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Abstract

We study the general linear model (GLM) with doubly exchangeable distributed error for m observed
random variables. The doubly exchangeable linear model (DEGLM) arises when the m—dimensional error
vectors are “doubly exchangeable” (defined later), jointly normally distributed, which is much weaker
assumption than the independent and identically distributed error vectors as in the case of GLM or
classical GLM (CGLM). We estimate the parameters in the model and also find their distributions.
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1 Introduction

A generalization of the general linear model (GLM) or the classical general linear model (CGLM) is con-
sidered by Arnold in 1979 when the m x 1 error vectors are unobserved and exchangeable, jointly normally
distributed; not independent and identically distributed (iid) as in the case of CGLM. He named his new
model as exchangeable linear model (EGLM). EGLM is especially appropriate for doubly multivariate data or
two-level multivariate data. The variance-covariance matrix 3 (partitioned) with exchangeable distributed

error is of the form

v, u, --- U,

U, U, --- U,
¥ = ) . )

U, U, --- U,

= L,eUyg-U)+J, Uy,

where I, is the u x u identity matrix, 1, is a u X 1 vector containing all elements as unity, J,, = 1,1/, Uy is
a m X m positive definite symmetric matrix, and U is a symmetric m x m matrix. Leiva (2007) also used

this variance-covariance matrix X for classification problems, and named this as equicorrelated partitioned



matrix with equicorrelation parameters Uy, U;. The m x m block diagonals Ug represent the variance-
covariance matrix of the m response variables at any given site, whereas the m x m block off diagonals Uy
represent the covariance matrix of the m response variables between any pair of sites. We assume Uy is
constant for all sites. Also, Uy is constant between any pair of sites

In this article we extend Arnold’s (1979) generalization of the EGLM when m x 1 error vectors are
unobserved and doubly exchangeable (defined in Section 2). Doubly exchangeable data is common in
repeated measures designs in biomedical, medical, engineering, and in many other research areas. In repeated
measures designs, in particular those employed in the clinical trial study of skin care products, the data
are collected on a vector of measurements (m) at different body positions (u) and at different points (v)
in time. For example, consider a clinical trial study where measurements are taken on the characteristics
of wrinkling, pigmentation, inflammation, and hydration on hands, face, neck, and arms once in every
month for four consecutive months. Occasionally, biomedical researchers measure levels of fat byproducts
at different parts of the body (sites) in an eight-week clinical trial for their research. In other words, these
data are multivariate in three levels. In these examples the variables at different sites and at different
time points are not independent, but are stochastically dependent in nature. Different sites and different
time points may be interchangeable or exchangeable (equicorrelated) among themselves; in other words it
is reasonable to assume that the variables have doubly exchangeable structure. Doubly exchangeable linear
model (DEGLM) is suitable for data that have doubly exchangeable structure.

In this article we develop DEGLM for three-level multivariate data by using doubly exchangeable struc-
ture or jointly equicorrelated covariance structure (Leiva, 2007; Roy and Leiva, 2007). Jointly equicorrelated
covariance structure (defined in Section 2.1) assumes a block circulant covariance structure, consisting of
three unstructured covariance matrices for three multivariate levels. This jointly equicorrelated covariance
structure can capture double exchangeability in the data structure in a longitudinal study both in time and
space. Another advantage of this covariance structure is that the measurements over time need not be of
equally spaced.

Let y be the muv-variate vector of all measurements. We partition this vector y as follows:

U1 Y Yis
Y= : , where vy, = : , with y,, = : ,
Yy Yiu yts,m
fors=1,...,u,t=1,...,v. The m-dimensional vector of measurements y,, represents the replicate on the

s location and at the ¢ time point.



2 Basic results
2.1 Jointly equicorrelated vectors

Definition 1. Let y be an muv—variate partitioned real-valued random vector y = (yi,... ,y;)/, where
Yy = (Yhps s yh) fort =1,...,0, and ¥,y = (Wis1s--,Ytsm) for s = 1,...,u. Let E[y] = Hy€ R,
and Ty be the (muv x muv)—dimensional partitioned covariance matriz Cov[y] = (T'y, y,.) = (Ty+) , where
Ty = Covly,, Y] for t,t* = 1,...,v. The m—uvariate vectors Yii, .., Yiys - > Yupls-- - s Ypu @re said to be

jointly equicorrelated if T'y is given by
Iy=1,,® (Up — U) +1L,83,® (U — W) +J,,0W, (1)

where Ug is a positive definite symmetric m x m matriz, and Uy and W are symmetric m X m matrices.
The variance covariance matrix I'y is then said to have a jointly equicorrelated covariance structure with

equicorrelation parameters Ug, Uy and W. The matrices Uy, Uy and W are all unstructured.

