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Abstract

In this article we develop a new test statistic for testing the equality of mean vectors
for paired doubly multivariate observations for q response variables and u sites in blocked
compound symmetric covariance matrix setting. The new testing is implemented with two
real data sets.
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1 Introduction

In this article we develop a statistical method for testing the equality of mean vectors for paired

doubly multivariate or paired two-level multivariate observations, where more than one response

variable (q) is measured on each experimental unit on more than one site (u) in two separate

time points. It is very common in clinical trial study to collect measurements on more than one

response variable at different body positions at two different time points on the same group of

people to test the effectiveness of a medicine or any dietary supplement. Hotelling’s T2 statistic

is the conventional method to test the equality of mean vectors. However, Hotelling’s T2 statistic

∗Correspondence to: Anuradha Roy, Department of Management Science and Statistics, The University of
Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA
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is based on the unbiased estimate of the unstructured variance-covariance matrix. Nevertheless,

when the data is doubly multivariate, variance-covariance matrix may have some structure, and

one should use an unbiased estimate of that structure to test the equality of mean vectors. In

this article we obtain a natural extension of the Hotelling’s T2 statistic, the RL statistic, which

uses an unbiased estimate of the structured variance-covariance matrix that is present in a data

set.

Osteoporosis or porous bone is an age-related disorder involving in a progressive decrease in

bone mass due to the loss of minerals - mainly calcium. As a result, bones become weakened

and more susceptible to fractures. In a person with severe osteoporosis, fractures can occur

from lifting even light objects, or from falls that would not even bruise or injure the average

person. Currently it is estimated that one of every four post-menopausal women has osteoporosis.

Although it is more common in white or Asian women older than 50 years, osteoporosis can

occur in almost any person at any age: osteoporosis is not just an ‘old womans disease’. In

fact, more than 2 million American men have osteoporosis. The estimated national cost for

osteoporosis and related injuries is $14 billion each year in the United States. Fortunately, we

can do several things to ensure that bones are not at risk for these men and women. Numerous

studies have shown a positive relationship between exercise or dietary supplement, and building

stronger bones- at every stage of a man’s and woman’s life. Some specific exercise or dietary

supplement tend to increase bone mineral content and mass (Starnes et al., 2012). Suppose an

investigator measures the mineral content of three bones, radius, humerus and ulna (q = 3) by

photon absorptiometry to examine whether a particular dietary supplement would slow the bone

loss in older women. All three measurements are recorded on the dominant and non-dominant

sides (u = 2) for each woman. These doubly multivariate measurements are taken on 24 women.

The bone mineral contents for all these 24 women are also measured after one year of their

participation in the experimental program to test whether this particular dietary supplement

reverse the bone loss in these women in one year.

In another example of a bone densitometry study where bone mineral density (BMD) are

obtained from 12 patients. On each femoral (right and left femoral, u = 2) two BMD measure-
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ments (q = 2) are taken, one at the femoral neck and the other one at the trochanter region.

These four measurements are also observed on each of these 12 patients after two years to test

whether the BMD is lower in these patients in two years to diagnose if the patients are at risk

for osteopenia.

In this article we assume the doubly multivariate observations have a blocked compound

symmetry (BCS) covariance structure (Rao, 1945, 1953). Different sites may have different

measurement variations for the variables, and we must take these variations into account while

analyzing doubly multivariate data. Roy and Leiva (2011) have observed advantages of using this

BCS structure over the usual unstructured variance-covariance matrix while analyzing doubly

multivariate data. The main advantage of using BCS structure over unstructured variance-

covariance matrix is that the number of unknown parameters declines substantially; thus helps

in analyzing the data in small sample set-up in expensive clinical trials. However, testing the

validity of this BCS covariance structure (Roy and Leiva, 2011) is crucial before using it for any

statistical analysis. A BCS structure can be written as

Γ =


Σ0 Σ1 . . . Σ1
...

. . .
...

...
. . .

