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Abstract

We study the general linear model (GLM) with doubly exchangeable distributed error for m observed
random variables. The doubly exchangeable linear model (DEGLM) arises when the m−dimensional error
vectors are “doubly exchangeable” (defined later), jointly normally distributed, which is much weaker
assumption than the independent and identically distributed error vectors as in the case of GLM or
classical GLM (CGLM). We estimate the parameters in the model and also find their distributions.

Key Words: Multivariate repeated measures; Linear model; Replicated observations.

JEL Classification: C10, C13

1 Introduction

A generalization of the general linear model (GLM) or the classical general linear model (CGLM) is con-

sidered by Arnold in 1979 when the m× 1 error vectors are unobserved and exchangeable, jointly normally

distributed; not independent and identically distributed (iid) as in the case of CGLM. He named his new

model as exchangeable linear model (EGLM). EGLM is especially appropriate for doubly multivariate data or

two-level multivariate data. The variance-covariance matrix Σ (partitioned) with exchangeable distributed

error is of the form

Σ =




U0 U1 · · · U1

U1 U0 · · · U1
...

...
. . .

...
U1 U1 · · · U0




= Iu ⊗ (U0 −U1) + Ju ⊗U1,

where Iu is the u×u identity matrix, 1u is a u× 1 vector containing all elements as unity, Ju = 1u1′u, U0 is

a m×m positive definite symmetric matrix, and U1 is a symmetric m×m matrix. Leiva (2007) also used

this variance-covariance matrix Σ for classification problems, and named this as equicorrelated partitioned
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matrix with equicorrelation parameters U0, U1. The m × m block diagonals U0 represent the variance-

covariance matrix of the m response variables at any given site, whereas the m×m block off diagonals U1

represent the covariance matrix of the m response variables between any pair of sites. We assume U0 is

constant for all sites. Also, U1 is constant between any pair of sites

In this article we extend Arnold’s (1979) generalization of the EGLM when m × 1 error vectors are

unobserved and doubly exchangeable (defined in Section 2). Doubly exchangeable data is common in

repeated measures designs in biomedical, medical, engineering, and in many other research areas. In repeated

measures designs, in particular those employed in the clinical trial study of skin care products, the data

are collected on a vector of measurements (m) at different body positions (u) and at different points (v)

in time. For example, consider a clinical trial study where measurements are taken on the characteristics

of wrinkling, pigmentation, inflammation, and hydration on hands, face, neck, and arms once in every

month for four consecutive months. Occasionally, biomedical researchers measure levels of fat byproducts

at different parts of the body (sites) in an eight-week clinical trial for their research. In other words, these

data are multivariate in three levels. In these examples the variables at different sites and at different

time points are not independent, but are stochastically dependent in nature. Different sites and different

time points may be interchangeable or exchangeable (equicorrelated) among themselves; in other words it

is reasonable to assume that the variables have doubly exchangeable structure. Doubly exchangeable linear

model (DEGLM) is suitable for data that have doubly exchangeable structure.

In this article we develop DEGLM for three-level multivariate data by using doubly exchangeable struc-

ture or jointly equicorrelated covariance structure (Leiva, 2007; Roy and Leiva, 2007). Jointly equicorrelated

covariance structure (defined in Section 2.1) assumes a block circulant covariance structure, consisting of

three unstructured covariance matrices for three multivariate levels. This jointly equicorrelated covariance

structure can capture double exchangeability in the data structure in a longitudinal study both in time and

space. Another advantage of this covariance structure is that the measurements over time need not be of

equally spaced.

Let y be the muv-variate vector of all measurements. We partition this vector y as follows:

y =




y1
...

yv


 , where yt =




yt1
...

ytu


 , with yts =




yts,1
...

yts,m


 ,

for s = 1, . . . , u, t = 1, . . . , v. The m-dimensional vector of measurements yts represents the replicate on the

sth location and at the tth time point.
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2 Basic results

2.1 Jointly equicorrelated vectors

Definition 1. Let y be an muv−variate partitioned real-valued random vector y = (y′1, . . . , y
′
v)
′
, where

yt = (y′t1, . . . ,y
′
tu)

′
for t = 1, . . . , v, and y′ts = (yts,1, . . . , yts,m)′ for s = 1, . . . , u. Let E [y] = µy∈ <muv,

and Γy be the (muv×muv)−dimensional partitioned covariance matrix Cov [y] =
(
Γyt,yt∗

)
= (Γtt∗) , where

Γtt∗ = Cov [yt, yt∗ ] for t, t∗ = 1, . . . , v. The m−variate vectors y11, . . . , y1u, . . . ,yv1, . . . , yvu are said to be

jointly equicorrelated if Γy is given by

Γy= Ivu⊗ (U0 −U1)+Iv⊗Ju⊗ (U1 −W)+Jvu⊗W, (1)

where U0 is a positive definite symmetric m ×m matrix, and U1 and W are symmetric m ×m matrices.

