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ABSTRACT

In reliability analysis, accelerated life-testing allows gradual increment of stress levels on test units

during an experiment. In a special class of accelerated life tests known as step-stress tests, the stress

levels increase discretely at pre-fixed time points, allowing the experimenter to obtain information on

the lifetime parameters more quickly than under normal operating conditions. Moreover, when a test

unit fails, there are often more than one fatal cause for the failure, such as mechanical or electrical. In

this article, we consider the step-stress model under Type-I censoring when the lifetime distributions

of the different risk factors are independent generalized exponential. Under this setup, we derive the

maximum likelihood estimates of the unknown scale and shape parameters of the different causes with

the assumption of cumulative damage. Using the asymptotic distributions and the parametric boot-

strap method, we discuss the construction of confidence intervals for the parameters. The precision

of the estimates and the performance of the confidence intervals are also assessed through extensive

Monte Carlo simulations, and finally, the methods of inference discussed here is illustrated with an
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1 Introduction

In order to guarantee the service life and performance of a product, or even to compare alterna-

tive manufacturing designs, life-testing under normal operating conditions is obviously most desirable.

However, due to the continual improvement in manufacturing design and technology, one often experi-

ences difficulty in obtaining sufficient information about the failure time distribution of the products.

As the products become highly reliable with substantially long life-spans, time-consuming and ex-

pensive tests are often required to collect enough failure data, which are necessary to draw inference

about the relationship of lifetime with the external stress variables. In such situations, the standard

life-testing methods are not appropriate, especially when developing prototypes of new products. This

difficulty is overcome by accelerated life tests (ALT) wherein the units are subjected to higher stress

levels in order to cause rapid failures. ALT allows the experimenter to apply more severe stresses to

obtain information on the parameters of the lifetime distributions more quickly than would be possible

under normal operating conditions. Some key references in the field of ALT include Nelson and Meeker

(1978), Nelson (1990), Meeker and Escobar (1998), and Bagdonavicius and Nikulin (2002).

A special class of the accelerated life-testing, known as step-stress testing, allows the experimenter

to gradually increase the stress levels at some pre-fixed time points during the experiment for maxi-

2



mal flexibility and adjustability. This model has attracted great attention in the reliability literature.

Sedyakin (1966) proposed one of the fundamental models in this area, known as the cumulative damage

or cumulative exposure model. This model has been further discussed and generalized by Bagdonavi-

cius (1978) and Nelson (1980). Recently, exact conditional inference for a step-stress model with

exponential competing risks was developed by Balakrishnan and Han (2008), Han and Balakrishnan

(2010). Gouno, Sen and Balakrishnan (2004), Balakrishnan and Han (2009) discussed the problem of

determining the optimal stress duration under progressive Type-I censoring; see also Han et al. (2006)

for some related comments. More recently, Han and Ng (2013) quantified the advantage of using the

step-stress ALT relative to the constant-stress ALT under several optimality criteria in the situations

of complete sampling and Type-I censoring. For a concise review of step-stress models, readers are

referred to Gouno and Balakrishnan (2001) and Balakrishnan (2009).

Furthermore, in reliability analysis, it is common that a failure is associated with one of several fatal

risk factors the test unit is exposed to. Since it is not usually possible to study the test units with an

isolated risk factor, it becomes necessary to assess each risk factor in the presence of other risk factors.

In order to analyze such a competing risks model, each failure observation must come in a bivariate

form composed of a failure time and the cause of failure. Cox (1959), David and Moeschberger (1978),

Klein and Basu (1981, 1982), and Crowder (2001) have all investigated the competing risks models

and considered some specific parametric lifetime distributions for each risk factor. In this paper,

we consider the case when the lifetime distribution of each risk factor is two-parameter generalized

exponential (GE).

In this paper, we consider the problem of point and interval estimations for a general step-stress

model under Type-I censoring when the lifetime distributions of the different risk factors are indepen-

dent GE. The rest of the paper is organized as follows. Using the cumulative damage model for the

effect of changing stress in step-stress ALT, Section 2 describes the model under study and derives

the MLEs of the scale and shape parameters of different risk factors. Based on the asymptotic dis-
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tributions of the MLEs, we construct the confidence intervals for the unknown parameters as well as

the confidence intervals by a parametric bootstrap method in Section 3. In Section 4, the precision of

the estimates and the performance of the confidence intervals are investigated in terms of bias, mean

squared error (MSE), and probability coverage via extensive Monte Carlo simulations. In Section 5,

we present a numerical example to illustrate the methods of inference developed in this article, and

Section 6 is devoted to some concluding remarks and future works in this direction.

2 Model Description and MLEs

Let us first define (x0 <) x1 < x2 < . . . < xk to be the k (≥ 2) ordered stress levels and

0 ≡ τ0 < τ1 < τ2 < . . . < τk < ∞ to be the pre-fixed stress change time points being used in the

step-stress ALT. A random sample of n identical units is placed on the test under the initial stress level

x1 (or x0 for a partially accelerated life test, PALT). The successive failure times are then recorded

along with the information about which risk factor caused each failure. At the first pre-fixed time

τ1, the stress level is increased to x2 and the life test continues until the next pre-fixed time τ2 at

which the stress level is increased to x3. The life test continues in this fashion until the pre-specified

censoring time τk. When all n units fail before τk or when τk is unbounded (viz., τk → ∞), then a

complete set of failure observations would result for this step-stress test (viz., no censoring). Suppose

each unit fails by one of r (≥ 2) fatal risk factors and the time-to-failure by each competing risk has

an independent GE distribution which obeys the cumulative damage model. With a constant shape

parameter αj > 0 for the risk factor j across the stress levels being used, let λij > 0 be the scale

parameter for the risk factor j at the stress level xi for 1 ≤ i ≤ k and 1 ≤ j ≤ r. Then, the cumulative
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distribution function (CDF) of the lifetime Tj due to the risk factor j is given by

Gj(t) = Gj(t;λ?j , αj) =

[
1− exp

(
−

i−1∑
l=1

λlj∆l − λij(t− τi−1)

)]αj

if


τi−1 ≤ t < τi for i = 1, 2, . . . , k − 1

τk−1 ≤ t <∞ for i = k

(2.1)

for 1 ≤ j ≤ r where λ?j = (λ1j , λ2j , . . . , λkj), and ∆i = τi − τi−1 is the step duration at the stress

level xi. The corresponding probability density function (PDF) of Tj is given by

gj(t) = gj(t;λ?j , αj) = αjλij exp

(
−

i−1∑
l=1

λlj∆l − λij(t− τi−1)