Thus, the vectors yi1,-.. s Yiys---sYply---> Yy are jointly equicorrelated if they have the following

“jointly equicorrelated covariance” matrix

U U; -+ U3 | W W w W W W ]
U U, - U3 | W W w w
U, U Uy | W W W | ...
W W W | U, U, -~ U || W W ... W
W W W U U, --- U W w ... W
r, = : : .o : : S ol : I , (2)
W W ... W|U, U - Uyl - |W W ... W
W W W | W W Wi ..« | U U - U
W W W W W Wi .- | U Uy --- U
W W ... W|W W ... W|... U U; --- Uy |
that is,
Uy if t=t* and s=s",
Cov [Yys;Yprr) =4 Ur if t=1t* and s#s*,

W if t#t¥,
The m x m block diagonals Uy in (2) represent the variance-covariance matrix of the m response variables

at any given site and at any given time point, whereas the m x m block off diagonals U; in (2) represent

the covariance matrix of the m response variables between any two sites and at any given time point. We
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assume Uy is constant for all sites and time points, and U; is the same for all site pairs and for all time
points. The m x m block off diagonals W represent the covariance matrix of the m response variables
between any two time points. It is assumed to be the same for any pair of time points, irrespective of the

same site or between any two sites.

2.2 Matrix-variate normal distribution

The random matrix X (pxn) is said to have a matrix-variate normal distribution with mean matrix M (pxn)
and covariance matrix 3 ® ¥, where ¥ > 0, and ¥ > 0 are p X p and n X n matrices respectively if and only
if Vec(X') ~ Npn(Vec(M'), E@W). We will use the notation X ~ N, ,,(M,X@®) or X ~ N, ,(M,%, ).
Note that, if n = 1 (thus, W is a scalar), then X follows a p— variate normal distribution with mean vector
M and variance-covariance matrix W3,

The matrix variate normal distribution arises when sampling from multivariate normal population. Let

x1, T2, ..., xn be a random sample of size N from N,(p, ). Define the observation matrix as follows:
T11 %12 -+ TIN
€21 X222 -+ X2N
X pu—
a;‘pl ‘/ij2 DY :L‘pN

then X’ ~ N Np(Inp, Iy ®@3). We will use the following results of matrix-variate normal distribution (Pan
and Fang, (2002); Gupta and Nagar, (2002)) in this article.

Result 1: X ~ N, ,(M, S, %), Then X' ~ N, ,(M', ¥, %).

Result 2: X ~ Np,(M,%,¥), and that D(m x p) is of rank m < p, and C(n x t) is of rank t < n, and
A(m x t), then DXC + A ~ N, ,(DMC + A, DSD',C'¥C).

Result §: If X1 ~ Np,n(Mh 21, ‘Ill) and X2 ~ Npm(MQ, 22, \:[12), then
X1+ Xo ~ Ny (M1 + M, (31 ® ¥1) + (32 @ ¥3)).

2.3 Matrix results
The jointly equicorrelated variance-covariance matrix I'y, (Roy and Leiva, 2007) in (1) can be written as
Ly=1,®(Vo—V1)+J,® Vi,

with
VO :Iu®(U0—U1)+Ju®U1,



and
Vi=J, W,

where V| is a positive definite (mu x mu)—dimensional symmetric matrix, Vi is a (mu X mu)—dimensional

symmetric matrix, and the m x m matrices Up, Uy and W are defined as in Section 2.1.

