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Abstract

This work describes a Bayesian approach for model selection in Gaussian conditional autoregressive models

and Gaussian simultaneous autoregressive models which are commonly used to describe spatial lattice data.

The approach is aimed at situations when all competing models have the same mean structure, but differ on

some aspects of their covariance structures. The proposed approach uses as selection criterion the posterior

model probabilities computed using some default priors for the model parameters. The proposed methodology

is illustrated using two real datasets.
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1 Introduction

Spatial lattice data (or areal data as they are also known) consist of observations collected at sub-

regions (or sites as they are also known) that form a partition of a region of interest. These data

often represent aggregates or summaries of a quantity of interest over the sub-regions, e.g., number

of cancer cases or crime rates in the counties of a state that occurred over a period of time. Two of

the most commonly used classes of models to describe these data are conditionally autoregressive

(CAR) models and simultaneously autoregressive (SAR) models; see Anselin (1988), Cressie (1993)

or Banerjee, Carlin and Gelfand (2004) for ample descriptions of these models.

A review of the spatial statistics literature reveals that CAR models are the most often used for

the analysis of lattice/areal data, a practice that may be due in part to the influential works of Besag

(1974) and Cressie (1993) who recommended CAR over SAR models (and related variants). On

the other hand, a review of the spatial econometrics and geography literature reveals the opposite

situation, namely, that SAR models (and related variants) are the most often used for the analysis

of lattice/areal data. This in turn seems to be due in part to the influential works of Ord (1975)

and Anselin (1988) who advocated the use of SAR models (and related variants).

In addition, the formulation of both CAR and SAR models requires selecting a neighborhood

system that specifies direct relations between sub-regions. A common practice is to specify this

using geographic adjacency, which is often the default choice. However, for some datasets the

direct relation between sub-regions may be better quantified using distance or other criterion, such

as neighborhood systems defined in terms of the values of an explanatory variable. For instance,

Case, Rosen and Hines (1993) found that a SAR model based on similarity of racial composition

in states, as the criterion to define neighbors, fits U.S. states expenditure data much better than a

SAR model that uses neighbors based on geographic adjacency.

All the above choices are important for an adequate fit and interpretation of these models.

Nevertheless, it appears that in general there is little or no subject-based knowledge to choose the

neighborhood system or between CAR and SAR models, and quite often these choices are made

based on tradition or taste. Scientific guidelines to aid choosing neighborhood systems, and between

CAR and SAR models are then relevant in applications. Numerous model selection methods have

been proposed in the literature (see for instance Claeskens and Hjort, 2008), but it seems that

model selection methodology for spatial models has not been explored much, and is somewhat

‘underdeveloped’ (Zhu, Huang and Reyes, 2010). Previous works on model selection methods for
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lattice data include Hepple (1995a,b) on standard Bayesian methods, Florax, Folmer and Rey

(2003) on test of hypotheses methods, and Zhu et al. (2010) on penalized likelihood methods.

The goal of this work is to study model selection in CAR and SAR models using standard

Bayesian methods, such as those described in Kass and Rafterty (1995) and Berger and Pericchi

(2001). Specifically, we would use posterior model probabilities as the criterion for model selection,

and compute them based on (modifications of) default priors that have recently been derived for

CAR and SAR models. The methods studied here are aimed at situations when all competing

models have the same mean structure, and the model differences rely on some aspects of the

covariance structure. Similar problems and methods have been considered by Osiewalski and Steel

(1993) for the analysis of regression models with elliptically symmetric distributions, and by Hepple

(1995a,b) for the analysis of some spatial models, although the Bayes factors proposed in the

latter were not not well defined and calibrated. Conditions on the models being compared and

the improper priors on the model parameters that guarantee well defined and calibrated Bayes

factors were obtained by Berger, Pericchi and Varshavsky (1998). Their model conditions apply

to the context considered here where all competing models have the same mean structure, and we

modify some previously proposed default priors to fully fit their conditions. We also describe a

simple Monte Carlo method to compute the marginal densities of the competing models based on

importance sampling, which works well for both small and large datasets. Finally, the proposed

model selection approach is illustrated on two real datasets, one on a regular lattice and one on an

irregular lattice.