)

×

[
1− exp

(
−

i−1∑
l=1

λlj∆l − λij(t− τi−1)

)]αj−1

if


τi−1 ≤ t < τi for i = 1, 2, . . . , k − 1

τk−1 ≤ t <∞ for i = k

(2.2)

for 1 ≤ j ≤ r. Since only the smallest of T1, T2, . . . , Tr is observed, let T = min {T1, T2, . . . , Tr} denote

the overall failure time of a test unit. Then, its CDF and PDF are readily obtained to be

F (t) = F (t;λ,α) = 1− S(t) = 1−
r∏
j=1

(
1−Gj(t)

)
= 1−

r∏
j=1

{
1−

[
1− exp

(
−

i−1∑
l=1

λlj∆l − λij(t− τi−1)

)]αj
}

if


τi−1 ≤ t < τi for i = 1, 2, . . . , k − 1

τk−1 ≤ t <∞ for i = k

(2.3)

f(t) = f(t;λ,α) =

[
r∑
j=1

hj(t)

][
r∏
j=1

(
1−Gj(t)

)]
=

[
r∑
j=1

hj(t)

]
S(t)

=

[
r∑
j=1

hj(t)

]
r∏
j=1

{
1−

[
1− exp

(
−

i−1∑
l=1

λlj∆l − λij(t− τi−1)

)]αj
}

if


τi−1 ≤ t < τi for i = 1, 2, . . . , k − 1

τk−1 ≤ t <∞ for i = k

(2.4)
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respectively, where λ = (λ?1,λ?2, . . . ,λ?r) with λ?j = (λ1j , λ2j , . . . , λkj), α = (α1, α2, . . . , αr), and

hj(t) is the hazard rate function of the risk factor j defined by

hj(t) = hj(t;λ?j , αj) =
gj(t)

1−Gj(t)

=

αjλij exp

(
−

i−1∑
l=1

λlj∆l − λij(t− τi−1)

)[
1− exp

(
−

i−1∑
l=1

λlj∆l − λij(t− τi−1)

)]αj−1

1−

[
1− exp

(
−

i−1∑
l=1

λlj∆l − λij(t− τi−1)

)]αj

if


τi−1 ≤ t < τi for i = 1, 2, . . . , k − 1

τk−1 ≤ t <∞ for i = k

(2.5)

for 1 ≤ j ≤ r. Furthermore, let C denote the indicator for the cause of failure. Then, the joint PDF

of (T,C) is given by

fT,C (t, j) = gj(t)
r∏

j′=1
j′ 6=j

(
1−Gj′(t)

)
= hj(t) S(t)

= αjλij exp

(
−

i−1∑
l=1

λlj∆l − λij(t− τi−1)

)[
1− exp

(
−

i−1∑
l=1

λlj∆l − λij(t− τi−1)

)]αj−1

×
r∏

j′=1
j′ 6=j

{
1−

[
1− exp

(
−

i−1∑
l=1

λlj′∆l − λij′(t− τi−1)

)]αj′
}

if


τi−1 ≤ t < τi for i = 1, 2, . . . , k − 1

τk−1 ≤ t <∞ for i = k

(2.6)

for t > 0 and 1 ≤ j ≤ r. Based on these, the relative risk imposed on a test unit at the stress level xi

due to the risk factor j is given by

πij = P
[
C = j

∣∣τi−1 < T < τi
]

= [S(τi−1)− S(τi)]
−1

∫ τi

τi−1

hj(t)S(t) dt

= E
[
hπj (T )

∣∣τi−1 < T < τi
]

for 1 ≤ i ≤ k and 1 ≤ j ≤ r where hπj (t) is the hazard proportion of the risk factor j at time t > 0

defined by

hπj (t) = hj(t)
/ r∑
j′=1

hj′(t), t > 0.
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Hence, the relative risks are simply the expected proportions of each hazard rate for the corresponding

risk factor in the given time frame of stress level.

With the life-testing scheme described above, the following ordered failure times will be observed:

{
τi−1 < ti;1 < ti;2 < · · · < ti;ni⊕ < τi

}
for i = 1, 2, . . . , k where ni⊕ denotes the (observed) total number of units failed at the stress level xi

(i.e., in time interval [τi−1, τi)) and ti;l denotes the l-th ordered failure time of ni⊕ units at the stress

level xi, l = 1, 2, . . . , ni⊕. Let nij denote the (observed) number of units failed at the stress level xi

due to the risk factor j and let n⊕j denote the (observed) total number of units failed by the risk

factor j. Also, let n⊕⊕ (≤ n) denote the (observed) accumulated number of failures until the censoring

time τk according to the testing scheme such that ni⊕ =

r∑
j=1

nij , n⊕j =

k∑
i=1

nij , and n⊕⊕ =

k∑
i=1

ni⊕ =

r∑
j=1

n⊕j =
k∑
i=1

r∑
j=1

nij . Since each failure time is also accompanied by the corresponding cause of

failure, let c = (c1;1, c1;2, . . . , ck;nk⊕) be the observed sequence of the cause of failure corresponding to

the observed failure times t = (t1;1, t1;2, . . . , tk;nk⊕). Whenever appropriate, no notational distinction

will be made in this article between the random variables and their corresponding realizations. Also,

we adopt the usual conventions that
∑m−1

j=m aj ≡ 0 and
∏m−1
j=m aj ≡ 1. Using (2.1)–(2.6), the likelihood

function of θ = (λ,α) based on this Type-I censored data is then formulated as

L(θ) = L
(
θ|(t, c)

)
=

n!

(n− n⊕⊕)!