...
Σ1 Σ1 . . . Σ0


= Iu ⊗ (Σ0 −Σ1) + Ju ⊗Σ1, (1.1)

where Iu is the u× u identity matrix, 1u is a u× 1 vector of ones, Ju = 1u1
′
u and ⊗ represents

the Kronecker product. We assume Σ0 is a positive definite symmetric q × q matrix, Σ1 is a

symmetric q × q matrix, and the constraints − 1
u−1Σ0 < Σ1 and Σ1 < Σ0, which mean that

Σ0 − Σ1 and Σ0 + (u − 1)Σ1 are positive definite matrices, so that the qu × qu matrix Γ is

positive definite (for a proof, see Lemma 2.1 in Roy and Leiva (2011)). The q×q block diagonals

Σ0 in Γ represent the variance-covariance matrix of the q response variables at any given site,

whereas the q × q block off diagonals Σ1 in Γ represent the covariance matrix of the q response

variables between any two sites. We also assume that Σ0 is constant for all sites and Σ1 is

constant for all site pairs. The matrix Γ is also known as equicorrelated partitioned matrix with

equicorrelation matrices Σ0 and Σ1 (Leiva, 2007; Roy and Leiva, 2008).
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Let yr,s be a q-variate vector of measurements on the rth individual at the sth site; r =

1, . . . , n, s = 1, . . . , u. The n individuals are all independent. Let yr = (y′
r,1, . . . ,y

′
r,u)

′ be the uq-

variate vector of all measurements corresponding to the rth individual. Finally, let y1,y2, . . . ,yn

be a random sample of size n drawn from the populationNuq

(
µy, Iu ⊗ (Σy0 −Σy1) + Ju ⊗Σy1

)
,

where µy ∈ Ruq and Iu ⊗ (Σy0 −Σy1) + Ju ⊗Σy1 is assumed to be a uq × uq positive definite

matrix. Thus, the number of unknown parameters to be estimated is only q(q + 1) in compari-

son to the number of unknown parameters uq(uq+1)/2 in an unstructured variance-covariance

matrix Ω. Suppose xr,s be the corresponding q-variate vector of measurements on the rth in-

dividual at the sth site; r = 1, . . . , n, s = 1, . . . , u after a time gap or after a treatment of the

same n independent individuals. We stack all the q responses by sites as before and assume

x ∼ Nuq (µx, Iu ⊗ (Σx0 −Σx1) + Ju ⊗Σx1) . Therefore, we see that x and y are correlated.

Let d = y − x. Here we assume the natural pairing of the doubly multivariate

Table 1 Data Structure

Before After Difference
Pair number treatment treatment dr = yr − xr

1 y1 x1 d1

2 y2 x2 d2
...

...
...

...
n yn xn dn

observations on each individual. Thus, yr,s is paired with xr,s for all s = 1, . . . , u. That is, yr

from the first set of samples is paired with xr from the second set of samples, r = 1, 2, . . . , n.

The situation is described in Table 1.

2 The Hypothesis

We want to test the equality of the mean vectors by considering the data as doubly multivariate

and has BCS structure (1.1). That is, we want to test the following hypothesis

Ho : µy = µx, vs. H1 : µy ̸= µx. (2.2)

We assume that n > uq. As y and x are correlated and have a multivariate normal distribution:(
y
x

)
∼ N2uq

[(
µy

µx

)
,

(
Σyy Σyx

Σxy Σxx

)]
,

4



where(
Σyy Σyx

Σxy Σxx

)
=

[
Iu ⊗

(
Σ0

y −Σ1
y

)
+ Ju ⊗Σ1

y Ju ⊗W

Ju ⊗W Iu ⊗
(
Σ0

x −Σ1
x

)
+ Ju ⊗Σ1

x

]
,

where W is a q × q symmetric matrix. It represents the covariance among q responses before

and after a treatment for each site, and we assume this covariance is constant for all site pairs.

Straightway the above hypothesis (2.2) is equivalent to test

Ho : µd = 0, vs. H1 : µd ̸= 0, (2.3)

where µd = E(y−x) = µy −µx. Now to estimate Cov(y−x) = Σyy −Σyx −Σxy +Σxx, we

need the estimates of q × q matrices Σ1
y, Σ

0
y, Σ

1
x, Σ

0
x and W . However, by reparameterization

we can resolve this problem of estimating so many matrices as shown in the following section.