2 Spatial Models for Lattice Data

For each site indexed by i = 1, . . . , n, a variable of interest Yi is observed, usually an aggregate

or summary, together with a set of p (< n) explanatory variables xi1, . . . , xip. We consider in this

work several classes of CAR models and SAR models that have been extensively used in economics,

epidemiology and geography.

2.1 Neighborhood Systems

The collection of sites {1, . . . , n} is assumed to be endowed with a neighborhood system, {Ni :

i = 1, . . . , n}, where Ni denotes the sites that are neighbors of site i. This neighborhood system

is key in determining the covariance structure of the variable of interest, with Ni interpreted as
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the sites that have ‘direct dependence’ with site i. This specification of the dependence structure

is natural when modeling lattice data, since similarity between sites often depends on some of the

sites’ shared features, such as boundaries, proximity or similarity of explanatory variables.

Neighborhood systems can be very general as they only need to satisfy that for any i, j =

1, . . . , n, j ∈ Ni if and only if i ∈ Nj and i /∈ Ni. But they need to be judiciously selected to reflect

the presumed direct relations among the responses. An emblematic example commonly used in

applications is the neighborhood system defined in terms of geographic adjacency

Ni = {j : site j shares a boundary with site i}, i = 1, . . . , n. (1)

But many other options are possible. For regular lattices the most common choices are the first

order neighborhood system, where the neighbors of site i are the sites adjacent to the north, south,

east and west, and the second order neighborhood system, where the neighbors of site i are its

first order neighbors plus their first order neighbors (except for site i). Higher order neighborhood

systems are also possible, but less often used. For irregular lattices the most common choices are

neighborhood systems based on shared geographic features, such as (1), and those based on distance

such as

Ni = {j : 0 < dij < r}, with r > 0, i = 1, . . . , n, (2)

where dij is the distance between sites i and j. Different choices of r result in different neighborhood

systems.

2.2 Conditional Autoregressive Models

Let Y = (Y1, . . . , Yn)
′ denote the response data. Given a neighborhood system, Gaussian condi-

tional autoregressive (CAR) models are specified by the set of full conditional distributions having

the autoregressive structure

(Yi | Y(i)) ∼ N
(

x′

iβ +

n
∑

j=1

cij(Yj − x′

jβ), τ
2
i

)

, i = 1, . . . , n, (3)

where Y(i) = {Yj , j 6= i}, x′

j = (xj1, . . . , xjp) are the values of the explanatory variables in site j,

β ∈ R
p are regression parameters, and τi > 0 and cij ≥ 0 are covariance parameters, with cij > 0

if and only if i and j are neighbors (so cii = 0 for all i). For the set of full conditional distributions

(3) to determine a well defined joint distribution for Y, the matrices M = diag(τ21 , . . . , τ
2
n) and

C = (cij) must satisfy the conditions:
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(a) M−1C is symmetric, so cijτ
2
j = cjiτ

2
i for all i, j = 1, . . . , n;

(b) M−1(In − C) is positive definite.

When (a) and (b) hold the joint distribution of Y is given by

Y ∼ Nn(Xβ, (In − C)−1M), (4)

where X = (x1, . . . ,xn)
′, assumed to have full rank, and In is the n×n identity matrix; see Cressie

(1993) or Banerjee et al. (2004). We consider in this work three CAR models in which matrices M

and C, in addition to satisfying (a) and (b), have also the following structure:

(c) M = σ2G, with σ2 > 0 unknown and G diagonal with known positive diagonal elements;

(d) C = φW , with φ an unknown ‘spatial parameter’ and W = (wij) a known “weight” matrix

(not necessarily symmetric) that is nonnegative (wij ≥ 0) and satisfies wij > 0 if and only if

sites i and j are neighbors (so wii = 0).