{
k∏
i=1

ni⊕∏
l=1

fT,C

(
ti;l, ci;l

)}{
1− F (τk)

}n−n⊕⊕
(2.7)

and the corresponding log-likelihood function of θ is obtained from (2.7) as

l(θ) = l
(
θ|(t, c)

)
= logL(θ)

=

{
k∑
i=1

ni⊕∑
l=1

log gci;l(ti;l)

}
+

{
k∑
i=1

ni⊕∑
l=1

r∑
j=1

j 6=ci;l

log
(
1−Gj(ti;l)

)}

+ (n− n⊕⊕)

{
r∑
j=1

log
(
1−Gj(τk)

)}
. (2.8)
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After differentiating l(θ) in (2.8) with respect to λij and αj , we obtain the likelihood equations as

0 =
∂

∂λij
l(θ) =

nij
λij
− Uij +

k∑
i′=1

ni′⊕∑
l=1

(αj − 1)
1−

[
Gj(ti′;l)

]1/αj[
Gj(ti′;l)

]1/αj

[
∆iδ(i

′ > i)

+ (ti;l − τi−1)δ(i′ = i)
]
δ(ci′;l = j)−

k∑
i′=1

ni′⊕∑
l=1

gj(ti′;l)

λi′j [1−Gj(ti′;l)]

[
∆iδ(i

′ > i)

+ (ti;l − τi−1)δ(i′ = i)
]
δ(ci′;l 6= j)− (n− n⊕⊕)

gj(τk)

λkj [1−Gj(τk)]
∆i, (2.9)

0 =
∂

∂αj
l(θ) =

n⊕j
αj

+
k∑
i=1

ni⊕∑
l=1

logGj(ti;l)

αj
δ(ci;l = j)−

k∑
i=1

ni⊕∑
l=1

Gj(ti;l)

1−Gj(ti;l)
logGj(ti;l)

αj
δ(ci;l 6= j)

− (n− n⊕⊕)
Gj(τk)

1−Gj(τk)
logGj(τk)

αj
(2.10)

for 1 ≤ i ≤ k and 1 ≤ j ≤ r where

Uij = ∆i

k∑
i′=i+1

ni′j +

ni⊕∑
l=1

(ti;l − τi−1)δ(ci;l = j) (2.11)

and δ(·) is an indicator function that takes on the value of 1 if the argument is true and 0 otherwise.

Note that Uij in (2.11) is precisely the Total Time on Test statistic at the stress level xi for the risk

factor j. The MLEs θ̂ = (λ̂, α̂) are then obtained as simultaneous solutions to the above system of

nonlinear equations. There is no closed form solution to the above equations and thus, some iterative

search procedures such as the bisection method, Newton-Raphson method or Brent’s method should be

used to find the numerical solutions. As noted by Kalbfleisch (1985), the Newton-Raphson algorithm

is often a convenient method to obtain the MLEs when there are two or more unknown parameters.

The method works well if the likelihood is close to normal in shape. The asymptotic likelihood theory

ensures the normal shape for large sample sizes, in which case this method is expected to be efficient;

see Kalbfleisch (1980). Further analysis of the likelihood equations in (2.9) reveals that the MLE of

λij does not exist if nij = 0. That is, at least one failure caused by each risk factor must be observed

at each stress level in order to estimate λ simultaneously. Consequently, the acceptable sample size

needs to be much larger than the product of the number of stress levels implemented and the number

of fatal risk factors under consideration in the planning stage of the experiment.
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Remark 2.1. In the model considered above, we have not assumed any relationships among the scale

parameters λ?j = (λ1j , λ2j , . . . , λkj) of each risk factor. A popular log-linear relationship between the

stress level and the scale parameter was not assumed either since it can be too restrictive when the

physical stress-response relationship is not clear. The objective here is to estimate the parameters of

each risk factor at each stress level (i.e., a full model) in order to investigate and formulate a plausible

stress-response relationship which can be tested in the subsequent stage of analysis and incorporated

into a reduced model. In certain situations, however, we may know that some particular relationships

hold among the scale parameters; for instance, λij = ρjλ(i−1)j with known ρj. In that case, the MLE

of λij exists whenever at least one failure occurs by the risk factor j (viz., n⊕j > 0). One can also use

the likelihood ratio test statistic to test the multiple hypotheses H0 : λij = ρjλ(i−1)j for specified ρj’s.

Remark 2.2. The model proposed in Section 2 accommodates multiple stress levels and multiple

competing risks. In fact, the model under consideration is general since it includes its marginal models

as special cases. For instance, when k = 2, j = 2, and α1 = α2 = 1, the failure of a test unit will be

caused by one of two competing risks from the exponential distributions in a simple step-stress ALT

under Type-I censoring, which was considered by Han and Balakrishnan (2010). Consequently, the

distributional results derived above simply reduce to those obtained by Han and Balakrishnan (2010)

when k = 2, j = 2, and α1 = α2 = 1. On the other hand, when λ?j → 0k for j = 2, 3, . . . , r, the failure

of a test unit will be caused by a single risk factor with probability 1. Hence, the limiting case of the

proposed model is the step-stress model under Type-I censoring without the competing risk structure.

If we rather let τ1 → ∞, then the model developed here converges to the ordinary single stress model

(i.e., one stress level only) with multiple competing risks.
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3 Interval Estimations

In this section, we discuss the methods of constructing confidence intervals (CIs) for the unknown

parameters θ. Since there is no closed form solution to the likelihood equations given in (2.9) and

(2.10), it is not possible to derive the exact distributions of the MLEs. Hence, we construct the

approximate CIs for the parameters based on the asymptotic distributions of the estimators, and also

present the CIs using the parametric bootstrap approach for the purpose of comparison in simulation

studies in Section 4.

3.1 Approximate confidence intervals

As shown in Section 2, θ̂ is non-linear functions of random quantities, which make it virtually

impossible to find their exact marginal/joint distributions for exact inference. Hence, statistical infer-

ence for θ is based on the asymptotic distributional result of the MLEs. As the sample size grows, the

MLEs exhibit some special characteristics which are asymptotically optimal. First of all, under certain

regularity conditions, the MLEs are asymptotically unbiased and efficient. That is, their biases tend

to zero and their variances achieve the Cramer-Rao lower bound as the sample size goes to infinity.

Furthermore, their distributions approach normal with the variance-covariance matrix given by the

inverse of the Fisher information matrix In(θ). Thus, inference about the unknown parameters can

be based on the asymptotic normality of the MLEs that the vector θ̂ is approximately distributed as

a multivariate normal with mean vector θ and variance-covariance matrix I−1
n (θ). In this subsection,

we present an approximate method to construct the CIs for θ using these properties of the MLEs

with large sample sizes. As noted by Balakrishnan and Han (2008), Han and Balakrishnan (2010),

the approximate method provides not only the computational ease but also good probability coverage

(close to the nominal level) when the sample size gets larger. This finding is further discussed in

Section 4.
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Let us first denote the (expected) Fisher information matrix of θ by

IE (θ) = E

[
− ∂2l(θ)

∂θ1∂θ2

]
θ1,θ2∈Ω

(3.1)

where Ω = {λij , αj}1≤i≤k, 1≤j≤r
is the complete set of the model parameters. The second partials of

the log-likelihood in (2.8) are expressed as

−∂
2l(θ)

