTIMATION OF (µi,Vi) , i =
1, . . . , κ, FOR THE SEPARABLE ADDITIVE MEAN MODEL.

Proof of Theorem 1. In this case µx =
κ⊕

i=1
µi. The likelihood function L = L (µx,Γx) =

L ((µi,Vi) : i = 1, . . . , κ) is

L (µx,Γx) =
exp−1

2

∑n
r=1 (xr − µx)

′
Γ−1
x (xr − µx)

(2π)
nm•
2 |Γx|

n
2

.

Thus, the log likelihood function can be written as

ln(L) = −nm•
2

ln (2π)− n

2
ln |Γx| −

1

2

n∑
r=1

(xr − µx)
′
Γ−1
x (xr − µx) . (B1)

Let
•
xr = xr−µx = xr−

κ⊕
i=1

µi, and let xs denotes the sample mean vector corresponding to time-

space point s = (s1, . . . , sκ−1) , that is, xs = 1
n

∑n
r=1 xr,s. Then the sample mean vector x can

be expressed as x =
(
x′
(1,...,1,1), . . . ,x

′
(1,...,1,mκ−1)

, . . . ,x′
(1,m2,...,mκ−1)

, . . . ,x′
(m1,m2,...,mκ−1)

)′
. It is a

partitionedm•−dimensional vector, and x = 1
n

∑n
r=1 xr. Since

•
xr = xr−µx = (xr−x)+(x− µx),

the sum of quadratic terms in the above log likelihood function can be written as

n∑
r=1

(xr − µx)
′
Γ−1
x (xr − µx) = tr

[
Γ−1
x

n∑
r=1

(xr − µx) (xr − µx)
′

]
= tr

[
Γ−1
x (U+ Z)

]
,

where

U =

n∑
r=1

(xr−x) (xr−x)′ , (B2)

and

Z = n (x− µx) (x− µx)
′ ,

= n

(
x−

κ⊕
i=1

µi

)(
x−

κ⊕
i=1

µi

)′

.

Therefore, the log likelihood function (B1) can be written as

ln(L) = −nm•
2

ln (2π)− n

2
ln |Γx| −

1

2
tr
(
Γ−1
x U

)
− 1

2
tr
(
Γ−1
x Z

)
,

= −nm•
2

ln (2π)− n

2
ln |Γx| −

1

2
tr
(
Γ−1
x U

)
,

−n

2

(
x−

κ⊕
i=1

µi

)′

Γ−1
x

(
x−

κ⊕
i=1

µi

)
.
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We first find the maximum likelihood estimates for the parameters µi : i = 1, . . . , κ, for a fixed

covariance matrix Γx. For this we find the partial derivatives of ln(L) with respect of µi, for each

i = 1, . . . , κ. Now, the partial derivative ∂
∂µi

ln(L) is given by (see (A6) and (A1))

∂

∂µi

ln(L)

= −n

2

∂

∂µi

[(
x−

κ⊕
h=1

µh

)′

Γ−1
x

(
x−

κ⊕
h=1

µh

)]

= n

(
i−1⊗
h=1

1mh
⊗ Imi ⊗

κ⊗
h=i+1

1mh

)′

Γ−1
x

(
x−

κ⊕
h=1

µh

)

= n

(
i−1⊗
h=1

1mh
⊗ Imi ⊗

κ⊗
h=i+1

1mh

)′

Γ−1
x

x−
κ∑

j=1

j−1⊗
h=1

1mh
⊗ µj ⊗

κ⊗
h=j+1

1mh


= n

(
i−1⊗
h=1

1mh
⊗ Imi ⊗

κ⊗
h=i+1

1mh

)′

Γ−1
x

x−
κ∑

i̸=j=1

j−1⊗
h=1

1mh
⊗ µj ⊗

κ⊗
h=j+1

1mh


−n

(
i−1⊗
h=1

1mh
⊗ Imi ⊗

κ⊗
h=i+1

1mh

)′

Γ−1
x

(
i−1⊗
h=1

1mh
⊗ µi ⊗

κ⊗
h=i+1

1mh

)