In what follows A = (aij) denotes the n × n symmetric matrix defined by aij = 1 if i and j

are neighbors, and aij = 0 otherwise. Several classes of CAR models have been proposed in the

literature within the aforementioned structure, that amounts to specify matrices G and W . The

most common ones, reviewed by Cressie and Kapat (2008), are described below:

(i) The Homogeneous CAR (HCAR) model:

G = In and W = A.

(ii) The Weighted CAR (WCAR) model (Besag, York and Mollie, 1991):

G = diag(|N1|−1, . . . , |Nn|−1) andW = GA, where |Ni| =
∑n

j=1 aij is the number of neighbors

of site i.

(iii) The Autocorrelation CAR (ACAR) model (Cressie and Chang, 1989):

G = diag(|N1|−1, . . . , |Nn|−1) and W = G1/2AG−1/2.

For any of the classes of CAR models (i)–(iii) it can be directly checked that condition (a) holds. For

condition (b) to hold the spatial parameter φ is required to belong to (λ−1
n , λ−1

1 ), where λ1 ≥ λ2 ≥
. . . ≥ λn are the ordered eigenvalues of G−1/2WG1/2, with λn < 0 < λ1 since tr(G−1/2WG1/2) =

tr(W ) = 0. Note that for the HCAR and ACAR models G−1/2WG1/2 = A, while for the WCAR

model G−1/2WG1/2 = G1/2AG1/2, so for all the three models (i)–(iii) G−1/2WG1/2 is symmetric
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and the λis are real. The parameter space of η = (β′, σ2, φ) in any of the above classes of CAR

models is then Ω = R
p × (0,∞)× (λ−1

n , λ−1
1 ). The Appendix provides detailed proofs of the above

claims for a larger class of CAR models.

2.3 Simultaneous Autoregressive Models

Given a neighborhood system2, Gaussian simultaneous autoregressive (SAR) models are specified

by a set of autoregressive equations on the variables themselves, rather than on their full conditional

distributions, given by

Yi = x′

iβ +
n
∑

j=1

bij(Yj − x′

jβ) + ǫi, i = 1, . . . , n, (5)

where x′

j and β are the same as in CAR models, ǫi ∼ N(0, ξ2i ) are independent, and ξ2i > 0 and

bij ≥ 0 are covariance parameters, with bij > 0 if and only if i and j are neighbors; let B = (bij)

and M = diag(ξ21 , . . . , ξ
2
n). Provided In − B is nonsingular, the n scalar equations in (5) can be

written as

Y = Xβ + (In −B)−1ǫ,

where X is the same as in CAR models and ǫ = (ǫ1, . . . , ǫn)
′, so

Y ∼ Nn(Xβ, (In −B)−1M(In −B′)−1).

We consider SAR models where matricesM and B have a similar structure as, respectively, matrices

M and C stated in (c) and (d), but with G = In and W = A, with A as in the previous section.

To guarantee that In − φA is nonsingular φ is required to belong to R − {λ−1
i }ni=1, where λ1 ≥

λ2 ≥ . . . ≥ λn are the ordered eigenvalues of A. But the feasible values for φ are almost always

in practice taken to be the interval (λ−1
n , λ−1

1 ), so we also do that in this work. Then we consider

SAR models of the form

Y ∼ Nn(Xβ, σ2((In − φA)2)−1). (6)

The parameter space for η = (β′, σ2, φ) in SAR models is Ω = R
p × (0,∞) × (λ−1

n , λ−1
1 ), which is

the same as that of HCAR and ACAR models, but differs from that of WCAR models.

3 Model Selection

Let M1,M2, . . . ,Mk be a set of k ≥ 2 candidate models for the data Y. In principle the differences

between the models can be of any nature, but we consider here the case when all candidate models

2SAR models admit asymmetric neighboring relations, but these will not be considered here.
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are either CAR or SAR models having the same mean structure, but with different covariance

structures. For instance, for i 6= j models Mi and Mj may be both CAR (SAR) models having

different neighborhood systems, or one of them may be a CAR model while the other is a SAR

model, having either the same or different neighborhood systems. The model selection criterion we

would use is the posterior model probabilities based on some (modification of) default priors that

have been recently derived for CAR and SAR models.