∂λ2
ij

=
nij
λ2
ij

+

k∑
i′=1

ni′⊕∑
l=1

(αj − 1)
1−

[
Gj(ti′;l)

]1/αj[
Gj(ti′;l)

]2/αj

[
∆iδ(i

′ > i) + (ti;l − τi−1)δ(i′ = i)
]2
δ(ci′;l = j)

+

k∑
i′=1

ni′⊕∑
l=1

gj(ti′;l)
[
αj

(
1−

[
Gj(ti′;l)

]1/αj
)
−
(

1−Gj(ti′;l)
)]

λi′j
[
Gj(ti′;l)

]1/αj
[
1−Gj(ti′;l)

]2 [
∆iδ(i

′ > i)

+ (ti;l − τi−1)δ(i′ = i)
]2
δ(ci′;l 6= j)

+ (n− n⊕⊕)
gj(τk)

[
αj

(
1−

[
Gj(τk)

]1/αj
)
−
(

1−Gj(τk)
)]

λkj
[
Gj(τk)

]1/αj
[
1−Gj(τk)

]2 ∆2
i ,

− ∂2l(θ)

∂λij∂λi′′j
=

k∑
i′=1

ni′⊕∑
l=1

(αj − 1)
1−

[
Gj(ti′;l)

]1/αj[
Gj(ti′;l)

]2/αj

[
∆iδ(i

′ > i) + (ti;l − τi−1)δ(i′ = i)
][

∆i′′δ(i
′ > i′′)

+ (ti′′;l − τi′′−1)δ(i′ = i′′)
]
δ(ci′;l = j)

+

k∑
i′=1

ni′⊕∑
l=1

gj(ti′;l)
[
αj

(
1−

[
Gj(ti′;l)

]1/αj
)
−
(

1−Gj(ti′;l)
)]

λi′j
[
Gj(ti′;l)

]1/αj
[
1−Gj(ti′;l)

]2 [
∆iδ(i

′ > i)

+ (ti;l − τi−1)δ(i′ = i)
][

∆i′′δ(i
′ > i′′) + (ti′′;l − τi′′−1)δ(i′ = i′′)

]
δ(ci′;l 6= j)

+ (n− n⊕⊕)
gj(τk)

[
αj

(
1−

[
Gj(τk)

]1/αj
)
−
(

1−Gj(τk)
)]

λkj
[
Gj(τk)

]1/αj
[
1−Gj(τk)

]2 ∆i∆i′′ ,

− ∂2l(θ)

∂λij∂αj
= −

k∑
i′=1

ni′⊕∑
l=1

1−
[
Gj(ti′;l)

]1/αj[
Gj(ti′;l)

]1/αj

[
∆iδ(i

′ > i) + (ti;l − τi−1)δ(i′ = i)
]
δ(ci′;l = j)

+
k∑

i′=1

ni′⊕∑
l=1

gj(ti′;l)[1−Gj(ti′;l) + logGj(ti′;l)]

αjλi′j
[
1−Gj(ti′;l)

]2 [
∆iδ(i

′ > i)

+ (ti;l − τi−1)δ(i′ = i)
]
δ(ci′;l 6= j)

+ (n− n⊕⊕)
gj(τk)[1−Gj(τk) + logGj(τk)]

αjλkj
[
1−Gj(τk)

]2 ∆i,

−∂
2l(θ)

∂α2
j

=
n⊕j
α2
j

+

k∑
i′=1

ni′⊕∑
l=1

Gj(ti′;l)[
1−Gj(ti′;l)

]2
[

logGj(ti′;l)

αj

]2

δ(ci′;l 6= j)

+ (n− n⊕⊕)
Gj(τk)[

1−Gj(τk)
]2
[

logGj(τk)

αj

]2

,
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∂2l(θ)

∂λij∂λij′′
=

∂2l(θ)

∂λij∂λi′′j′′
=

∂2l(θ)

∂λij∂αj′′
=

∂2l(θ)

∂αj∂αj′′
= 0

for 1 ≤ i, i′′ ≤ k and 1 ≤ j, j′′ ≤ r with i 6= i′′ and j 6= j′′. By substituting θ̂ for θ, the elements of

IE (θ) in (3.1) can be approximated by those of the observed Fisher information matrix given by

IO(θ) =

[
− ∂2l(θ)

∂θ1∂θ2

]
θ1,θ2∈Ω

∣∣∣∣∣
θ=θ̂

. (3.2)

Upon inverting this matrix in (3.2), we obtain the observed variance-covariance matrix of θ̂. Let θ ∈ Ω

and θ̂ be the corresponding MLE of θ. Also, let V be the diagonal element of I−1
O

(θ) corresponding

to θ̂. Since θ̂ is asymptotically unbiased for θ, we can then use (θ̂ − θ)/
√
V as a pivotal quantity for

θ to construct two-sided 100(1− γ)% approximate CI for θ, which is given by(
max

{
0, θ̂ − zγ/2

√
V
}
, θ̂ + zγ/2

√
V

)
(3.3)

where zγ/2 is the upper γ/2-th quantile of a standard normal distribution.

3.2 Bootstrap confidence intervals

In this subsection, we construct the CIs for θ using a parametric bootstrap method, viz., the

bias-corrected and accelerated (BCa) percentile bootstrap method; see Efron (1987), Hall (1988), and

Efron and Tibshirani (1993) for details. Compared to the ordinary percentile bootstrap intervals or

the Studentized-t bootstrap intervals, the BCa percentile bootstrap intervals are known to perform

better. Kundu et al. (2004) also observed that the nonparametric bootstrap method does not work

well for competing risks data. Before we obtain the BCa percentile bootstrap CIs for θ, the following

algorithm is implemented to generate the bootstrap sample of size B based on the original Type-I

censored sample of size n⊕⊕ :

Step 1 Given the stress change time points τ1, τ2, . . . , τk−1, the right censoring time point τk, the

initial sample size n, and the original Type-I censored sample of size n⊕⊕, calculate θ̂ by solving

the system of the likelihood equations in (2.9) and (2.10).
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Step 2 Generate a random sample of U = (U1, U2, . . . , Ur) of size n, where Uj ’s are independently

from the standard uniform distribution with the range (0, 1). Set the counter i = 1 and η = n.