The variance covariance matrix Γy is then said to have a jointly equicorrelated covariance structure with

equicorrelation parameters U0,U1 and W. The matrices U0,U1 and W are all unstructured.

Thus, the vectors y11, . . . ,y1u, . . . ,yv1, . . . , yvu are jointly equicorrelated if they have the following

“jointly equicorrelated covariance” matrix

Γy =




U0 U1 · · · U1 W W · · · W · · · W W · · · W
U1 U0 · · · U1 W W · · · W · · · W W · · · W
...

...
. . .

...
...

...
. . .

...
. . .

...
...

. . .
...

U1 U1 · · · U0 W W · · · W · · · W W · · · W
W W · · · W U0 U1 · · · U1 · · · W W · · · W
W W · · · W U1 U0 · · · U1 · · · W W · · · W
...

...
. . .

...
...

...
. . .

...
. . .

...
...

. . .
...

W W · · · W U1 U1 · · · U0 · · · W W · · · W
...

...
. . .

...
...

...
. . .

...
. . .

...
...

. . .
...

W W · · · W W W · · · W · · · U0 U1 · · · U1

W W · · · W W W · · · W · · · U1 U0 · · · U1
...

...
. . .

...
...

...
. . .

...
. . .

...
...

. . .
...

W W · · · W W W · · · W · · · U1 U1 · · · U0




, (2)

that is,

Cov [yts; yt∗s∗ ] =





U0 if t = t∗ and s = s∗,
U1 if t = t∗ and s 6= s∗,
W if t 6= t∗,

The m×m block diagonals U0 in (2) represent the variance-covariance matrix of the m response variables

at any given site and at any given time point, whereas the m ×m block off diagonals U1 in (2) represent

the covariance matrix of the m response variables between any two sites and at any given time point. We
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assume U0 is constant for all sites and time points, and U1 is the same for all site pairs and for all time

points. The m × m block off diagonals W represent the covariance matrix of the m response variables

between any two time points. It is assumed to be the same for any pair of time points, irrespective of the

same site or between any two sites.

2.2 Matrix-variate normal distribution

The random matrix X(p×n) is said to have a matrix-variate normal distribution with mean matrix M(p×n)

and covariance matrix Σ⊗Ψ, where Σ > 0, and Ψ > 0 are p×p and n×n matrices respectively if and only

if Vec(X ′) ∼ Npn(Vec(M ′),Σ⊗Ψ). We will use the notation X ∼ Np,n(M ,Σ⊗Ψ) or X ∼ Np,n(M ,Σ,Ψ).

Note that, if n = 1 (thus, Ψ is a scalar), then X follows a p− variate normal distribution with mean vector

M and variance-covariance matrix ΨΣ.

The matrix variate normal distribution arises when sampling from multivariate normal population. Let

x1, x2, . . . , xN be a random sample of size N from Np(µ,Σ). Define the observation matrix as follows:

X =




x11 x12 · · · x1N

x21 x22 · · · x2N
...

...
. . .

...
xp1 xp2 · · · xpN




then X ′ ∼ NN,p(1Nµ, IN ⊗Σ). We will use the following results of matrix-variate normal distribution (Pan

and Fang, (2002); Gupta and Nagar, (2002)) in this article.

Result 1 : X ∼ Np,n(M ,Σ,Ψ), Then X ′ ∼ Nn,p(M ′,Ψ,Σ).

Result 2 : X ∼ Np,n(M ,Σ,Ψ), and that D(m × p) is of rank m ≤ p, and C(n × t) is of rank t ≤ n, and

A(m× t), then DXC + A ∼ Nm,t(DMC + A, DΣD′,C ′ΨC).

Result 3 : If X1 ∼ Np,n(M1,Σ1,Ψ1) and X2 ∼ Np,n(M2,Σ2,Ψ2), then

X1 + X2 ∼ Np,n

(
M1 + M2, (Σ1 ⊗Ψ1) + (Σ2 ⊗Ψ2)

)
.

2.3 Matrix results

The jointly equicorrelated variance-covariance matrix Γy (Roy and Leiva, 2007) in (1) can be written as

Γy = Iv ⊗ (V0 −V1) + Jv ⊗V1,

with

V0 = Iu ⊗ (U0 −U1) + Ju ⊗U1,
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and

V1 = Ju ⊗W,

where V0 is a positive definite (mu×mu)−dimensional symmetric matrix, V1 is a (mu×mu)−dimensional

symmetric matrix, and the m×m matrices U0, U1 and W are defined as in Section 2.1.