For j = 1, . . . , k, let Mj be either an HCAR, WCAR, ACAR or SAR model, as given in (4) or

(6), parameterized by ηj = (β, σ2
j , φj) ∈ Ωj and having covariance structure depending on matrices

Gj and Aj . Recall that for each model φj ∈ (1/λ
(j)
n , 1/λ

(j)
1 ), where λ

(j)
1 ≥ λ

(j)
2 ≥ . . . ≥ λ

(j)
n are the

ordered eigenvalues of Aj , in the case of HCAR, ACAR and SAR models, or of G
1/2
j AjG

1/2
j in the

case of WCAR models. Then all competing models have similar likelihoods given by

Lj(ηj ;y) = (2πσ2
j )

−n/2|Σ−1
φj

|1/2 exp
{

− 1

2σ2
j

(y −Xβ)′Σ−1
φj

(y −Xβ)
}

, (7)

where

Σ−1
φj

=































In − φjAj for HCAR models

G−1
j − φjAj for WCAR models

G−1
j − φjG

−1/2
j AjG

−1/2
j for ACAR models

(In − φjAj)
2 for SAR models.

3.1 Priors

Prior distributions need to be assigned to the parameters of each model Mj , and this would be

done using default priors of the form

π(ηj | Mj) ∝
π(φj | Mj)

σ2
j

1Ωj
(ηj), (8)

where π(φj | Mj) needs to be specified and 1E(·) denotes the indicator function of set E. Previous

works on Bayesian analysis of CAR and SAR models (e.g. Bell and Broemeling, 2000; Hepple,

1995a,b) have used prior (8) with

πU (φj | Mj) = 1
(1/λ

(j)
n ,1/λ

(j)
1 )

(φj);

we call this the uniform prior. In spite of its non-informative appearance, this prior specification

might be (arguably) inappropriate in some cases. For many datasets found in practice there is

strong correlation between neighboring observations, and such behavior is reproduced in CAR
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models only when the spatial parameter φ is quite close to one of the boundaries, λ−1
1 or λ−1

n

(Besag and Kooperberg, 1995). Prior πU (φj | Mj) ignores this common behavior as it assigns equal

mass to all parameter values. The same issue may also be raised when πU (φj | Mj) is used as a

default prior in SAR models.

Recently, De Oliveira (2011) and De Oliveira and Song (2008) derived the independence Jeffreys

prior for, respectively, CAR and SAR models and studied their main properties. It turns out that

this default prior is the same for both CAR and SAR models, and is of the form (8) with

πJ1(φj | Mj) =

{

n
∑

i=1

( λ
(j)
i

1− φjλ
(j)
i

)2
− 1

n

[

n
∑

i=1

λ
(j)
i

1− φjλ
(j)
i

]2
}

1
2

1
(1/λ

(j)
n ,1/λ

(j)
1 )

(φj). (9)

This prior is unbounded at 1/λ
(j)
1 and 1/λ

(j)
n , so it assigns large prior mass to parameter values

close to these boundaries that represent strong correlation between neighboring observations. It

then represents the common behavior mentioned above. Although πJ1(φj | Mj) is not integrable, it

yields a proper posterior in both CAR and SAR models, as long as the eigenvectors corresponding

to the extreme eigenvalues λ
(j)
1 and λ

(j)
n do not belong to the column space of X, a condition likely

met in practice; see De Oliveira (2011) and De Oliveira and Song (2008) for details.