3 The Model

We study the doubly exchangeable general linear model (DEGLM) for three-level multivariate data by
considering an m x u(v) dimensional random matrix Y. What do I mean by this notation? The matrix
has m rows, u columns and v depths. In other words, this notation means m x u dimensional matrices are
stacked one after another v times. We now write the model as

Y =a 1 + 4 T + e

mxu(v) mxXUxu(v) mxr—1r—1xu(v) m><u(v)7

or

Y = 1 &+ T vy + € | (3)
u(v)xm  w(w)x11xXm  u)xr—1lp_1xm  u(v)xm
where Y is a m X u(v) dimensional random matrix. « is an m— dimensional vector. vy is a (r — 1) x m
matrix. T is an (r — 1) x u(v)—dimensional matrix such that the design matrix X = [1,7"] has rank
r. We assume uv > r. The error matrix e is such that the m x 1—dimensional components of Vec(e),
€11, €luy -+ Epl,...,Ey are doubly exchangeable, i.e., E(e;s) =0, fors=1,...,u,t=1,...,v, and
Uy if t=t* and s=s",
Covless;epsx] =< Uy if t=1t¢* and s # s¥,
W if t# ¥,
Arnold (1979) showed that the usual methods for making inferences about a in the CGLM are not valid for
the EGLM. He also mentioned that it was difficult to extract much information about U from the data.
Thus, there is no sensible way to test hypotheses about e in the EGLM. Our model (3) is an improvement
over Arnold’s model as with W = 0 and min(u,v) > m + r one can test a in the EGLM.

To compute the model parameters and their distributions we first need to prove some lemmas.

Lemma 1. LetT'= C' @ I, and T'* = I, ® (C* ® I,,) where C and C* are orthogonal matrices whose

VXV uxXu
first columns are proportional to 1’s. Let T'y, be a jointly equicorrelated covariance matriz as in equation (2)



of Def. 1, then T*T'(T'y)I'T* is a diagonal matriz as follows:

[ As 0 0 0 0 O 0
0 I, 1®A; O 0 0 O 0
0 0 Ay 0 0O o 0
r*r(r,)rrY =| 0 0 0 I, 1®A; 0 O 0 7
0 0 0 0 Ay O 0
0 0 0 0 0 0 - I, 1®A

where

A; = Up-—Uy,
Ay = Uo—i—(U—l)Ul—UWZ(Uo—Ul)-i—U(Ul—W), and
A3 = U0+(u—1)U1—|—u(v—1)W:(UO—U1)+u(U1—W)+qu.

Proof: 1t can be easily shown that I' and I'® are orthogonal. We see that

F(Fy)rl = (Cl®Imu)(Iv®(VO_V1)+Jv®V1)(C ®Imu)7
VXV

VXV

v 0 - 0
00 --- 0
= L®(Vo—Vi)+ N A Y
0 0 0
[ Vor -1V, 0 W
0 Iv—l & (Vo - Vl) .

The determinant of I'y, is given by
ID(Ty)I'| = |Ty| = [Vo + (v = DV ||V, = Vi [77h

Therefore, the matrix I'y is non-singular, if both V, + (v — 1)V and V, — V; are non-singular matrices.

Now, from (4), we have

. o [CeL)(Vet+ (v-1)V1)(C" @ L) 0
rT(r, I = 0 1o (€70 L)V, - ViXC 0 1) |- )

UXU

Now,

(CY"®1I,)(Vo+ (v— 1)V1)(7§1®Im) = (g/:z @ I) (L, ® (Ug—Up) +J, @ [(Uy — W) + vW])(ﬁZ@Im)

UXU

B U, —-U,) +u(U; — W) +uwW 0

o 0 Iu—l®(Uo_Ul)
[ A 0

N 0 Iu—1®A1 )

6



Similarly,

(CY"®1I,)(Vo—V1)(C*®1,)

UXU UXU

Therefore, from (5) we have

I*T(T,)I'TY =

(C" & L) (1, ® (U = U1) + 3, @ (U1 = W) (C* @ I,)

[ (UO—U1)+U(U1 —W)
0

Ay 0
0 qul X A1 ‘

0 I, 124

P oooo

N

0 0
@ 0
0 Ay 0
0 ®
0 0

0 0 0 0

UXUu

0
I, ,9U,—-U))

el el s B e B an)
(el el en R e B )

0 - I, 10A] |

It follows that if Ay, Ao and A3 are non-singular then I'y, is non-singular.

Corollary 1. If W =0, then

Thus, we see that Ay = Ag.

Lemma 2. Let Y is a m X u(v) dimensional random matriz. Then T°T'(Vec 'Y

I'*T'(Vee Y

mXxu(v)

A
Ay
and Ag

Uy - Uy,

UU—I—(U—l)Ul:(Uo—Ul)—I—UUl
Uo—f—(u—l)Ul = (UQ—U1)+UU1.