3 The Model

We study the doubly exchangeable general linear model (DEGLM) for three-level multivariate data by

considering an m × u(v) dimensional random matrix Y . What do I mean by this notation? The matrix

has m rows, u columns and v depths. In other words, this notation means m× u dimensional matrices are

stacked one after another v times. We now write the model as

Y
m×u(v)

= α
m×1

1′
1×u(v)

+ γ ′
m×r−1

T
r−1×u(v)

+ e
m×u(v)

,

or

Y ′
u(v)×m

= 1
u(v)×1

α′
1×m

+ T ′
u(v)×r−1

γ
r−1×m

+ e′
u(v)×m

, (3)

where Y is a m × u(v) dimensional random matrix. α is an m− dimensional vector. γ is a (r − 1) × m

matrix. T is an (r − 1) × u(v)−dimensional matrix such that the design matrix X = [1, T ′] has rank

r. We assume uv > r. The error matrix e is such that the m × 1−dimensional components of Vec(e),

e11, . . . , e1u, . . . ,ev1, . . . , evu are doubly exchangeable, i.e., E(ets) = 0, for s = 1, . . . , u, t = 1, . . . , v, and

Cov [ets; et∗s∗ ] =





U0 if t = t∗ and s = s∗,
U1 if t = t∗ and s 6= s∗,
W if t 6= t∗,

Arnold (1979) showed that the usual methods for making inferences about α in the CGLM are not valid for

the EGLM. He also mentioned that it was difficult to extract much information about U0 from the data.

Thus, there is no sensible way to test hypotheses about α in the EGLM. Our model (3) is an improvement

over Arnold’s model as with W = 0 and min(u, v) ≥ m + r one can test α in the EGLM.

To compute the model parameters and their distributions we first need to prove some lemmas.

Lemma 1. Let Γ = C ′
v×v

⊗ Imu and Γ• = Iv ⊗ (C∗′
u×u

⊗ Im) where C and C∗ are orthogonal matrices whose

first columns are proportional to 1’s. Let Γy be a jointly equicorrelated covariance matrix as in equation (2)
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of Def. 1, then Γ•Γ(Γy)Γ′Γ•′ is a diagonal matrix as follows:

Γ•Γ(Γy)[Γ′Γ•′ =




∆3 0 0 0 0 0 · · · 0
0 Iu−1 ⊗∆1 0 0 0 0 · · · 0
0 0 ∆2 0 0 0 · · · 0
0 0 0 Iu−1 ⊗∆1 0 0 · · · 0
0 0 0 0 ∆2 0 · · · 0
...

...
...

...
...

...
. . .

...
0 0 0 0 0 0 · · · Iu−1 ⊗∆1




,

where

∆1 = U0 −U1,

∆2 = U0 + (u− 1)U1 − uW =(U0 −U1) + u (U1 −W) , and

∆3 = U0 + (u− 1)U1 + u (v − 1)W = (U0 −U1) + u (U1 −W) + uvW.

Proof: It can be easily shown that Γ and Γ• are orthogonal. We see that

Γ(Γy)Γ′ = (C ′
v×v

⊗ Imu)(Iv ⊗ (V0 −V1) + Jv ⊗V1)( C
v×v

⊗ Imu),

= Iv ⊗ (V0 −V1) +




v 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0


⊗V1,

=
[

V o + (v − 1)V 1 0
0 Iv−1 ⊗ (V o − V 1)

]
. (4)

The determinant of Γy is given by

|Γ(Γy)Γ′| = |Γy| = |V o + (v − 1)V 1||V o − V 1|v−1.

Therefore, the matrix Γy is non-singular, if both V o + (v − 1)V 1 and V o − V 1 are non-singular matrices.

Now, from (4), we have

Γ•Γ(Γy)Γ′Γ•
′
=

[
(C∗′
u×u

⊗ Im)(V o + (v − 1)V 1)(C∗
u×u

⊗ Im) 0

0 Iv−1 ⊗ (C∗′
u×u

⊗ Im)(V o − V 1)(C∗
u×u

⊗ Im)

]
. (5)

Now,

(C∗′
u×u

⊗ Im)(V0 + (v − 1)V 1)(C∗
u×u

⊗ Im) = (C∗′
u×u

⊗ Im)
(
Iu ⊗ (U0 −U1) + Ju ⊗ [(U1 −W) + vW]

)
(C∗
u×u

⊗ Im)

=
[

(U o −U1) + u(U1 −W ) + uvW 0
0 Iu−1 ⊗ (U o −U1)

]

=
[

∆3 0
0 Iu−1 ⊗∆1

]
.
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Similarly,

(C∗′
u×u

⊗ Im)(V0 − V 1)(C∗
u×u

⊗ Im) = (C∗′
u×u

⊗ Im)
(
Iu ⊗ (U0 −U1) + Ju ⊗ (U1 −W)

)
(C∗
u×u

⊗ Im)

=
[

(U o −U1) + u(U1 −W ) 0
0 Iu−1 ⊗ (U o −U1)

]

=
[

∆2 0
0 Iu−1 ⊗∆1

]
.

Therefore, from (5) we have

Γ•Γ(Γy)Γ′Γ•′ =




∆3 0 0 0 0 0 · · · 0
0 Iu−1 ⊗∆1 0 0 0 0 · · · 0
0 0 ∆2 0 0 0 · · · 0
0 0 0 Iu−1 ⊗∆1 0 0 · · · 0
0 0 0 0 ∆2 0 · · · 0
...

...
...

...
...

...
. . .

...
0 0 0 0 0 0 · · · Iu−1 ⊗∆1




.