3.2 Bayes Factors and Posterior Model Probabilities

For standard Bayesian model selection we also need to assign prior probabilities to all competing

models, say π(Mj); a sensible default choice is π(Mj) = 1/k for all j = 1, . . . , k. These prior model

probabilities are updated by the data using Bayes theorem, where for any i 6= j the posterior odds

of model Mi against model Mj are given by

π(Mi | y)
π(Mj | y) =

m(y | Mi)π(Mi)

m(y | Mj)π(Mj)

= Bij × prior oddsij , (10)

where m(y | Mj) is the marginal (or prior predictive) density of Y under model Mj , given by

m(y | Mj) =

∫

Ωj

Lj(ηj | y)π(ηj | Mj)dηj ,

and

Bij =
m(y | Mi)

m(y | Mj)
,
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is the Bayes factor of Mi against Mj , which represents the evidence provided by the data in favor

of Mi, as opposed to Mj . Then the posterior probability of model Mj is

π(Mj | y) =

(

k
∑

l=1

π(Ml)

π(Mj)
Blj

)−1

, j = 1, . . . , k,

=
m(y | Mj)

∑k
l=1m(y | Ml)

, when all π(Mj) are equal. (11)

The model to be selected is the one for which π(Mj | y) (or m(y | Mj) in case all π(Mj) are equal)

is the largest.

In general, standard Bayesian model selection can not be done with improper priors since these

are specified only up to an arbitrary multiplicative constant, which make the resulting Bayes factors

and posterior model probabilities undetermined. But an important exception occurs when all the

competing models have the same invariance structure, up to individual model parameters that have

proper priors (Berger et al., 1998). The CAR and SAR models we consider here fit this important

exception when all the competing models have the same mean structure and prior (8) is used with

π(φj | Mj) proper. The latter is certainly fulfilled by πU (φj | Mj), but not by πJ1(φj | Mj) since

πJ1(φj | Mj) = O((1− φjλ
(j)
i )−1) as φj → 1/λ

(j)
i ; i = 1 or n;

see De Oliveira and Song (2008). Alternatively we use instead (πJ1(φj | Mj))
r, with some r < 1,

which is proper and has the same “shape” and desirable behavior of assigning large prior mass to

parameter values close to the parameter space boundaries.

For the computation of marginal densities in CAR and SAR models with prior (8), standard

calculations show that integration with respect to β and σ2
j can be done analytically, resulting in

m(y | Mj) = Kcj

∫ 1/λ
(j)
1

1/λ
(j)
n

h(φj ,Mj ,y)dφj , j = 1, . . . , k, (12)

where

h(φj ,Mj ,y) = |Σ−1
φj

|1/2|X ′Σ−1
φj

X|−1/2(S2
φj
)−(n−p)/2π(φj | Mj),

S2
φj

= (y −Xβ̂φj
)′Σ−1

φj
(y −Xβ̂φj

) , β̂φj
= (X ′Σ−1

φj
X)−1X ′Σ−1

φj
y,

and

K =
Γ(n−p

2 )

π
n−p

2

, cj =

(

∫ 1/λ
(j)
1

1/λ
(j)
n

π(φj | Mj)dφj

)−1

.
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It is important to note that for the posterior model probabilities (11) to be well defined and

calibrated, the proportionality constants in the likelihood and prior of all competing models should

be retained (unless a constant is the same across all competing models, like K above). This was

not done in Hepple (1995a,b), so some of the posterior model probabilities reported in that article

are mistaken. In this work the default choices to be used for π(φj | Mj) are πU (φj | Mj) and

(πJ1(φj | Mj))
1/2. Hence computation of m(y | Mj) involves one-dimensional integration over a

bounded interval, which we consider next.

3.3 Computation

The computation of the proportionality constants cj is straightforward. For π(φj |Mj) = πU (φj |Mj),

cj = (1/λ
(j)
1 − 1/λ

(j)
n )−1, while for π(φj | Mj) = (πJ1(φj | Mj))

1/2, cj can be computed either by

numerical quadrature, such as the adaptive quadrature algorithm implemented in the R function

integrate, or by the simple Monte Carlo estimate

ĉj =

(

( 1

λ
(j)
1

− 1

λ
(j)
n

) 1

m

m
∑

l=1

(πJ1(φ
(l)
j | Mj))

1/2

)