[ Vec(Z11 :

mx1

VeC(Zgl :

mx1

Vec(Z .,y

mx1

) can be expressed as
mxu(v)



Proof:

I'‘'T'(Vec ¥ ) = T*(C'oI,@I,)Vec( Y )

mxu(v) vXV mxu(v)
[ Vec(Y; C*) ]
mxXuuXu
Vec(Y, C*)
— mXutXu
Vec(Y, C*)
| mXutXu |
[ Vec(ﬁylllu: ZTZ ) 1 [ VeC(le . Z12 ) i
mxu mx(u—1) mx1 mx(u—1)
Vec(ﬁyﬂlu: Zzg ) Vec(Z21: Z22 )
— mXu mx(u—1) _ mx1 mx(u—1)
Vec(ﬁlelu: Z ) Vec(Zy1y: Zy2 )
L mxu mx(u—1) | mx1 mx(u—1)

Lemma 3. T°T'(Vee( v T )) can be expressed as

mxr—1r—1xXuv

°C(Vee( v T ))zVec( N Un: v Us i~ Up: o Um )

mxr—1r—1xuv mxr—1r—1x1 mxr—1lr—1xu—1 mxr—1r—1x1 mxr—1lr—1xu—1

Proof:

*T(Vee( v/ T )) = I'*T(Vec( v T

mxr—1r—1Xuv mxr—1r—1xuv

= I*(C' @Inp)(Vec( v (T )))
VXV mxr—1 r—1xuv
= I,C"®I,)(Vec( v Ty : v Ty :...: v T,))
uxu mxr—1lr—1xu mxr—lr—1xu mxr—1lr—1xu
[ Vec( v T C¥)
mxr—1r—1xudXu
Vec( v Ty C¥)

_ mxr—1r—1xudXxXu

Vece( v T, C*)

mxr—lr—1xu¥Xu |

i Vec( v Uy o Uiy ) i
mxr—1r—1x1 mxr—1r—1xu—1
Vec( v Uz : + Uy )

— mxr—1r—1x1 mxr—1r—1xu—1

Vec( v Uy ': v Uy )

mxr—1r—1x1 mxr—1r—1xu—1/

= Vec( Y U : v Ui ot 4 Up: v Up )

mxr—1r—1x1 mxr—I1r—1xu—1 mxr—1r—1x1 mxr—I1r—1xu—1



Lemma 4. T°T(Vec( a1’ )) can be expressed as

mx1lxXuv
. ! - wa : 0: ---: 0
T F(Vec(maxll;luv)) VEC( mx1 ) ’
Proof:
o / _ [ !/
T F(Vec(maxllguv)) = T (F(Vec(mcillg!-uv)))

= T*[(Vec( a 1" )(C®1,))]

mx11xXuv

We will first calculate Vec( a1’ (C ® I,,)). Now,

mx11xuv

(C'®I,) 1 o

uvXxX1llxm
[ L 1 1 ) T 1 7
\@ \1117 Vv ux1
_ VIx2 Ix2 0 e u)l(1 o
: ‘ “ . 1xm
1 1 P i O 1
| V-Dxv  o-D)xv Vo—Dxv | L
_ o1
ux1
0 /
= «
: 1xm
i 0
Vo1 o
uX1lxm
. 0
i 0
Therefore,
! - 1 - Co
Vec(maxllghuv(c ® Iu)) o Vec( ﬁmgllxu 0 0 ) .
Thus,
] /
L*{(Veel 2, £,)(C © L))

*/ ’. . e
(Iv®uc;u®1m)\/ec( ﬁm(inlm' 0: . 0 )
Vec(ﬁa 1¥Cc*: 0: - 0)‘

mXx1lXuuXu



Now, we see that

Therefore we have

and the lemma is proved

Lemma 5.