It follows that if ∆1, ∆2 and ∆3 are non-singular then Γy is non-singular.

Corollary 1. If W = 0, then

∆1 = U0 −U1,

∆2 = U0 + (u− 1)U1 = (U0 −U1) + uU1

and ∆3 = U0 + (u− 1)U1 = (U0 −U1) + uU1.

Thus, we see that ∆2 = ∆3.

Lemma 2. Let Y is a m× u(v) dimensional random matrix. Then Γ•Γ(Vec Y
m×u(v)

) can be expressed as

Γ•Γ(Vec Y
m×u(v)

) =




Vec(Z11
m×1

: Z12
m×(u−1)

)

Vec(Z21
m×1

: Z22
m×(u−1)

)

...
Vec(Zv1)

m×1

: Zv2
m×(u−1)

)




.
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Proof:

Γ•Γ(Vec Y
m×u(v)

) = Γ•(C ′
v×v

⊗ Iu ⊗ Im)V ec( Y
m×u(v)

)

=




Vec( Y 1
m×u

C∗
u×u

)

Vec( Y 2
m×u

C∗
u×u

)

...
Vec( Y v

m×u
C∗
u×u

)




=




Vec( 1√
u
Y 11
m×u

1u : Z∗
12

m×(u−1)

)

Vec( 1√
u
Y 21
m×u

1u : Z∗
22

m×(u−1)

)

...
Vec( 1√

u
Y v1
m×u

1u : Z∗
v2

m×(u−1)

)




=




Vec(Z11
m×1

: Z12
m×(u−1)

)

Vec(Z21
m×1

: Z22
m×(u−1)

)

...
Vec(Zv1)

m×1

: Zv2
m×(u−1)

)




Lemma 3. Γ•Γ(Vec( γ ′
m×r−1

T
r−1×uv

)) can be expressed as

Γ•Γ(Vec( γ ′
m×r−1

T
r−1×uv

)) = Vec
(

γ ′
m×r−1

U11
r−1×1

: γ ′
m×r−1

U12
r−1×u−1

: · · · : γ ′
m×r−1

U v1
r−1×1

: γ ′
m×r−1

U v2
r−1×u−1

)
.

Proof:

Γ•Γ(Vec( γ ′
m×r−1

T
r−1×uv

)) = Γ•Γ(Vec( γ ′
m×r−1

T
r−1×uv

))

= Γ•(C ′
v×v

⊗ Imu)(Vec( γ ′
m×r−1

( T
r−1×uv

)))

= (Iv ⊗C∗′
u×u

⊗ Im)(Vec( γ ′
m×r−1

T 1
r−1×u

: γ ′
m×r−1

T 2
r−1×u

: . . . : γ ′
m×r−1

T v
r−1×u

)))

=




Vec( γ ′
m×r−1

T 1
r−1×u

C∗
u×u

)

Vec( γ ′
m×r−1

T 2
r−1×u

C∗
u×u

)

...
Vec( γ ′

m×r−1
T v

r−1×u
C∗
u×u

)




=




Vec
(

γ ′
m×r−1

U11
r−1×1

: γ ′
m×r−1

U12
r−1×u−1

)

Vec
(

γ ′
m×r−1

U21
r−1×1

: γ ′
m×r−1

U22
r−1×u−1

)

...
Vec

(
γ ′

m×r−1
U v1

r−1×1
: γ ′

m×r−1
U v2

r−1×u−1

)




= Vec
(

γ ′
m×r−1

U11
r−1×1

: γ ′
m×r−1

U12
r−1×u−1

: · · · : γ ′
m×r−1

U v1
r−1×1

: γ ′
m×r−1

U v2
r−1×u−1

)
.
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Lemma 4. Γ•Γ(Vec( α
m×1

1′
1×uv

)) can be expressed as

Γ•Γ(Vec( α
m×1

1′
1×uv

)) = Vec
( √

uv α
m×1

: 0 : · · · : 0
)

.

Proof:

Γ•Γ(Vec( α
m×1

1′
1×uv

)) = Γ•
(
Γ(Vec( α

m×1
1′

1×uv
))

)

= Γ•
[
(Vec( α

m×1
1′

1×uv
)(C ⊗ Iu))

]

We will first calculate Vec( α
m×1

1′
1×uv

(C ⊗ Iu)). Now,

(C ′ ⊗ Iu) 1
uv×1

α′
1×m

=







1√
v

1√
v

· · · 1√
v

1√
1×2

−1√
1×2

· · · 0
...

...
. . .

...
1√

(v−1)×v

1√
(v−1)×v

· · · −(v−1)√
(v−1)×v



⊗ Iu







1
u×1

1
u×1
...
1

u×1




α′
1×m

=




√
v 1

u×1

0
...
0




α′
1×m

=




√
v 1

u×1
α′

1×m

0
...
0




Therefore,

Vec( α
m×1

1′
1×uv

(C ⊗ Iu)) = Vec
( √

v α
m×1

1′
1×u

: 0 : · · · : 0
)

.