= n

(
i−1⊗
h=1

1mh
⊗ Imi ⊗

κ⊗
h=i+1

1mh

)′

Γ−1
x

x−
κ∑

i̸=j=1

j−1⊗
h=1

1mh
⊗ µj ⊗

κ⊗
h=j+1

1mh


−n

(
i−1⊗
h=1

1mh
⊗ Imi ⊗

κ⊗
h=i+1

1mh

)′

Γ−1
x

(
i−1⊗
h=1

1mh
⊗ Imi ⊗

κ⊗
h=i+1

1mh

)
µi

Equating ∂
∂µi

ln(L) to 0 we get

µ̂i = Dλi

x−
κ∑

i ̸=j=1

j−1⊗
h=1

1mh
⊗ µj ⊗

κ⊗
h=j+1

1mh

 ,

where

Dλi
=

( i−1⊗
h=1

1mh
⊗ Imi ⊗

κ⊗
h=i+1

1mh

)′

Γ−1
x

(
i−1⊗
h=1

1mh
⊗ Imi ⊗

κ⊗
h=i+1

1mh

)−1

·

(
i−1⊗
h=1

1mh
⊗ Imi ⊗

κ⊗
h=i+1

1mh

)′

Γ−1
x , for i = 1, . . . , κ.

We now maximize the log likelihood function (B1) with respect to Vi, for i = 1, . . . , κ for fixed

µi : i = 1, . . . , κ to get the MLEs of Vi, for i = 1, . . . , κ. Since Γ−1
x and |Γx| can be expressed as

a function of V−1
i , for i = 1, . . . , κ, maximizing with respect to Vi, for i = 1, . . . , κ is equivalent

to maximizing with respect to V−1
i , for i = 1, . . . , κ. Now since Γ−1

x =
⊗κ

i=1V
−1
i and |Γx| =
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κ∏
i=1

|Vi|
m•
mi , we substitute these expressions in the log likelihood (B1) we get

ln(L) = −nm•
2

ln (2π)− n

2
ln |Γx| −

1

2

n∑
r=1

(xr − µx)
′
Γ−1
x (xr − µx)

= −nm•
2

ln (2π) +
κ∑

i=1

nm•
2mi

ln
∣∣V−1

i

∣∣− 1

2

n∑
r=1

(xr − µx)
′

(
κ⊗

i=1

V−1
i

)
(xr − µx)

= −nm•
2

ln (2π) +

κ∑
i=1

nm•
2mi

ln
∣∣V−1

i

∣∣− 1

2
tr

[(
κ⊗

i=1

V−1
i

)
·A

]
,

where

A =
n∑

r=1

(xr − µx) (xr − µx)
′ . (B3)

Since Vs = (vs,ij) is a symmetric matrix, using Equation 8.12 on pp. 306 in Harville (1997), and

Equations (A7) and (A11) of Appendix A, we have

∂

∂V−1
s

ln
(∣∣V−1

s

∣∣) = 2Vs − diag (vs,11, vs,22, , . . . , vs,msms)

= 2Vs − diag (Vs) ,

and

∂

∂V−1
s

tr

[(
κ⊗

i=1

V−1
i

)
·A

]
=

∂

∂V−1
s

tr
[(
V−1

s ⊗Ws

)
·A∗

s

]
= 2Cs − diag (Cs) ,

where

Ws =

κ⊗
i=s+1

Vi ⊗
s−1⊗
i=1

Vi,

A∗
s =

 A∗
s,ij

n−
s−1n

+
s+1×n−

s−1n
+
s+1


i,j=1,...,ms

= Kn+
s ,n−

s−1
·A ·Kn−

s−1,n
+
s
,

and

Cs =
(
tr
[
WsA

∗
s,ij

])
i,j=1,...,ms

,

with

n−
s =

s∏
r=1

mr, and n+
s =

κ∏
r=s

mr,

and Kn+
s ,n−

s−1
the commutation matrix (see Appendix equation (A10) ) with Kn+

1 ,n−
0
= In+

1
. Now,

∂

∂V−1
s

ln(L) =
nm•
2ms

∂

∂V−1
s

ln
(∣∣V−1

s

∣∣)
−1

2

∂

∂V−1
s

tr

[(
κ⊗

i=1

V−1
i

)
·A

]

=
nm•
2ms

[2Vs − diag (Vs)]−
1

2
(2Cs − diag (Cs))
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Equating ∂
∂V−1

s
ln(L) to 0 we get

Vs −
1

2
diag (Vs) =

ms

nm•
Cs −

1

2
diag

(
ms

nm•
Cs

)
. (B4)

Which implies

1

2
diag (Vs) = diag

[
Vs −

1

2
diag (Vs)

]
= diag

[
ms

nm•
Cs −

1

2
diag

(
ms

nm•
Cs

)]
=

1

2
diag

(
ms

nm•
Cs

)
,

therefore, from (B4), we obtain

Vs =
ms

nm•
Cs, for s = 1, . . . , κ. (B5)

C MAXIMUM LIKELIHOOD ESTIMATION OF (µi,Vi) , FOR
i = 1, . . . , κ, FOR THE SEPARABLEMULTIPLICATIVEMEAN
MODEL.