−1

, (13)

with φ
(1)
j , . . . , φ

(m)
j

iid∼ unif(1/λ
(j)
n , 1/λ

(j)
1 ) and m large. The computation of marginal densities

requires more care. In principle m(y | Mj) could also be computed by numerical quadrature, but

in our experience this is likely to fail in datasets with moderate or large sample sizes. The reason

is that for such datasets the integrand in (12) is highly peaked (and often concentrated near the

right boundary 1/λ
(j)
1 ), so it is almost constant and very close to zero over most of the integration

region. Because of that estimates obtained by numerical quadrature for such datasets are often zero

or nearly so, and Monte Carlo estimates similar to (13) would also be highly inefficient because of

the same reason. We propose Monte Carlo estimation with an importance sampling density tailored

to this particular situation.

Let φ̃j be the value that maximizes the integrand in (12), to be computed numerically, and

t ∈ [3, 4]. We propose estimating m(y | Mj) using as importance sampling density the normal

density with mean φ̃j and standard deviation ωj = (1/λ
(j)
1 − φ̃j)/t, truncated to the interval

(1/λ
(j)
n , 1/λ

(j)
1 ). The resulting estimate is

m̂(y | Mj) =

(

Φ(t)− Φ

(

t
1/λ

(j)
n − φ̃j)

1/λ
(j)
1 − φ̃j)

)) √
2πKcjωj

m

m
∑

l=1

(

h(φ
(l)
j ,Mj ,y)

exp{−(φ
(l)
j − φ̃j)2/2ω2

j }

)

,
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where h(φj ,Mj ,y) was defined in the previous section and φ
(1)
j , . . . , φ

(m)
j

iid∼ N(φ̃j , ω
2
j ) truncated to

(1/λ
(j)
n , 1/λ

(j)
1 ). Since the probability of the truncation set is very close to one (due to the choice

of t), the sampling from the truncated normal distribution can be done in the obvious way: get

a draw from the N(φ̃j , ω
2
j ) distribution and accept it, unless it falls outside (1/λ

(j)
n , 1/λ

(j)
1 ). Our

experience suggests that the algorithm works well regardless of how picked the integrand in (12) is,

i.e., regardless of the sample size.

4 Examples

In this section we illustrate the proposed model selection methodology using two datasets, one over

a regular lattice and one over an irregular lattice.

4.1 Phosphate Dataset

The first dataset we consider was analyzed by Cressie and Kapat (2008) and De Oliveira (2011).

It consists of raw phosphate concentrations (in mg P/100 g of soil) collected over several years in

an archaeological region of Laconia across the Evrotas river in Greece. The original observations

were collected over a 16 by 16 regular lattice, and were transformed to obtain a response with

distribution close to Gaussian; see the above references for further details.

As competing models for this (transformed) dataset, Cressie and Kapat (2008) entertained the

HCAR, WCAR and ACAR models described in Section 2.2, each with either the first or second

order neighborhood systems. In addition, we also entertain the SAR model (6) with W = A, having

either first or second order neighborhood systems. Let Ỹ = (Ỹ1, . . . , Ỹ256)
′ denote the transformed

data. Cressie and Kapat (2008) assumed for all competing models that E{Ỹi} = β1 + β2si1 + β3si2

(so p = 3), with (si1, si2) the coordinates of site i, while De Oliveira (2011) assumed that E{Ỹi} = β1

(so p = 1). We consider here both scenarios for the mean structure.

We assign to the eight competing models equal prior probabilities, and compute the poste-

rior probabilities of these models assuming prior (8) with π(φj | Mj) equal to πU (φj | Mj) or

(πJ1(φj | Mj))
1/2; Table 4.1 displays the results. According to this criterion, the ACAR model

with first order neighborhood system displays the best fit, for both the p = 1 and p = 3 scenarios

and regardless of the default prior. Also, the posterior model probabilities display little sensitivity

to the two default priors. The WCAR model with first order neighborhood system ranks at a not

so distant second place.