Thus,

Γ•
[
(Vec( α

m×1
1′

1×uv
)(C ⊗ Iu))

]

(Iv ⊗C∗′
u×u

⊗ Im)Vec
( √

v α
m×1

1′
1×u

: 0 : · · · : 0
)

Vec
( √

v α
m×1

1′
1×u

C∗
u×u

: 0 : · · · : 0
)

.
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Now, we see that

C∗′
u×u

[ √
v 1

u×1

]

=




√
uv
0
...
0


 .

Therefore we have

Vec
(√

v α
m×1

1′
1×u

C∗
u×u

)

=




√
uv α

m×1

0
...
0




,

and the lemma is proved.

Lemma 5.

(Iv ⊗C∗′
u×u

)(C ′ ⊗ Iu)) 1
uv×1

=




√
uv

0u−1

0u
...
0u




Proof:

(Iv ⊗C∗′
u×u

)(C ′ ⊗ Iu)) 1
uv×1

= (Iv ⊗C∗′
u×u

)







1√
v

1√
v

· · · 1√
v

1√
1×2

−1√
1×2

· · · 0
...

...
. . .

...
1√

(v−1)×v

1√
(v−1)×v

· · · −(v−1)√
(v−1)×v



⊗ Iu







1
u×1

1
u×1
...
1

u×1




= (Iv ⊗C∗′
u×u

)




1√
v

1
u×1

+ 1√
v

1
u×1

+ · · ·+ 1√
v

1
u×1

1√
1×2

1
u×1

+ −1√
1×2

1
u×1

+ · · ·+ 0

· · ·
1√

(v−1)×v
1

u×1
+ 1√

(v−1)×v
1

u×1
+ · · · − (v−1)√

(v−1)×v
1

u×1




=




√
uv

0u−1

0u
...

0u
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Theorem 1. Let Y
m×u(v)

represent the three-level multivariate data. If

Γ•Γ(V ec Y
m×(u)v

) =




Vec(Z11
m×1

: Z12
m×(u−1)

)

Vec(Z21
m×1

: Z22
m×(u−1)

)

...
Vec(Zv1)

m×1

: Zv2
m×(u−1)

)




then all the components Z11, Z12, Z21, . . . ,Zv2 are independently normally distributed such that

Z11 ∼ Nm,1(
√

uvα + γ ′U11,∆3, 1), (6a)

Zi1 ∼ Nm,1(γ ′U i1,∆2, 1) i = 2, 3, . . . , v, (6b)

and Zi2 ∼ Nm,u−1(γ ′U i2,∆1, Iu−1) i = 1, 2, . . . , v. (6c)

Proof: Follows from Lemmas 1 and 2.

Comments: Thus, we see that uv CGLMs are nested in one DEGLM. The model involving Z11 has covariance

matrix ∆3, but has only one sample, thus estimation of ∆3 is not possible. Testing of α is therefore not

possible. This case is similar to Arnold’s (1979) EGLM, where the intercept α could not be tested. Each of

the models involving Zi1 i = 2, 3, . . . , v has no intercept and has only one sample too, however, they have

common variance-covariance matrix ∆2. Thus, γ and ∆2 can be estimated and γ can be tested too.

Similarly, each of the models involving Zi2, i = 1, 2, . . . , v, are all independent and have a common

covariance matrix ∆1 and have no intercept term. Thus, one can calculate estimates of γ and ∆1 from each

of the models, and test any hypothesis about γ.

Corollary 2. If W = 0, then

Z11 ∼ Nm,1(
√

uvα + γ ′U11,∆2, 1),

Zi1 ∼ Nm,1(γ ′U i1,∆2, 1) i = 2, 3, . . . , v,

and Zi2 ∼ Nm,u−1(γ ′U i2,∆1, Iu−1) i = 1, 2, . . . , v.

Comments: In this case there are v independent samples to estimate ∆2. Thus, testing any hypothesis

about α is possible in the Arnold’s EGLM when one use DEGLM with W = 0 and min(u, v) ≥ m + r.

Corollary 3. If v = 1, then the DEGLM reduces to the EGLM. For v = 1, we have

Z11 ∼ Nm,1(
√

uα + γ ′U11,U0 − (u− 1)U1, 1),

and Z12 ∼ Nm,u−1(γ ′U12,U0 −U1, Iu−1).

11



We see that the above model is exactly same as Arnold’s (1979) EGLM.

Theorem 2. The estimates of α and γ in the model (3) are given by

α̂′
1×m

= (uv)−1/2
(
Z ′

11 −U ′
11γ̂

)
, (7)

γ̂
r−1×m

= (
2∑

j=1

v∑

i=1

U ijU
′
ij − U11

r−1×1
U ′

11)
−1(

2∑

j=1

v∑

i=1

U ijZ
′
ij − U11

r−1×1
Z ′

11), (8)

Proof: The model (3) can be written as

Y ′
uv×m

= 1uv α′
1×m

+ T ′
uv×r−1

γ
r−1×m

+ e′
uv×m

, (9)

=
[

1uv T ′ ] [
α′

γ

]
+ e′,

= X
uv×r

B
r×m

+ e′.