Proof:

uUXu

C*I[ \/Euxl }

S
0

O e

Vec <\f a 1 C*>
mx1lXuuXu

uv o

mx1

(I, ®C")(C o 1,)) 1

(I,eC")(C'®I,)) 1

uUXu

= (L,®l")

uUXu

= (Iv ® C*/)

uUXu

uvx1
uv X1
1 1
v i
1x2 1x2
1 1
i \/(v—l)xv \/(v—1)><v
1
\[u><1 + \[uxl
\/1><2u:>l<1+ 1><

1
1
|V (v—1)Xvux1 +

10

1 1 +
vV (v—1)xXvux1

® I,

R
+\fu:>l<1
1 +---40

(=1

\/(v—l)xvu}d ]

ux1

ux1

ux1




Theorem 1. Let 'Y  represent the three-level multivariate data. If

mxu(v)

I''T'(Vec Y )=

mX(u)v

then all the components Z11, Z12, Z21, .., Ly are independently normally distributed such that
Zy1 ~ N1 (Vuwa+v'Ury, As, 1),

Zil ~ Nm,l('Y/UihA% 1) 1= 2737 - U,
and ZZ‘Q ~ Nm7u_1(’)/lUi2, Al,Iu—l) 1= 1, 2, RN O

Proof: Follows from Lemmas 1 and 2.

[ VGC(ZH :

mx1

V66(221 :

mx1

Vec(Z,)y

mx1

Ziy )

mx(u—1)

Zy )

mx(u—1)

Z’U2 )

mx(u—1)

Comments: Thus, we see that uv CGLMs are nested in one DEGLM. The model involving Z1; has covariance

matrix Ag, but has only one sample, thus estimation of Ag is not possible. Testing of « is therefore not
possible. This case is similar to Arnold’s (1979) EGLM, where the intercept a could not be tested. Each of

the models involving Z;; ¢ = 2,3,...,v has no intercept and has only one sample too, however, they have

common variance-covariance matrix As. Thus, v and Ay can be estimated and < can be tested too.

Similarly, each of the models involving Z;2,7 = 1,2,...,v, are all independent and have a common

covariance matrix A and have no intercept term. Thus, one can calculate estimates of v and A; from each

of the models, and test any hypothesis about ~.

Corollary 2. If W =0, then

Z11 ~ N1 (Vwa+v'Ury, A, 1),
Zil ~ Nm,1(7/Ui17A27 1) 7= 2,3, ey U,y
and Ziy ~ Npu1(¥' Uiz, A1, Iy—1) i=1,2,...,0.

Comments: In this case there are v independent samples to estimate Ay. Thus, testing any hypothesis

about « is possible in the Arnold’s EGLM when one use DEGLM with W = 0 and min(u,v) > m +r.

Corollary 3. Ifv =1, then the DEGLM reduces to the EGLM. For v =1, we have

Z11 ~ Np1(Vua +~'U11,Ug — (u— 1)U, 1),
and Z19 ~ Npu—1(¥'U12,Ug — U1, I,_1).

11



We see that the above model is exactly same as Arnold’s (1979) EGLM.

Theorem 2. The estimates of a and = in the model (3) are given by

& = (u) 2 (2, - ULA), (7)
2 v 2 v
v o= (ZZUUU% - Un Uln)fl(ZZUijZ;j - Un Zln)a (8)
r—1xm =1 i=1 r—1x1 =1 i=1 r—1x1

Proof: The model (3) can be written as

Y = 1,d + T ~ + €, 9)
uvXxXm 1xm UUXT—1p_{xm uvXm
/
:[11“, T’][a}—i—e',
Y
= X B +¢€.
UV XrrXxXm

Therefore, the least square estimate of B is given by

(X'X)B =X'Y'.

Xm
Now,
/ 1/ /
xx = [ ] )
_ 1,1, 1,71
T1,, TT'
and
1,Y
! ! o UvXMm
T’%U’U/Igm B T Y/
rXm r—1lxXuvuvxXm

We will now compute each of the partitioned matrices in X’X and X’ Y’ . Using Lemmas 3 and 5 we

rXr rXUVUV XM
rXm
have
T 1,
r—1xXuv
= T (CoI,)(I,2C*)(I,2C")(C" @1,)1,
r—1xuv vXv uXu uxXu’ wXv
= (UH : Uy ...: Uy 0 Uypa )(IU®C*/)(C,®IU)IUU
r—1x1 r—1xu—1 r—1x1 r—1xu—1 uxu vXv
_ o
Ou—l
= (U1 : Uy ...: Uy @ Uy ) 0,
r—Ix1 r—I1xu—1 r—1x1 r—Ixu—1 .
- Ou -