Proof of Theorem 2. In this case µx =
κ⊗

i=1
µi. The quantity

•
xr now indicates the vector

•
xr = xr − µx = xr−

κ⊗
i=1

µi, then following the same logic as in the prof of theorem 1 we obtain

the following expression for the log likelihood function

ln(L) = −nm•
2

ln (2π)− n

2
ln |Γx| −

1

2
tr
(
Γ−1
x U

)
,

−n

2

(
x−

κ⊗
i=1

µi

)′

Γ−1
x

(
x−

κ⊗
i=1

µi

)
. (C1)

where U is given in (B2). We will first find the maximum likelihood estimates for the parameters

µi : i = 1, . . . , κ, for a fixed covariance matrix Γx. For that we will find the first partial derivatives

of ln(L) with respect to each of the µi : i = 1, . . . , κ, respectively. Now, the partial derivative

18



∂
∂µi

ln(L) is given by (see (A3))

∂

∂µi

ln(L) = −n

2

∂

∂µi

[(
x−

κ⊗
i=1

µi

)′

Γ−1
x

(
x−

κ⊗
i=1

µi

)]

= n

(
i−1⊗
h=1

µh ⊗ Imi ⊗
κ⊗

h=i+1

µh

)′

Γ−1
x

(
x−

κ⊗
i=1

µi

)

= n

(
i−1⊗
h=1

µh ⊗ Imi ⊗
κ⊗

h=i+1

µh

)′

Γ−1
x

(
x−

(
i−1⊗
h=1

µh ⊗ Imi ⊗
κ⊗

h=i+1

µh

)
µi

)

= n

(
i−1⊗
h=1

µh ⊗ Imi ⊗
κ⊗

h=i+1

µh

)′

Γ−1
x x

−n

(
i−1⊗
h=1

µh ⊗ Imi ⊗
κ⊗

h=i+1

µh

)′

Γ−1
x

(
i−1⊗
h=1

µh ⊗ Imi ⊗
κ⊗

h=i+1

µh

)
µi

Equating ∂
∂µi

ln(L) to 0 we get

µ̂i = Eλi
x,

where

Eλi
=

( i−1⊗
h=1

µh ⊗ Imi ⊗
κ⊗

h=i+1

µh

)′

Γ−1
x

(
i−1⊗
h=1

µh ⊗ Imi ⊗
κ⊗

h=i+1

µh

)−1

(
i−1⊗
h=1

µh ⊗ Imi ⊗
κ⊗

h=i+1

µh

)′

Γ−1
x , for i = 1, . . . , κ.

We now substitute the values of Γ−1
x and |Γx| in the log likelihood (C1), and maximize it, as

before, with respect to V−1
i , for i = 1, . . . , κ, by equating its corresponding partial derivatives to

0. This procedure leads to the same results as before, that is,

Vs =
ms

nm•
Cs, for s = 1, . . . , κ, (C2)

where

Cs =
(
tr
[
WsA

∗
s,ij

])
i,j=1,...,ms

,

with

Ws =

κ⊗
i=s+1

Vi ⊗
s−1⊗
i=1

Vi,

and

A∗
s=

 A∗
s,ij

n−
s−1n

+
s+1×n−

s−1n
+
s+1


i,j=1,...,ms

= Kn+
s ,n−

s−1
·A ·Kn−

s−1,n
+
s
,

being
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n−
s =

s∏
r=1

mr, and n+
s =

κ∏
r=s

mr,

andKn+
s ,n−

s−1
the commutation matrix (see Appendix equation (A10) ) understanding thatKn+

1 ,n−
0
=

In+
1
.

D MAXIMUM LIKELIHOOD ESTIMATION OF µx AND Vi,

FOR i = 1, . . . , κ, FOR THE UNSTRUCTUREDMEANMODEL.

Proof of Theorem 3. Since, the log likelihood function (B1) can be written as

ln(L) = −nm•
2

ln (2π)− n

2
ln |Γx| −

1

2
tr
(
Γ−1
x W

)
,

−n

2
(x−µx)

′
Γ−1
x (x−µx) ,

then, it is easy to show that the MLE of the mean vector µx is x.

In the other hand, the system equation for obtaining the MLE of Vi, for i = 1, . . . , κ is the

same as in the structured cases, but replacing µx by x, that is,in the unstructured case the matrix

A is A =
∑n

r=1 (xr − x) (xr − x)′ , and

Vs =
ms

nm•
Cs,

for s = 1, . . . , κ.
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