Therefore, the least square estimate of B is given by

(X ′X) B̂
r×m

= X ′Y ′.

Now,

X ′X
r×r

=
[

1′uv

T

] [
1uv T ′ ]

=
[

1′uv1uv 1′uvT
′

T1uv TT ′

]

and

X ′
r×uv

Y ′
uv×m

r×m

=


 1′uv Y ′

uv×m

T
r−1×uv

Y ′
uv×m




We will now compute each of the partitioned matrices in X ′X
r×r

and X ′
r×uv

Y ′
uv×m

r×m

. Using Lemmas 3 and 5 we

have

T
r−1×uv

1uv

= T
r−1×uv

( C
v×v

⊗ Iu)(Iv ⊗ C∗
u×u

)(Iv ⊗C∗′
u×u

)(C ′
v×v

⊗ Iu)1uv

= ( U11
r−1×1

: U12
r−1×u−1

: . . . : U v1
r−1×1

: U v2
r−1×u−1

)(Iv ⊗C∗′
u×u

)(C ′
v×v

⊗ Iu)1uv

= ( U11
r−1×1

: U12
r−1×u−1

: . . . : U v1
r−1×1

: U v2
r−1×u−1

)




√
uv

0u−1

0u
...

0u




=
√

uv U11
r−1×1

,

12



and using Lemma 3 we have

T
r−1×uv

T ′
uv×r−1

= T
r−1×uv

( C
v×v

⊗ Iu)(Iv ⊗ C∗
u×u

)(Iv ⊗C∗′
u×u

)(C ′
v×v

⊗ Iu) T ′
uv×r−1

= ( U11
r−1×1

: U12
r−1×u−1

: . . . : U v1
r−1×1

: U v2
r−1×u−1

)




U ′
11

1×r−1

U ′
12

u−1×r−1
...

U ′
v1

1×r−1

U ′
v2

u−1×r−1




=
v∑

i=1

U i1U
′
i1 +

v∑

i=1

U i2U
′
i2

=
2∑

j=1

v∑

i=1

U ijU
′
ij .

Now, using Lemmas 2 and 5 we have

1′uv Y ′
uv×m

= 1′uv( C
v×v

⊗ Iu)(Iv ⊗ C∗
u×u

)(Iv ⊗C∗′
u×u

)(C ′
v×v

⊗ Iu) Y ′
uv×m

=
[ √

uv : 0u−1 : 0u : · · · : 0u

]
(Iv ⊗C∗′

u×u
)(C ′

v×v
⊗ Iu) Y ′

uv×m

=
√

uvZ ′
11

1×m
.

Again using Lemmas 2 and 3 we get

T
r−1×uv

Y ′
uv×m

= T
r−1×uv

( C
v×v

⊗ Iu)(Iv ⊗ C∗
u×u

)(Iv ⊗C∗′
u×u

)(C ′
v×v

⊗ Iu)Y ′

= ( U11
r−1×1

: U12
r−1×u−1

: . . . : U v1
r−1×1

: U v2
r−1×u−1

)




Z ′
11

1×m

Z ′
12

u−1×m
...

Z ′
v1

1×m

Z ′
v2

u−1×m




=
v∑

i=1

U i1Z
′
i1 +

v∑

i=1

U i2Z
′
i2

=
2∑

j=1

v∑

i=1

U ijZ
′
ij .
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Therefore,

(X ′X)B̂ =




uv
√

uv U ′
11

1×r−1√
uv U11

r−1×1

∑2
j=1

∑v
i=1 U ijU

′
ij







α̂′
1×m

γ̂
r−1×m


 ,

and this is equal to X ′Y ′, which can be expressed as follows.

X ′
r×uv

Y ′
uv×m

r×m

=

[ √
uvZ ′

11
1×m∑2

j=1

∑v
i=1 U ijZ

′
ij

]
.

Therefore, equating the corresponding terms we get

uv α̂′
1×m

+
√

uv U ′
11

1×r−1
γ̂

r−1×m
=
√

uvZ ′
11

1×m
(10a)

√
uv U11

r−1×1
α̂′

1×m
+

2∑

j=1

v∑

i=1

U ijU
′
ij γ̂

r−1×m
=

2∑

j=1

v∑

i=1

U ijZ
′
ij . (10b)

Now, from (10a) we have

α̂′
1×m

= (uv)−1/2
(
Z ′

11 −U ′
11γ̂

)
.