2.1 An Alternative Formulation of the Problem

The above hypothesis testing problem can be formulated in an alternative way by reparametriz-

ing the variance-covariance matrix Cov(y − x). Now d1, d2, . . . , dn are independent and iden-

tically distributed (i.i.d.) Nuq (δ;Γ) where δ = µd = E(y − x) = µy − µx, and

Γ = Cov(d) = Cov(y − x)

= Σyy −Σyx −Σxy +Σxx

= Iu ⊗ (Γ0 − Γ1) + Ju ⊗ Γ1,

where

Γ0 = Σ0
y +Σ0

x − 2W , (2.4)

and

Γ1 = Σ1
y +Σ1

x − 2W . (2.5)

Thus, instead of deriving the estimates of Σ1
y, Σ

0
y, Σ

1
x, Σ

0
x and W , it is sufficient to derive the

estimates of Γ0 and Γ1 from the random samples d1, d2, . . . ,dn.
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2.2 Matrix Result

If Γ0−Γ1 =
(
Σ0

y −Σ1
y

)
+
(
Σ0

x −Σ1
x

)
and Γ0+(u− 1)Γ1 =

(
Σ0

y + (u− 1)Σ1
y

)
+
(
Σ0

x + (u− 1)Σ1
x

)
−

2uW are invertible matrices, then Γ−1 exists and is given by

Γ−1 = Iu ⊗A+ Ju ⊗B,

where

A = (Γ0 − Γ1)
−1

and

B =
1

u

[
(Γ0 + (u− 1)Γ1)

−1 − (Γ0 − Γ1)
−1
]
.

This result generalizes the one given by Bertlett (1951) for the case q = 1.

3 An Unbiased Estimate of Γ

To find an unbiased estimate of the BCS structure Γ we first need to find unbiased estimates of

Γ0 and Γ1. Now, the uq×1 vectors d1, d2, . . . , dn are i.i.d. Nuq (δ;Γ) where δ = µd = µy−µx,

and Γ = Cov (d) = Iu ⊗ (Γ0 − Γ1) + Ju ⊗ Γ1 with Γ0 and Γ1 are defined in (2.4) and (2.5)

respectively. For each fixed r, we consider the vectors dr and δ be partitioned in u subvectors as

dr =
(
d′
r,1, . . . ,d

′
r,u

)′
and δ=

(
δ′1, . . . , δ

′
u

)′
. Similarly, d =

(
d
′
1, . . . ,d

′
u

)′
with ds = 1

n

∑n
r=1 dr,s

for s = 1, . . . , u. The equicorrelated hypothesis of Γ assures that

E
[
(dr,s − δs) (dr,s∗ − δs∗)

′] = { Γ0 if s = s∗

Γ1 if s ̸= s∗,

and

E
[(
ds − δs

) (
ds∗ − δs∗

)′]
= E

[[(
1

n

n∑
r=1

dr,s

)
− δs

][(
1

n

n∑
r∗=1

dr∗,s∗

)
− δs∗

]′]

=
1

n2

n∑
r=1

E
[
(dr,s − δs) (dr,s∗ − δs∗)

′]
=

{
1
nΓ0 if s = s∗
1
nΓ1 if s ̸= s∗,
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because dr,s and dr∗,s∗ are independent if r ̸= r∗. Now,

C0 =
u∑

s=1

n∑
r=1

(
dr,s − ds

) (
dr,s − ds

)′
=

u∑
s=1

n∑
r=1

[
(dr,s − δs)−

(
ds − δs

)] [
(dr,s − δs)−

(
ds − δs

)]′
=

u∑
s=1

n∑
r=1

(dr,s − δs) (dr,s − δs)
′ −

u∑
s=1

n
(
ds − δs

) (
ds − δs

)′
,

then

E [C0] =

u∑
s=1

n∑
r=1

E
[
(dr,s − δs) (dr,s − δs)

′]− u∑
s=1

nE
[(
ds − δs

) (
ds − δs

)′]
=

u∑
s=1

(nΓ0 − Γ0) = u (n− 1)Γ0.

Therefore,

E

[
1

(n− 1)u
C0

]
= Γ0.