Step 3 Transform each U = (U1, U2, . . . , Ur) in the sample into a vector (Ti1, Ti2, . . . , Tir) via

Tij = − 1

λ̂ij

[
log
(
1− U1/α̂j

j

)
+

i−1∑
l=1

λ̂lj∆l

]
+ τi−1

for j = 1, 2, . . . , r so that Tij is a shifted generalized exponential variate with the scale parameter

λ̂ij and the shape parameter α̂j . For each vector of (Ti1, Ti2, . . . , Tir), take the minimum of the

elements as well as the corresponding index of the minimum (e.g., record 3 if Ti3 is the smallest).

Let T i be the vector of the minima collected and Ci be the vector of the corresponding indices,

both of the dimension η.

Step 4 Sort the elements of T i in an ascending order and permute the elements of Ci in a correspond-

ing manner. Let v1:η < v2:η < · · · < vη:η denote the ordered elements of T i and let w1, w2, . . . , wη

denote the corresponding elements of Ci.

Step 5 Find n∗i⊕ such that vn∗i⊕:n < τi ≤ vn∗i⊕+1:n. Then, for 1 ≤ l ≤ n∗i⊕, set t∗i;l to be the value

of vl:η and set c∗i;l to be the value of wl. Also, set n∗ij to be the number of j’s in the first n∗i⊕

elements of the permuted Ci for j = 1, 2, . . . , r so that

r∑
j=1

n∗ij = n∗i⊕.

Step 6 From the sample of U of size η, remove U ’s corresponding to each t∗i;l for 1 ≤ l ≤ n∗i⊕ so that

the reduced sample now has the new size of η = n−
∑i

l=1 n
∗
l⊕. Update the counter i = i+ 1 and

repeat Steps 3–6 until i hits k + 1.

Step 7 Define n∗⊕j =

k∑
i=1

n∗ij and n∗⊕⊕ =

k∑
i=1

n∗i⊕ =

r∑
j=1

n∗⊕j . Based on τ1, τ2, . . . , τk, n, n∗ij ’s and

the ordered observations t∗ = (t∗1;1, t
∗
1;2, . . . , t

∗
k;n∗k⊕

) with the corresponding vector of the cause

c∗ = (c∗1;1, c
∗
1;2, . . . , c

∗
k;n∗k⊕

), calculate the new MLEs of θ, denoted by θ̂
∗

from (2.9) and (2.10).

Step 8 Repeat Steps 2–7 B times. Then, for each θ ∈ Ω, arrange all the values of θ̂∗ in an ascending

13



order to obtain the bootstrap sample

{
θ̂∗[1] < θ̂∗[2] < · · · < θ̂∗[B]

}
.

With the bootstrap samples generated as above, we now obtain the two-sided 100(1 − γ)% BCa

percentile bootstrap CI for θ ∈ Ω as (
θ̂∗[β1B], θ̂∗[β2B]

)
where

β1 = Φ

(
ẑ0 +

ẑ0 − zγ/2
1− â

[
ẑ0 − zγ/2

]) and β2 = Φ

(
ẑ0 +

ẑ0 + zγ/2

1− â
[
ẑ0 + zγ/2

]).
Here, Φ(·) denotes the CDF of the standard normal distribution and the value of the bias-correction

ẑ0 is given by

ẑ0 = Φ−1

(∑B
b=1 δ

(
θ̂∗[b] < θ̂

)
B

)

where Φ−1(·) denotes the inverse of the standard normal CDF and δ(·) is an indicator function as

defined before. A good estimate of the acceleration factor â is suggested to be

â =

∑L
l=1

(
θ̂(l) − θ̂(·)

)3

6

{∑L
l=1

(
θ̂(l) − θ̂(·)

)2
}3/2

where

θ̂(·) =
1

L

L∑
l=1

θ̂(l).

For θ = λij , L = nij and θ̂(l) is the MLE of λij based on the original Type-I censored sample with

the l-th observation deleted from the failures that occurred at the stress level xi by the risk factor j

(i.e., the jackknife estimate) for l = 1, 2, . . . , nij . Similarly, when θ = αj , L = n⊕j and θ̂(l) is the MLE

of αj based on the original sample with the l-th observation deleted from the failures that occurred

throughout the test by the risk factor j for l = 1, 2, . . . , n⊕j .

14



4 Numerical Study

In order to evaluate the performance of the estimation methods discussed in the preceding section,

an extensive Monte Carlo simulation study was conducted and the results are presented in this section.

For the purpose of illustration, the case of the simple step-stress model (viz., two stress levels, k = 2)

with two competing risks (viz., r = 2) is presented here since other various parameter settings we

considered exhibited a similar pattern of the results. The values of the parameters were chosen to

be λ11 = 2.0, λ12 = 1.0, λ21 = 4.0, λ22 = 2.0, α1 = 3.0, and α2 = 2.0. This particular scenario

also describes a system with two components connected in series where the first component consists

of three identical and independently operating sub-components connected in parallel while the sec-

ond component consists of two identical and independently operating sub-components connected in

parallel. The lifetime distribution of each sub-component is exponential with mean λ−1
ij . Under the

chosen parameter setting, the increased stress level causes 50% loss in the mean time to failure of any

sub-component and the chance of a sub-component in the component 1 to fail is twice as high as the

chance of a sub-component in the component 2 to fail before or after the change in the stress levels.

In order to explore the effects of several experimental parameters on the performance of estimation,

the initial sample size n was chosen to be 25, 50, and 100, and several different choices were made for the

stress change time point τ1 while the censoring time point τ2 was fixed at 1.0. Given the parameter

values, a random sample was then generated by using Steps 2–7 of the algorithm for generating a

bootstrap sample. Based on 1000 Monte Carlo simulations with B = 1000 bootstrap replications,

the actual coverage probabilities of the 90%, 95%, and 99% intervals for each model parameter were

determined empirically as well as the bias, relative absolute bias (RAB)1, and MSE associated with

the estimator. The results are presented in Tables 1-6 along with the estimated mean widths of the

intervals from this simulation.