Thus, (7) is proved. Now, substituting the value of α̂′ in (10b) we get,

√
uv U11

r−1×1
α̂′

1×m
+

2∑

j=1

v∑

i=1

U ijU
′
ij γ̂

r−1×m
=

2∑

j=1

v∑

i=1

U ijZ
′
ij

√
uv U11

r−1×1
(uv)−1/2

(
Z ′

11 −U ′
11γ̂

)
+

2∑

j=1

v∑

i=1

U ijU
′
ij γ̂

r−1×m
=

2∑

j=1

v∑

i=1

U ijZ
′
ij

U11
r−1×1

Z ′
11 − U11

r−1×1
U ′

11γ̂ +
2∑

j=1

v∑

i=1

U ijU
′
ij γ̂

r−1×m
=

2∑

j=1

v∑

i=1

U ijZ
′
ij

(
2∑

j=1

v∑

i=1

U ijU
′
ij − U11

r−1×1
U ′

11) γ̂
r−1×m

=
2∑

j=1

v∑

i=1

U ijZ
′
ij − U11

r−1×1
Z ′

11

Therefore,

γ̂
r−1×m

= (
2∑

j=1

v∑

i=1

U ijU
′
ij − U11

r−1×1
U ′

11)
−1(

2∑

j=1

v∑

i=1

U ijZ
′
ij − U11

r−1×1
Z ′

11)

If v = 1, the model reduces to Arnold’s (1979) EGLM. For v = 1 we see that

α̂′
1×m

= (u)−1/2
(
Z ′

11 −U ′
11γ̂

)
,

γ̂
r−1×m

= (
2∑

j=1

U1jU
′
1j − U11

r−1×1
U ′

11)
−1(

2∑

j=1

U1jZ
′
1j − U11

r−1×1
Z ′

11)

= ( U12
r−1×1

U ′
12

1×r−1
)−1( U12

r−1×u−1
Z ′

12
u−1×m

),
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and these estimates are exactly same as obtained by Arnold (1979)

Theorem 3. The distributions of α̂′ and γ̂ are as follows:

α̂′ ∼ N1,m

(
α′, 1,

1
uv

[
∆3 + U ′

11A
−1

v∑

i=2

[
(U i1)(U i1)′

]
A−1U11∆2

+U ′
11A

−1
v∑

i=1

U i2U
′
i2A

−1U11∆1

])
,

γ̂ = A−1
( v∑

i=1

U i1Z
′
i1 +

v∑

i=1

U i2Z
′
i2

)
∼ N(r−1),m

(
γ,

A−1
v∑

i=1

[
(U i1)(U i1)′

]
A−1 ⊗∆2 + A−1

v∑

i=1

U i2U
′
i2A

−1 ⊗∆1

)
.

where A
r−1×r−1

= (
∑2

j=1

∑v
i=1 U ijU

′
ij − U11

r−1×1
U ′

11).

Proof: We will first find the distribution of γ̂, and then the distribution of α̂′. We note that A = A′, so

A is symmetric. Now, from (8) we have

γ̂
r−1×m

= (
2∑

j=1

v∑

i=1

U ijU
′
ij − U11

r−1×1
U ′

11)
−1(

2∑

j=1

v∑

i=1

U ijZ
′
ij − U11

r−1×1
Z ′

11)

= A−1(
2∑

j=1

v∑

i=1

U ijZ
′
ij − U11

r−1×1
Z ′

11)

= A−1[U21Z
′
21 + · · ·+ U v1Z

′
v1 + U12Z

′
12 + U22Z

′
22 + · · ·+ U v2Z

′
v2]

= A−1
v∑

i=2

U i1Z
′
i1 + A−1

v∑

i=1

U i2Z
′
i2

To get the distribution of γ̂ we will find the distributions of A−1 ∑v
i=2 U i1Z

′
i1 and A−1 ∑v

i=1 U i2Z
′
i2 sepa-

rately. Using (6b) and (6c) we have

γ̂1 = A−1
v∑

i=2

U i1Z
′
i1 ∼ Nr−1,m(A−1

v∑

i=2

(U i1)(U ′
i1γ),

A−1
v∑

i=2

[
(U i1)(U i1)′

]
A−1,∆2),

and,

γ̂2 = A−1
v∑

i=1

U i2Z
′
i2 ∼ Nr−1,m(A−1

v∑

i=1

U i2U
′
i2γ,A−1

v∑

i=1

U i2U
′
i2A

−1,∆1).
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Therefore, We have

γ̂1 = A−1
v∑

i=2

U i1Z
′
i1 ∼ N(r−1),m(A−1

v∑

i=2

U i1U
′
i1γ,

(A−1
v∑

i=2

[
(U i1)(U i1)′

]
A−1 ⊗∆2),

and

γ̂2 = A−1
v∑

i=1

U i2Z
′
i2 ∼ N(r−1),m(A−1

v∑

i=1

U i2U
′
i2γ, A−1

v∑

i=1

U i2U
′
i2A

−1)⊗∆1.

Therefore,

γ̂ = A−1
( v∑

i=2

(U i1)Z ′
i1 +

v∑

i=1

U i2Z
′
i2

)

= γ̂1 + γ̂2

∼ N(r−1),m

(
A−1

v∑

i=2

(U i1)U ′
i1γ + A−1

v∑

i=1

U i2U
′
i2γ,

A−1
v∑

i=2

[
(U i1)(U i1)′

]
A−1 ⊗∆2 + A−1

v∑

i=1

U i2U
′
i2A

−1 ⊗∆1

)
.