Similarly, we have

C1 =

u∑
s=1

u∑
s̸=s∗=1

n∑
r=1

(
dr,s − ds

) (
dr,s∗ − ds∗

)′
=

u∑
s=1

u∑
s̸=s∗=1

n∑
r=1

[
(dr,s − δs)−

(
ds − δs

)] [
(dr,s∗ − δs∗)−

(
ds∗ − δs∗

)]′
=

u∑
s=1

u∑
s̸=s∗=1

n∑
r=1

(dr,s − δs) (dr,s∗ − δs∗)
′ −

u∑
s=1

u∑
s̸=s∗=1

n
(
ds − δs

) (
ds∗ − δs∗

)′
,

then

E [C1] =
u∑

s=1

u∑
s̸=s∗=1

n∑
r=1

E
[
(dr,s − δs) (dr,s∗ − δs∗)

′]− u∑
s=1

u∑
s ̸=s∗=1

nE
[(
ds − δs

) (
ds∗ − δs∗

)′]
= u(u− 1)nΓ1 − u(u− 1)Γ1 = u(u− 1) (n− 1)Γ1.

Therefore,

E

[
1

(n− 1)u(u− 1)
C1

]
= Γ1.

Consequently, unbiased estimators of Γ0 and Γ1 are

Γ̃0 =
1

(n− 1)u
C0,
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and

Γ̃1 =
1

(n− 1)u (u− 1)
C1,

respectively. Therefore, an unbiased estimate Γ̃ of Γ is

Γ̃ = Iu ⊗
(
Γ̃0 − Γ̃1

)
+ Ju ⊗ Γ̃1.

In the next section we will show that the mean vector d is independent of the unbiased estimate

of the variance-covariance matrix Γ̃. But, Γ̃ does not follow a Wishart distribution. Therefore,

we cannot use the Hotelling’s T2 distribution to test the hypothesis (2.3). Thus, we will define a

natural analogue of Hotelling’s T2 statistic, a RL statistic, in the BCS covariance matrix setting

in the next section.

4 A Natural Extension of the Hotelling’s T2 Statistic in BCS
Covariance Structure Setup

Let D be the matrix D
n×uq

= (d1, . . . ,dn)
′ , that is, D is a data matrix from Nuq (δ;Γ) =

Nuq

(
µy − µx; Iu ⊗ (Γ0 − Γ1) + Ju ⊗ Γ1

)
(see Mardia et al. (1979) Section 3.3, p. 64). Then,

using Corollary 3.3.3.2 of Theorem 3.3.3 fromMardia et al. (1979) Section 3.3, p. 66, we conclude

that d = 1
nD

′1n =
(
d
′
1, . . . ,d

′
u

)′
, with ds = 1

n

∑n
r=1 dr,s for s = 1, . . . , u, is independent of

S = 1
nD

′ (In − 1
n1n1

′
n

)
D := 1

nD
′ (In − 1

nJn

)
D := 1

nD
′HnD.

Using similar arguments, for each fixed s = 1, . . . , u, the q× 1 vectors d1,s, d2,s, . . . , dn,s are

i.i.d Nq (δs;Γ0) , and let Ds
n×q

denote the data matrix Ds
n×q

= (d1,s, . . . ,dn,s)
′, from Nq (δs;Γ0) .

Note that D = (D1,D2, . . . ,Du). Then, using the Corollary 3.3.3.2 of Theorem 3.3.3 from

Mardia et al. (1979) Section 3.3, p. 66 again, we conclude that ds =
1
nD

′
s1n = 1

n

∑n
r=1 dr,s is

independent of

Ss =
1

n
D′

s

(
In − 1

n
1n1

′
n

)
Ds :=

1

n
D′

s

(
In − 1

n
Jn

)
Ds

:=
1

n
D′

sHnDs =
1

n

n∑
r=1

(
dr,s − ds

) (
dr,s − ds

)′
.