11



Table 1: Posterior model probabilities for the phosphate dataset. For each competing model, the

results are for two mean structures and two default priors.

models HCAR-1∗ HCAR-2 WCAR-1 WCAR-2 ACAR-1 ACAR-2 SAR-1 SAR-2

modified independence Jeffreys prior

p = 1 0.099 2.2× 10−8 0.321 4.0× 10−8 0.443 5.1× 10−8 0.136 1.3× 10−5

p = 3 0.130 7.6× 10−8 0.249 9.2× 10−8 0.488 1.2× 10−7 0.132 1.9× 10−5

uniform prior

p = 1 0.085 4.3× 10−7 0.295 6.6× 10−7 0.416 6.6× 10−7 0.203 1.5× 10−5

p = 3 0.148 6.3× 10−7 0.221 1.6× 10−9 0.443 8.7× 10−7 0.186 2.1× 10−5

∗HCAR-1 and HCAR-2 stand for homogeneous CAR models with, respectively, first and second order neighborhood systems.
A similar convention holds for the other models.

It is worth noting that Cressie and Kapat (2008) selected the ACAR model with second order

neighborhood system as the best model for this dataset by using some graphical and numerical

diagnostics they developed. The above analysis does not support this finding since the posterior

model probability of the ACAR-2 model is negligible for all the considered mean structures and

default priors. In addition, for the models with constant and non-constant mean the maximized log-

likelihoods of the ACAR-2 model are, respectively, -167.038 and -165.770, which are substantially

smaller than the maximized log-likelihoods of the ACAR-1 model which are -154.686 and -153.533.

4.2 Crime Dataset

The second dataset we consider was analyzed by Baller et al. (2001) and De Oliveira and Song

(2008). It consists of homicide rates per 100, 000 habitants for the year 1980 in the south of the

United States, a region that forms an irregular lattice containing n = 1412 counties within 16 states

and the District of Columbia; see the above references for further details.

Previous analyzes of this dataset showed the response mean structure to be well described by a

linear model on the following explanatory variables (socio-economic factors): an index of resource

deprivation, an index of population structure, median age, divorce rate and unemployment rate;

we assume this to be the response mean structure.

Baller et al. (2001) and De Oliveira and Song (2008) considered SAR models and spatial lag
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Table 2: Posterior model probabilities for the south crime dataset. For each competing model, the

results are for two mean structures and two default priors.

models HCAR WCAR ACAR SAR

modified independence Jeffreys prior

AC∗ 4.2× 10−6 0∗∗ 0 0

D70 0.857 0 0 0.065

D100 3.0× 10−3 0 0 0.074

uniform prior

AC 3.6× 10−6 0 0 0

D70 0.822 0 0 0.074

D100 3.4× 10−3 0 0 0.100

∗AC, D70 and D100 indicate the neighborhood systems formed by, respectively, adjacent counties, counties within a 70 miles
radius and counties within a 100 miles radius.
∗∗A value of zero indicates the estimated posterior model probability is less that 10−15.

models SLM3 with different neighborhood systems, although the analysis in De Oliveira and Song

(2008) suggested that SAR models fit this dataset better than SLMs (so the latter will not be

considered here). The competing models we entertain for this dataset are the HCAR, WCAR and

ACAR models described in Section 2.2 and the SAR model (6) with W = A; all models would have

the aforementioned mean structure. As for the neighborhood system, we consider the neighborhood

system (1) (AC), and the neighborhood systems (2) with r = 70 miles (D70) and r = 100 miles

(D100), where distance is measured between county centroids. The average number of neighbors

in the three neighborhood systems are about, 5, 21 and 42, respectively.