1 RAB = E

[∣∣∣∣ θ̂ − θθ
∣∣∣∣] for θ ∈ Ω
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Table 1: Estimated biases, RAB, MSE, and coverage probabilities (in %) based on 1000 simulations

with λ11 = 2.0, λ12 = 1.0, λ21 = 4.0, λ22 = 2.0, α1 = 3.0, α2 = 2.0, n = 25, τ2 = 1.0, and B = 1000

Nominal CL 90% 95% 99%

Parameter τ1 Bias RAB MSE Approx Boot Approx Boot Approx Boot

λ11

0.3 1.057 0.911 2.726 84.0 87.6 88.5 93.2 94.6 97.8

0.5 0.642 0.619 1.264 83.7 89.8 89.2 95.1 96.5 98.6

0.7 0.330 0.353 0.923 90.4 89.1 94.3 97.0 98.0 98.5

λ12

0.3 1.258 1.346 2.909 87.8 90.6 89.6 94.8 92.6 99.0

0.5 0.723 0.887 1.287 85.9 87.9 89.5 92.9 93.3 96.9

0.7 0.270 0.652 0.862 86.2 91.0 90.4 93.1 94.7 97.8

λ21

0.3 0.140 0.242 1.518 88.7 87.6 93.6 94.8 99.0 98.8

0.5 0.131 0.250 1.725 90.5 88.7 93.1 93.9 97.9 95.9

0.7 0.490 0.388 1.928 86.9 88.8 93.0 92.5 97.5 96.6

λ22

0.3 0.033 0.333 0.732 92.0 89.0 93.7 95.0 96.4 95.9

0.5 0.112 0.404 1.074 88.1 92.0 92.9 96.3 95.2 99.5

0.7 0.337 0.493 1.818 93.3 91.4 95.5 96.0 99.5 94.8

α1

0.3 2.658 1.862 9.258 88.2 90.5 89.3 93.5 93.2 97.8

0.5 1.957 1.058 5.877 89.6 87.9 93.0 94.0 94.5 96.6

0.7 1.353 0.634 4.386 94.0 92.4 96.4 97.1 99.0 99.5

α2

0.3 2.819 1.973 9.549 90.5 90.7 94.6 94.6 95.0 98.7

0.5 2.080 1.670 8.312 90.3 87.9 93.0 93.1 95.0 97.2

0.7 1.950 1.252 7.594 90.4 93.0 93.4 96.0 97.3 98.5
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Table 2: Average widths of confidence intervals based on 1000 simulations with λ11 = 2.0,

λ12 = 1.0, λ21 = 4.0, λ22 = 2.0, α1 = 3.0, α2 = 2.0, n = 25, τ2 = 1.0, and B = 1000

Nominal CL 90% 95% 99%

Parameter τ1 Approx Boot Approx Boot Approx Boot

λ11

0.3 8.330 9.160 9.353 11.021 11.205 13.419

0.5 4.088 4.701 4.752 5.446 5.833 6.727

0.7 2.801 3.663 3.321 4.240 4.249 4.814

λ12

0.3 7.778 8.181 8.742 10.109 10.535 12.911

0.5 3.718 5.389 4.193 6.305 5.009 7.000

0.7 2.427 2.870 2.755 3.405 3.304 4.043

λ21

0.3 3.668 4.922 4.364 5.709 5.698 6.607

0.5 4.107 3.745 4.886 4.332 6.387 7.830

0.7 5.788 6.874 6.846 7.710 8.703 8.734

λ22

0.3 2.932 3.198 3.419 3.644 4.254 4.201

0.5 3.268 3.603 3.804 4.231 4.686 4.973

0.7 4.344 4.798 4.955 5.476 5.896 6.397

α1

0.3 30.929 32.670 33.933 35.119 37.737 38.502

0.5 17.777 19.742 22.310 22.887 27.016 29.174

0.7 12.862 13.857 13.027 14.968 14.710 17.097

α2

0.3 28.536 29.902 29.929 33.388 34.372 36.281

0.5 24.689 25.115 27.713 30.698 30.444 32.629

0.7 22.926 23.089 23.609 25.650 26.692 28.971
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Table 3: Estimated biases, RAB, MSE, and coverage probabilities (in %) based on 1000 simulations

with λ11 = 2.0, λ12 = 1.0, λ21 = 4.0, λ22 = 2.0, α1 = 3.0, α2 = 2.0, n = 50, τ2 = 1.0, and B = 1000

Nominal CL 90% 95% 99%

Parameter τ1 Bias RAB MSE Approx Boot Approx Boot Approx Boot

λ11

0.3 1.032 0.872 2.406 84.6 94.1 88.6 97.0 95.6 98.5

0.5 0.260 0.326 0.786 88.5 90.0 93.1 95.0 98.4 98.0

0.7 0.170 0.251 0.419 83.4 89.6 91.0 93.8 98.0 97.8

λ12

0.3 0.801 1.252 2.901 84.4 87.8 88.8 91.9 94.7 96.9

0.5 0.322 0.632 0.797 87.0 90.0 92.2 95.2 96.5 99.5

0.7 0.136 0.441 0.332 87.5 90.1 94.0 95.0 97.1 97.5

λ21

0.3 0.086 0.157 0.665 88.0 90.5 94.2 95.5 99.0 98.0

0.5 0.099 0.172 0.768 90.5 89.0 95.3 94.0 99.5 97.7

0.7 0.222 0.228 1.373 93.1 88.8 95.0 92.8 98.1 96.8

λ22

0.3 0.031 0.296 0.594 85.0 87.9 93.0 93.3 96.0 97.9

0.5 0.111 0.297 0.551 89.3 87.6 93.6 93.5 97.4 96.9

0.7 0.090 0.365 0.894 89.2 88.0 95.5 93.2 97.5 97.0

α1

0.3 1.348 0.958 8.352 88.4 93.0 92.8 95.5 94.6 99.0

0.5 0.949 0.502 5.077 92.0 88.6 95.0 93.6 97.3 97.7

0.7 0.546 0.358 3.167 92.0 89.5 95.0 94.5 97.5 99.0

α2

0.3 1.401 0.975 8.403 88.6 88.7 93.3 94.9 94.8 96.8

0.5 0.936 0.666 7.856 92.0 91.0 94.0 95.0 97.5 99.0

0.7 0.519 0.471 2.848 93.2 92.3 94.2 95.5 97.2 98.0
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Table 4: Average widths of confidence intervals based on 1000 simulations with λ11 = 2.0,

λ12 = 1.0, λ21 = 4.0, λ22 = 2.0, α1 = 3.0, α2 = 2.0, n = 50, τ2 = 1.0, and B = 1000