12



and using Lemma 3 we have

T T

r—1xXuvuvxr—1

= T (C ®IU)(IU®CX*)(IU®C*’)(C’®Iu) T

r—1xuv vXv uXu’ vXv uvXr—1
11
Ixr—1
!
12
u—1xr—1
= (UH s Uyg ...: Uyt 0 Uypa )
r—1x1 r—1xu—1 r—1x1 r—1xu—1 ,
vl
Ixr—1
!
v2
| u—1xr—1 |
v v
= Z UaU}, + Z U,xU;,
i=1 i=1
2 v
- Yy v
7j=11i=1
Now, using Lemmas 2 and 5 we have
/ /
1uvm§m
= 1;w( C oI,)I,®C")(I,® C*,)(C/ ®I,) Y’
VXV uXu uxXu” vXv uvxXm
= [ Vuv: 0y_1: 04: ---: 0y } I, @C")(C' ®I,) Y’
uxu’ vXv uvXxXm
= VuZ.
Ixm
Again using Lemmas 2 and 3 we get
T vV = T (Cel)(I,2CI,2C")(C'"®I,)Y’
r—1xXuvuvxXm r—1xuv vXv uxXu uxXu’ vXv
1
1xm
!
12
u—1xm
- (Un : U12 :...:le : UUQ ) :
r—1x1 r—1xu—1 r—1x1 r—1xu—1 ,
vl
1xm
/
v2
| u—1xm |

v v
= Z UnZ, + Z UinZ,
i—1 i1

2 v
= > > UyZz;

j=1i=1

13



Therefore,

v Vuv Uy a

X'X)B = Ixr—1 bxm
( ) Vuv U Z?:1 > i UijU;j R4
r—1x1 r—lxm
and this is equal to X'Y”, which can be expressed as follows.
Lo VuvZ',
= 1
r‘icztvuxm 22 ZU Xg, A
rxXm j=1 =1 "1y
Therefore, equating the corresponding terms we get
uvla +Vuw Uy 7 =VuwwZi (10a)
Ixr—1r—1xm Ixm
2 v
Vi Un &+ IR hoA =200 UnZi (10)
reix j=1i=1 relxme i =1
Now, from (10a) we have
& = ()24, - UL,
Xm

Thus, (7) is proved. Now, substituting the value of & in (10b) we get,

2 v
Vuo Uy & +ZZUU 3 =Y Y U,z
r—1x

r—1x11xm

j=1i=1 m jfl i=1
Vaw Uy (w) (24, - ULA) + Sy v 7 Y Y vz,
r—1x1 r—1x
Jj=11i=1 7=11i=1
Uy Z4, - U11 U11’Y+ZZU” ¥ = ZZUUZ/
r—1x1 r—1xm s
j=11i=1 j=11=1
2 v
ZZUU U11 U11 ’7 Z Uiz U11 Zn
Jj=11=1 r—ixl —1x j=11i=1
Therefore,
2 v 2 v
'/7\’ Z Uz Ull U11 1(2 UijZ;j - Un /11)
r—1xm — —1x1 T r—1x1
Jj=11=1 j=11=1
If v = 1, the model reduces to Arnold’s (1979) EGLM. For v = 1 we see that
&' =2z, - ULA),
1xm

2 2
S 7/ r\—1 7! /
= (E UlJUlj - Un Uyy) (E Ui 1 — Un Ziy)
r—1xm ) r—1x1 1 r—1x1

=(Up Up) ™ U Z)),

r—1x11xr—1 r—1Ixu—1ly—1xm

14



and these estimates are exactly same as obtained by Arnold (1979)

Theorem 3. The distributions of &' and 4 are as follows:
&~ N (@)1,

%[AngUlA 12 AU A,

+U, A Z UiQU;QA—lUHAl] )
=1

5 = A‘l(z UnZ, + Z UZ-QZQQ) ~ Nip—1)m (%
=1 i

12 Un)|A™ ®A2+A12U12UZ2A ®A1)
i=1

where A = (3030 UyU; — U11U)

r—1xr—1 r—1x1

Proof: We will first find the distribution of 4, and then the distribution of &’. We note that A = A’, so

A is symmetric. Now, from (8) we have

2 v 9 v
& - (ZZUUU;] - Un Ulll)_l(ZZUijZ;j —Up lel)
r—1xm - ; r—1x1 - ‘ r—1x1
7j=11i=1 7j=11i=1
2w
= AT'(Q_ D UyZj; - Ui Z)
r—