Furthermore, from Exercise 3.4.5 in p. 89 of Mardia et al. (1979) we have

Ss ∼ Wishartq

(
1

n
Γ0, n− 1

)
.
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Therefore,

1

n
C0 =

1

n

u∑
s=1

n∑
r=1

(
dr,s − ds

) (
dr,s − ds

)′
=

u∑
s=1

Ss,

is a sum of non independent Wishartq
(
1
nΓ0, n− 1

)
. However, since d = 1

nD
′1n =

(
d
′
1, . . . ,d

′
u

)′
is independent of

S =
1

n
D′
(
In − 1

n
1n1

′
n

)
D

=
1

n
(D1, . . . ,Du)

′
(
In − 1

n
1n1

′
n

)
(D1, . . . ,Du)

:=
1

n
(D1, . . . ,Du)

′Hn (D1, . . . ,Du)

=
1

n


D′

1HnD1 D′
1HnD2 · · · D′

1HnDu

D′
2HnD1 D′

2HnD2 · · · D′
2HnDu

...
...

. . .
...

D′
uHnD1 D′

uHnD2 · · · D′
uHnDu

 ,

d =
(
d
′
1, . . . ,d

′
u

)′
is independent of

Γ̃0 =
1

(n− 1)u
C0 =

n

(n− 1)u

(
1

n

) u∑
s=1

n∑
r=1

(
dr,s − ds

) (
dr,s − ds

)′
=

n

(n− 1)u

(
1

n

) u∑
s=1

D′
sHnDs

=
n

(n− 1)u

u∑
s=1

Ss,

and d =
(
d′
1, . . . ,d

′
u

)′
is independent of

Γ̃1 =
1

(n− 1)u (u− 1)
C1 =

n

(n− 1)u (u− 1)

(
1

n

) u∑
s=1

u∑
s̸=s∗=1

n∑
r=1

(
dr,s − ds

) (
dr,s∗ − ds∗

)′
=

n

(n− 1)u (u− 1)

u∑
s=1

u∑
s̸=s∗=1

D′
sHnDs∗ .

Therefore d is independent of Γ̃ = Iu ⊗
(
Γ̃0 − Γ̃1

)
+Ju ⊗ Γ̃1. But, Γ̃ does not follow a Wishart

distribution. Notice that Γ̃0 is however a sum of non independent Wishart distribution. As
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a result, we cannot use the Hotelling’s T2 distribution to test the hypothesis (2.3). A natural

analogue of Hotelling’s T2 statistic, a RL statistic, in this BCS framework under the null case

can be defined as

RL = nd
′
(Γ̃)−1d,

with uq and n − 1 degrees of freedom. Now, to avoid inverting Γ̃, an alternative formula for

computing the test statistic RL can be written as

RL =
|Γ̃+ ndd

′|
|Γ̃|

− 1.

See Rencher (1998), p. 409.

5 Two Real Data Examples

In this section we demonstrate our new hypotheses testing (2.3) with two real data sets. The

first data set is smaller in size than the second one.

Example 1. (Osteopenia Data): This data was given by Fernando Sarav́ı, MD, PhD, at the

Nuclear Medicine School, Mendoza, Argentina. Twelve patients (n = 12) were chosen for a

bone densitometry study. Bone mineral density (BMD) were obtained from 12 subjects by a

technique known as dual X-ray absorptiometry (DXA) using a GE Lunar Prodigy machine.

The measurements are obtained from the hip region. In each femoral (right and left femoral,

u = 2) two BMD measurements (q = 2) were taken, one at the femoral neck and the other at

the trochanter region. These two measurements can be considered as taken from two different

random variables because femoral neck is primarily a cortical bone whereas trochanter is essen-

tially cancellous or trabecular bone. These four measurements were observed over a period of

two years. We test whether the bone mineral density is lower in these patients in two years

considering the data is doubly multivariate and has BCS structure.

The unbiased estimate of the unstructured Ω with five decimal places is

Ω̂ =
1

(n− 1)
S =


[
0.00068 0.00030
0.00030 0.00077

]
0.00030 0.00021
0.00064 0.00082

0.00030 0.00064
0.00021 0.00082

[
0.00141 0.00119
0.00119 0.00184

]
 .
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The unbiased estimates of the BCS covariance matrix Γ is

̂Iu ⊗ (Γ0 − Γ1) + Ju ⊗ Γ1 =


[
0.00105 0.00075
0.00075 0.00131

]
0.00030 0.00043
0.00043 0.00082

0.00030 0.00043
0.00043 0.00082

[
0.00105 0.00075
0.00075 0.00131

]
 .