Now,

A−1
v∑

i=2

U i1U
′
i1γ + A−1

v∑

i=1

U i2U
′
i2γ = A−1[

v∑

i=2

U i1U
′
i1 +

v∑

i=1

U i2U
′
i2]γ

= γ

Therefore,

γ̂ = A−1
( v∑

i=1

U i1Z
′
i1 +

v∑

i=1

U i2Z
′
i2

)
∼ N(r−1),m

(
γ,

A−1
v∑

i=1

[
(U i1)(U i1)′

]
A−1 ⊗∆2 + A−1

v∑

i=1

U i2U
′
i2A

−1 ⊗∆1

)
.

We see that γ̂ is an unbiased estimate of γ. We will now find the distribution of α̂′. Now from (7) we have

α̂′
1×m

=
1√
uv

Z ′
11 −

1√
uv

U ′
11γ̂,

α̂′ =
1√
uv

Z ′
11 −

1√
uv

U ′
11(γ̂1 + γ̂2),

=
1√
uv

Z ′
11 −

1√
uv

U ′
11γ̂1 −

1√
uv

U ′
11γ̂2. (11)
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Now, from (6a) we have

1√
uv

Z ′
11 ∼ N1,m

( 1√
uv

(
√

uvα′ + U ′
11γ), 1,

1
uv

∆3

)
,

1√
uv

U ′
11γ̂1 ∼ N1,m

( 1√
uv

U ′
11A

−1
v∑

i=2

(U i1)(U ′
i1γ), 1,

1
uv

U ′
11A

−1
v∑

i=2

[
(U i1)(U i1)′

]
A−1U11∆2

)
,

and,
1√
uv

U ′
11γ̂2 ∼ N1,m

( 1√
uv

U ′
11A

−1
v∑

i=1

U i2U
′
i2γ, 1,

1
uv

U ′
11A

−1
v∑

i=1

U i2U
′
i2A

−1U11∆1

)
.

Now,

1√
uv

(
√

uvα′ + U ′
11γ)− 1√

uv
U ′

11A
−1

v∑

i=2

(U i1U
′
i1γ)− 1√

uv
U ′

11A
−1

v∑

i=1

U i2U
′
i2γ

= α′ +
1√
uv

U ′
11

[
γ −A−1

v∑

i=2

U i1U
′
i1γ −A−1

v∑

i=1

U i2U
′
i2γ

]

= α′

Therefore, from (11) we have

α̂′ ∼ N1,m

(
α′, 1,

1
uv

[
∆3 + U ′

11A
−1

v∑

i=2

[
(U i1)(U i1)′

]
A−1U11∆2

+U ′
11A

−1
v∑

i=1

U i2U
′
i2A

−1U11∆1

])
.

Here also we see that α̂ is an unbiased estimate of α.

Corollary 4. If W = 0, the distributions of α̂′ and γ̂ are as follows:

α̂′ ∼ N1,m

(
α′, 1,

1
uv

[
∆2 + U ′

11A
−1

v∑

i=2

[
(U i1)(U i1)′

]
A−1U11∆2

+U ′
11A

−1
v∑

i=1

U i2U
′
i2A

−1U11∆1

])
,
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and

γ̂ = A−1
( v∑

i=1

U i1Z
′
i1 +

v∑

i=1

U i2Z
′
i2

)
∼ N(r−1),m

(
γ,

A−1
v∑

i=2

[
(U i1)(U i1)′

]
A−1 ⊗∆2 + A−1

v∑

i=1

U i2U
′
i2A

−1 ⊗∆1

)
.

where A
r−1×r−1

=
∑2

j=1

∑v
i=1 U ijU

′
ij −U11U

′
11.

Corollary 5. If v = 1,

A
r−1×r−1

=
2∑

j=1

v∑

i=1

U ijU
′
ij −U11U

′
11

= U11U
′
11 + U12U

′
12 −U11U

′
11

= U12U
′
12,

and the distributions of α̂′ and γ̂ are as follows:

α̂′ ∼ N1,m

(
α′, 1,

1
uv

[
∆3 + U ′

11A
−1

v∑

i=2

[
(U i1)(U i1)′

]
A−1U11∆2

1
u

[
((U0 −U1) + uU1) + U ′

11(U12U
′
12)

−1U11∆1

])

∼ N1,m

(
α′, 1,U1

+
1
u

(
1 + U ′

11(U12U
′
12)

−1U11

)
(U0 −U1)

)

and

γ̂ ∼ N(r−1),m

(
γ,A−1

v∑

i=2

[
(U i1)(U i1)′

]
A−1 ⊗∆2 + A−1

v∑

i=1

U i2U
′
i2A

−1 ⊗∆1

)

∼ N(r−1),m

(
γ, (U12U

′
12)

−1U12U
′
12(U12U

′
12)

−1 ⊗∆1

)

∼ N(r−1),m

(
γ, (U12U

′
12)

−1, (U0 −U1)
)

These estimates are exactly the same as those of Arnold’s (1979).
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