J=1i=1
= A_l[U21Z'21 + -+ UU1Z;1 + U122+ U Zhy + -+ Uy Z )

= 1ZUﬂzl+A 1ZUQZ

To get the distribution of 4 we will find the distributions of A™' Y , U;1Z}; and A™' Y7 U;nZ}, sepa-
rately. Using (6b) and (6¢) we have

v
'/)\lle_leﬁZ;l ~ rlmA Z zl 11’7
=2
ATY (W) Wa)]A7 8

and,

=AY UnZjy~ Nooam(A™) UnUlyy, A~ ZUﬁUﬂA A7),
] ] =1
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Therefore, We have

v v
5, =A"1 Z Ui1Z21 ~ N(T—l),m(A_l Z UilU;l‘Y’
j— =2

(A7) [Ua)(Un)]A™ @ Ay),

=2
and
Fo = 1ZUZQZ ~ Np—1)m(A” ZUQU’Q%A ZUQU' HeoA;.
=1
Therefore,
v
5 = A‘1<Z 1JFZUQZ)
=2
= 1+
~ N (AT (U ULy + A7 IZUzzUzz'y,
=2 i=1
12 Un)]A~ ®A2+A12U,QU2A ®A1)
=1
Now,
AN UaUpy+ A UpUlyy = A7) UaUj + > UnUjply
=2 i=1 = =
= 7
Therefore,

¥ = A1<ZU:UZ~1Z§1 + ZU:UQZ;z) ~ Ne—1),m (’7,
i=1 :
v

IZ zl A QR Ag+ A™ 1ZUZ2U12A ®A1>
=1

We see that 4 is an unbiased estimate of v. We will now find the distribution of &’. Now from (7) we have

a/ — LZ/ 7L /%
o o 21 T~ 1
1 1
~/ ! ! — —
a = —Z,——U + ,
T S 11 +72)

1, 1., 1

[ N — _— / ~
\/ﬁ 11 \/ﬁ 1171 NOT 1172
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Now, from (6a) we have

Now,

1 !

N

1 N

\/ﬁ 1171

1 ~

and, ﬁ ,11‘72

]‘ / !

\/'Lﬁ( uvo +U117) —

Juv

=2

=2

=1

1A~

1
Vuv

1 v v
o + —=U",; [7 AT UaUjy-ATY Ul-zU;ﬂ]

al

Therefore, from (11) we have

~/
(04 ~ Nl,m (alalv

%[AngUlA 12

U A Z UizU;QA—lUHAl] )
1=1

Here also we see that & is an unbiased estimate of a.

Corollary 4. If W = 0, the distributions of & and ¥ are as follows:

~/
& ~ Nim (o/, 1,

uv

+U A™

i[AﬁUlA 12

! Z Ui2U§2A_1U11A1]>,
i=1

17

U11A2>

Nl,m(\/i—v( uva’JrU,H’Y),l,iAg),
Nlm( , 12 zl
UpA- 12
1 1
Nlm(ﬁ lA ZU12U127? )
ullenAlgUigUQQAlUHAl).
\/% WA (UaUjy) -

UL AT UpUlyy

=1

A UA,

1A~ U114,



and

r o= A_l( Uilz§1+ZUizz§2)NN(T—l),m(%
=1 ]
AN [(Un)U) A @ Ag + A 1ZUZQUQA ®A1)

=2 i=1

where = A = S Y UyUl; — UnUY,.

r—1xr—

Corollary 5. Ifv=1,

2 v
r—lér—l - ZZUijU;j_UllU,ll

j=1 i=1
= U11U/11 + U12U/12 — U11U/11

= UpUly,
and the distributions of &' and 4 are as follows:
o ~ Nl,m(a/) L
1 1
7 [Ag + U’ 1A Z A U11A2

|
2 [((Uo —Uy) +uly) + U'H(UQU’IQ)’lUnAlb

u

~ Nip(al, 1,0

1
T (1+ UL (UUL) ' U) (U — U1)>

and

=)
¢

N1y (7, A” Z Ui)|A~ ®A2+A12UZ2U12A @A)
=2 i=1

~ Nu_1)m (% (U1oU,) ' UU L (UUY,) 7' @ Al)

~ N(’r—l),m (77 (U12U/12)_1, (UO — U1)>
These estimates are exactly the same as those of Arnold’s (1979).
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