From this estimate it appears that BCS is a good fit to the unstructured Ω̂ for the difference of

observations d. Using Roy and Leiva (2011) we see that the p−value = 0.2266 for the BCS fit when

we use the asymptotic χ2
ν approximation for −2 log Λ = 5.6532 with ν = qu(qu+1)

2 − q(q+1) = 4

degrees of freedom.

The calculated Hotelling’s T2 statistic is 7.4832 with p−value = 0.3286 for hypotheses testing

(2.3). Using BCS covariance structure we get RL statistic as 8.9184 with p−value = 0.2596.

The test statistic is with 4 and 11 degrees of freedom. Thus, we conclude that the bone mineral

density is not lower in two years in these patients using Hotelling’s T2 statistic as well as with

RL statistic. Thus, the patients are not at risk for osteopenia.

Example 2. (Mineral Data): This data set is taken from Johnson and Wichern (2007, p. 43).

An investigator measured the mineral content of bones (radius, humerus and ulna) by photon

absorptiometry to examine whether dietary supplements would slow bone loss in 25 older women.

Measurements were recorded for three bones on the dominant and nondominant sides. Thus,

the data is doubly multivariate and clearly u = 2 and q = 3.

The bone mineral contents for the first 24 women one year after their participation in an

experimental program is given in Johnson and Wichern (2007, p. 353). Thus, for our analysis

we take only first 24 women in the first data set. We test whether there has been a bone loss

considering the data as doubly multivariate and has BCS structure. We rearrange the variables

in the data set by grouping together the mineral content of the dominant sides of radius, humerus

and ulna as the first three variables, that is, the variables in the first location (u = 1) and then

the mineral contents for the non-dominant side of the same bones (u = 2).
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The unbiased estimate of the unstructured Ω with five decimal places is

Ω̂ =
1

(n− 1)
S =



 0.00232 0.00080 0.00064
0.00080 0.01062 −0.00022
0.00064 −0.00022 0.00095

 0.00029 0.00138 −0.00012
0.00067 0.00365 −0.00060

−0.00011 0.00026 0.00031
0.00029 0.00067 −0.00011
0.00138 0.00365 0.00026

−0.00012 −0.00060 0.00031

 0.00076 0.00046 −0.00012
0.00046 0.00391 −0.00040

−0.00012 −0.00040 0.00220



 .

The unbiased estimate of the BCS covariance matrix Γ is

̂Iu ⊗ (Γ0 − Γ1) + Ju ⊗ Γ1

=



 0.00154 0.00063 0.00026
0.00063 0.00726 −0.00031
0.00026 −0.00031 0.00157

 0.00029 0.00103 −0.00011
0.00103 0.00365 −0.00017

−0.00011 −0.00017 0.00031
0.00029 0.00103 −0.00011
0.00103 0.00365 −0.00017

−0.00011 −0.00017 0.00031

 0.00154 0.00063 0.00026
0.00063 0.00726 −0.00031
0.00026 −0.00031 0.00157



 .

From this estimate it appears that BCS is not a good fit to the unstructured Ω̂ for the difference

of observations d. Using Roy and Leiva (2011) we see that the p−value = 0.0010 for the BCS when

we use the asymptotic χ2
ν approximation for −2 log Λ = 27.8902 with ν = qu(qu+1)

2 −q(q+1) = 9

degrees of freedom.

The calculated Hotelling’s T2 statistic is 9.0218 with p−value = 0.3616 for hypotheses testing

(2.3). Using BCS covariance structure we get RL statistic as 4.0739 with p−value = 0.7774. The

test statistic is with 6 and 23 degrees of freedom. Thus, we conclude that there has not been a

bone loss using Hotelling’s T2 statistic with p−value = 0.3616. However, using the RL statistic

we get p−value = 0.7774, which is the same conclusion obtained using Hotelling’s T2 statistic.

That is, the dietary supplements is indeed slow the bone loss in 24 older women.

6 Concluding Remarks

In this article, we study the hypothesis testing of equality of mean vectors for paired two-

level multivariate data with BCS covariance structure. The proposed methodology can readily

be generalized to more than two levels. We are currently computing the empirical percentiles

points of the null distribution of RL statistic for the hypothesis (2.3) through simulation studies.

The results will be published soon.
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