We assign to the twelve competing models equal prior probabilities, and again compute the

posterior probabilities of these models assuming prior (8) with π(φj | Mj) equal to πU (φj | Mj) or

(πJ1(φj | Mj))
1/2; Table 4.2 displays the results. The HCAR model with the D70 neighborhood

system is the one that fits the data best, regardless of the default prior that is used. Also, the

posterior model probabilities display little sensitivity to the default priors. A SAR model and a SLM

with ten nearest neighbors system were selected by, respectively, De Oliveira and Song (2008) and

Baller et al. (2001), but no CAR models were entertained in these analyzes. The present analysis

3The spatial lag model is defined by the spatial auto-regressions

Yi = x
′

iβ +

n∑

j=1

bijYj + ǫi , i = 1, . . . , n, ǫ1, . . . , ǫ1
iid
∼ N(0, σ2).
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shows that an HCAR model with D70 neighborhood system fits this dataset much better than any

of the considered SAR models, since the posterior probabilities of all the other competing models

are either very small or negligible. This suggests that the common practice among econometricians

of not entertaining CAR models for the description of lattice data is unfounded.

5 Conclusions

This work describes a Bayesian model selection approach for spatial lattice models, applicable to

both regular and irregular lattices. The methodology has several attractive features that make it

compare favorably against other model selection approaches. First, the method does not require the

competing models to be nested and can be used to compare models from different classes. Second,

the approach provides an easily interpretable measure of how strongly the data support each of the

competing models, through their posterior model probabilities, which is an important issue in cases

when several models fit the data about equally well. Finally, the approach does not require the

specification of personal prior distributions for the parameters of all competing models, and instead

uses default priors. This point is relevant in practice since it is often difficult to subjectively assess

these prior distributions, and posterior model probabilities are also often sensitive to the priors on

the model parameters. The results on the two data analyzes suggest the latter is not the case when

the default priors proposed here are used. On the other hand, the main limitation of the proposed

approach is that requires all competing models to have the same mean structure, so its applicability

is bounded to situations when the important explanatory variables have already been determined.

Finally, it is worth noting that the proposed methodology could also be used for model selection in

more complex hierarchical and/or multivariate models for lattice data, such as those proposed in

Jin, Banerjee and Carlin (2007) and Song, Ghosh, Miaou and Mallick (2006).
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Appendix

Proposition. Let M = σ2G and C = φW be matrices satisfying conditions (c)–(d) in Section 2.2

and such that G−1W is symmetric. Then:

(1) The matrices G−1/2WG1/2 and W have the same non-zero eigenvalues, which are all real.

(2) The matrices M and C determine a CAR model if and only if σ2 > 0 and φ ∈ (λ−1
n , λ−1

1 ), where

λ1 ≥ . . . ≥ λn are the ordered eigenvalues of G−1/2WG1/2.

Proof. (1) G−1W symmetric implies that G1/2(G−1W )G1/2 = G−1/2WG1/2 is also symmetric, so

the eigenvalues of the latter are all real. Since for any two matrices, say A and B, AB and BA

have the same non-zero eigenvalues (Schott, 2005 p. 130), the eigenvalues of W are all real (even

when W is not symmetric).

(2) Matrices M and C determine a CAR model iff conditions (a)–(b) in Section 2.2 are satisfied

(Cressie, 1993 p. 413). G−1W symmetric implies condition (a) holds. From the proof of (1), all

the eigenvalues of G−1/2WG1/2 are real and tr(G−1/2WG1/2) = tr(W ) = 0, so λn < 0 < λ1. To

check condition (b) note that M−1(In − C) = 1/σ2(G−1 − φW ), so this matrix is positive definite

iff σ2 > 0 and G−1 − φW is positive definite. Now

G−1 − φW = G−1/2(In − φG−1/2WG1/2)G−1/2,

so G−1 − φW is positive definite iff (In − φG−1/2WG1/2) is positive definite. Since the latter is

symmetric, it is positive definite iff all its eigenvalues are positive, which are given by {1−φλi}ni=1.

If φ > 0 we have 1− φλ1 ≥ . . . ≥ 1− φλn, so these eigenvalues are positive iff 1− φλn > 0, which

is equivalent to φ > λ−1
n . On the other hand, if φ < 0 we have 1 − φλ1 ≤ . . . ≤ 1 − φλn, so these

eigenvalues are positive iff 1− φλ1 > 0, which is equivalent to φ < λ−1
1 . In summary, G−1 − φW is

positive definite iff φ ∈ (λ−1
n , λ−1

1 ), which proves the result.
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