Nominal CL 90% 95% 99%

Parameter τ1 Approx Boot Approx Boot Approx Boot

λ11

0.3 5.684 7.856 6.488 9.259 7.789 10.787

0.5 2.740 3.619 3.251 4.209 4.155 4.784

0.7 1.870 2.621 2.228 3.020 2.925 3.418

λ12

0.3 4.278 5.841 4.810 7.039 5.771 9.025

0.5 2.305 2.931 2.650 3.394 3.192 4.061

0.7 1.667 1.973 1.951 2.251 2.416 2.570

λ21

0.3 2.592 4.030 3.088 4.731 4.059 5.680

0.5 2.793 4.555 3.328 5.452 4.373 6.188

0.7 3.856 5.089 4.595 5.815 6.037 6.597

λ22

0.3 2.279 2.713 2.692 3.143 3.435 3.558

0.5 2.305 2.854 2.744 3.237 3.551 3.603

0.7 2.904 3.402 3.418 3.562 4.275 4.010

α1

0.3 8.654 14.434 9.156 16.370 10.681 22.338

0.5 6.209 12.558 7.256 15.214 8.875 20.034

0.7 4.172 5.991 4.964 7.347 6.460 9.127

α2

0.3 8.944 10.028 9.406 13.677 10.559 17.198

0.5 5.302 8.999 6.099 10.112 7.339 15.403

0.7 3.744 7.591 4.381 9.181 5.441 11.231

19



Table 5: Estimated biases, RAB, MSE, and coverage probabilities (in %) based on 1000 simulations

with λ11 = 2.0, λ12 = 1.0, λ21 = 4.0, λ22 = 2.0, α1 = 3.0, α2 = 2.0, n = 100, τ2 = 1.0, and B = 1000

Nominal CL 90% 95% 99%

Parameter τ1 Bias RAB MSE Approx Boot Approx Boot Approx Boot

λ11

0.3 0.394 0.511 1.944 89.4 89.9 95.5 95.5 98.0 99.0

0.5 0.135 0.240 0.374 89.5 93.0 93.9 96.2 98.4 97.9

0.7 0.096 0.151 0.152 92.1 87.9 95.1 94.9 99.0 98.4

λ12

0.3 0.517 0.913 2.281 88.9 89.5 94.5 95.3 97.8 98.5

0.5 0.128 0.386 0.250 92.5 93.0 95.4 96.0 97.7 97.9

0.7 0.092 0.306 0.152 89.0 90.2 93.9 94.6 96.9 99.1

λ21

0.3 0.062 0.112 0.238 88.8 89.5 94.7 95.2 98.5 98.7

0.5 0.080 0.115 0.326 93.1 88.9 96.1 95.0 100.0 98.0

0.7 0.112 0.158 0.628 91.5 89.9 94.8 95.1 99.1 99.0

λ22

0.3 0.030 0.206 0.283 88.7 89.0 95.3 95.1 97.9 98.6

0.5 0.101 0.219 0.294 87.9 88.5 95.0 97.0 99.0 97.9

0.7 0.115 0.244 0.393 89.2 90.1 96.0 96.0 98.8 99.5

α1

0.3 1.054 0.577 6.840 90.5 89.7 95.5 93.9 97.9 99.1

0.5 0.403 0.296 1.669 90.0 90.5 94.7 96.0 98.3 98.0

0.7 0.245 0.213 0.711 93.2 89.8 98.0 94.8 99.0 96.9

α2

0.3 1.328 0.876 5.248 89.0 89.6 94.7 94.7 98.7 98.9

0.5 0.271 0.326 1.028 92.5 92.0 95.0 96.0 98.2 98.1

0.7 0.222 0.257 0.503 90.0 89.9 94.8 93.8 98.5 99.5

20



Table 6: Average widths of confidence intervals based on 1000 simulations with λ11 = 2.0,

λ12 = 1.0, λ21 = 4.0, λ22 = 2.0, α1 = 3.0, α2 = 2.0, n = 100, τ2 = 1.0, and B = 1000

Nominal CL 90% 95% 99%

Parameter τ1 Approx Boot Approx Boot Approx Boot

λ11

0.3 3.677 4.598 4.285 5.213 5.265 5.890

0.5 1.842 2.601 2.195 2.986 2.881 3.298

0.7 1.299 2.116 1.548 2.545 2.034 2.887

λ12

0.3 2.974 3.235 3.371 3.819 4.026 4.389

0.5 1.568 1.909 1.847 2.182 2.309 2.472

0.7 1.148 1.484 1.366 1.707 1.777 1.917

λ21

0.3 1.834 3.217 2.186 4.035 2.873 4.976

0.5 1.976 3.259 2.355 4.335 3.094 5.154

0.7 2.657 4.338 3.166 4.975 4.161 5.691

λ22

0.3 1.645 2.133 1.960 2.491 2.566 2.929

0.5 1.612 2.117 1.921 2.539 2.523 2.984

0.7 1.989 2.654 2.369 3.044 3.094 3.399

α1

0.3 6.894 12.849 7.948 13.994 9.690 14.835

0.5 3.435 4.791 4.093 5.680 5.374 6.596

0.7 2.592 4.006 3.089 4.843 4.059 5.589

α2

0.3 6.654 8.458 7.626 10.447 9.297 12.952

0.5 2.672 4.251 3.160 5.402 4.073 6.523

0.7 2.090 3.235 2.490 3.892 3.272 4.537
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Although the crude approximate method based on the asymptotic normality of the MLEs is quick

and easy, one major problem associated with it is that it does not necessarily take the parameter space

into account when constructing CIs. There is no built-in procedure to prevent this and as a result,

the lower bounds of the approximate CIs frequently hit below zero for small sample sizes or for high

levels of confidence even though the parameters θ can take only positive values in this setting. In

order to turn such intervals into sensible ones, the negative lower bounds were all replaced by zero in

the simulation according to (3.3).

From Tables 1, 3, and 5, we see that with fixed censoring time point τ2, as the stress change time

point τ1 increases, the biases, RAB, MSE of the estimators for λ11, λ12, α1, α2 all decrease while those

for λ21 and λ22 increase in most cases. The primary reason for this is that when ∆1 gets larger or

equivalently, when ∆2 gets smaller with increasing τ1, we expect a relatively large number of failures

to occur before τ1 (i.e., at the first stress level), resulting in lower variability in the estimation of

λ11 and λ12. On the other hand, a relatively small number of failures will occur after τ1 (i.e., at the

second stress level), resulting in higher variability in the estimation of λ21 and λ22. The same intuition

applies to explain the observation from Tables 2, 4, and 6 that with increasing τ1, the widths of CIs

for λ11, λ12, α1, α2 all decrease while those for λ21 and λ22 increase.

From Tables 1, 3, and 5, it is also observed that the biases, RAB, MSE of the estimators for αj are

mostly much higher than those for λij , illustrating the difficulty of estimating the shape parameters

with good accuracy and precision. This resulted in much wider CIs for αj compared to those for λij in

Tables 2, 4, and 6. We also see that the MLEs overestimate the corresponding parameters on average

since their biases are all positive with varying degrees. As the sample size n increases, however, the

performance of the MLEs gets better as the biases, RAB, MSE associated with the estimators all

decrease along with the actual coverage probabilities of the CIs getting closer to the nominal levels.

From Tables 2, 4, and 6, we observe that in comparison to the BCa bootstrap method, the

approximate method consistently provides narrower intervals overall. This seems to explain somewhat
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better performance of the BCa bootstrap CIs relative to those obtained from the approximate method,

especially for small sample sizes, as observed in Table 1. Nevertheless, we realize from Tables 3 and 5

that larger sample sizes eventually improve the actual coverage probabilities of both the approximate

CIs and the BCa bootstrap CIs. As the sample size grows, a long computational time can be a

problematic issue for constructing CIs by the bootstrap method. Hence, based on more exhaustive

simulation study, it is recommended to use the BCa bootstrap approach for small sample sizes. When

the initial sample size is considerably large, the approximate method is then computationally much

easier to construct the intervals and they also perform quite well in terms of probability coverage for

large sample sizes (e.g., n > 30).

5 Illustrative Example

The dataset generated by Han and Balakrishnan (2010) is used here to illustrate the methods of

inference described in the preceding sections. The dataset is a Type-I censored sample from a simple

step-stress test with two known competing risks along with the stress change time point τ1 = 3 and

the censoring time point τ2 = 6 for an equal step duration. It consists of total n⊕⊕ = 23 failure times

from the initial sample size of n = 25 (i.e., 8% right censoring). To be self-contained, the dataset is

reproduced in Table 7 for easy reference.

From this dataset, we have n11 = 7, n12 = 5, n21 = 5, n22 = 6, and the observed MLEs of the GE

parameters are estimated from (2.9) and (2.10) to be

λ̂11 = 0.085, λ̂12 = 0.167, λ̂21 = 0.229, λ̂22 = 0.373, α̂1 = 0.802, α̂2 = 1.548.

The observed standard errors of the estimators are obtained from (3.2) to be

√̂
V λ11 = 0.065,

√̂
V λ12 = 0.125,

√̂
V λ21 = 0.120,

√̂
V λ22 = 0.154,

√̂
V α1 = 0.294,

√̂
V α2 = 0.799.
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Table 7: Type-I censored sample from n = 25 units on a simple

step-stress test with two competing risks, τ1 = 3 and τ2 = 6

Stress Level 1 Stress Level 2

(before τ1 = 3) (after τ1 = 3)

Failure Time Failure Cause Failure Time Failure Cause

0.011 1 3.246 2

0.273 2 3.362 2

0.395 1 3.498 1

1.173 1 3.774 2

1.477 1 3.879 1

1.608 2 4.024 1

1.890 1 4.169 2

2.066 2 4.438 2

2.133 2 4.882 2

2.577 1 5.343 1

2.706 1 5.670 1

2.787 2

n1⊕ = 12 n2⊕ = 11
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Table 8: Interval estimation based on the Type-I censored

step-stress data in Table 7 with B = 1000

Parameter CL Approximate CI BCa Bootstrap CI

λ11

90% (0.000, 0.191) (0.018, 0.277)

95% (0.000, 0.212) (0.014, 0.349)

99% (0.000, 0.252) (0.009, 0.408)

λ12

90% (0.000, 0.372) (0.027, 0.503)

95% (0.000, 0.412) (0.019, 0.675)

99% (0.000, 0.489) (0.010, 1.081)

λ21

90% (0.032, 0.426) (0.080, 0.459)

95% (0.000, 0.464) (0.072, 0.546)

99% (0.000, 0.538) (0.048, 0.800)

λ22

90% (0.119, 0.626) (0.167, 0.739)

95% (0.070, 0.675) (0.138, 0.901)

99% (0.000, 0.770) (0.081, 0.940)

α1

90% (0.319, 1.285) (0.477, 2.031)

95% (0.226, 1.377) (0.457, 3.049)

99% (0.045, 1.558) (0.410, 3.970)

α2

90% (0.235, 2.862) (0.785, 7.697)

95% (0.000, 3.114) (0.732, 9.923)

99% (0.000, 3.606) (0.646, 12.090)
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Since the true parameter values are given as

λ11 = 0.112, λ12 = 0.082, λ21 = 0.223, λ22 = 0.246, α1 = α2 = 1,

the observed biases of the estimates are

Biasλ11 = −0.027, Biasλ12 = 0.085, Biasλ21 = 0.006, Biasλ22 = 0.126, Biasα1 = −0.198, Biasα2 = 0.548.

The CI for each parameter is also presented in Table 8 using the methods described in Section 3.

From Table 8, we observe that relative to the BCa bootstrap CIs, the approximate method con-

sistently provides narrower CIs although every CI contains the respective true parameter value in

this example. As expected, the CIs get wider as the nominal level of confidence increases. It is also

observed that the lower bounds of the approximate CIs are zero, especially for small λij ’s and/or for

high levels of confidence since they were hitting below zero in such cases. We also make a general

observation from Table 8 that the CIs for the scale parameters are narrower than those for the shape

parameters. Since the CIs for αj ’s contain one, there is no sufficient statistical evidence to reject

H0 : αj = 1 with at most 10% level of significance. That is, the lifetime distribution of each risk

factor is exponential, which is the correct decision in this situation.

6 Concluding Remarks

In this article, we have discussed the step-stress model under Type-I censoring when the lifetimes

corresponding to different risk factors have independent GE distributions. Under the assumption of

a cumulative damage model, point and interval estimations of the model parameters were discussed

using the maximum likelihood approach. We have then conducted a simulation study to assess the

performance of all these procedures and a numerical example has been presented to illustrate the

methods of inference developed in this article. In the case of moderate to large sizes, the estimators

give relatively accurate estimation of the parameters. Based on the results of the simulation study,
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our recommendation for constructing CIs for θ ∈ Ω is to use the BCa percentile bootstrap method,

especially in the case of small sample sizes. For larger sample sizes, however, the approximate method

is more appropriate because of their computational ease as well as their improved probability coverage

being close to the nominal levels. Based on our best knowledge, this study is the first to introduce the

Type-I censoring to the GE distribution under the competing risk framework on the step-stress ALT.

For future research, we will develop the Bayesian estimation method and a procedure for discriminating

between the Weibull and GE distributions. We will also explore the extension of the methods developed

for other distributions such as two-parameter Birnbaum-Saunders distribution discussed in Wang et

al. (2006).
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