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Abstract 

Many real life decision making problems can be modeled as stochastic multi-attribute decision making 

(MADM) problems. A novel method for stochastic MADM problems is developed based on the ideal and 

nadir solutions as in the classical TOPSIS method. In a stochastic MADM problem, the evaluations of the 

alternatives with respect to the different attributes are represented by discrete stochastic variables. According 

to stochastic dominance rules, the probability distributions of the ideal and nadir variates, both are discrete 

stochastic variables, are defined and determined for a set of stochastic variables. A metric is proposed to 

measure the distance between two discrete stochastic variables. The ideal solution is a vector of ideal 

variates and the nadir solution is vector of nadir variates for the multiple attributes. As in the classical 

TOPSIS method, the relative closeness of an alternative is determined by its distances from the ideal and 

nadir solutions. The rankings of the alternatives are determined using the relative closeness. Examples are 

presented to illustrate the effectiveness of the proposed method. Through the examples, several significant 

advantages of the proposed method over some existing methods are discussed. 
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1. Introduction 

Multi-attribute decision making (MADM) methods have been applied to a wide range of real-world 

problems. Most of these methods appeared in the literature focus on cases where attribute values are crisp 

numbers or fuzzy numbers (Hwang and Yoon, 1981; Fan et al., 2006; Jiang et al., 2008). MADM problems 

usually have stochastic attributes, i.e., attributes that are stochastic or random variables. Consistent with the 

convention in the literature of stochastic MADM, the term “stochastic variables” rather than “random 

variables” will be used in the following. There are many such examples in real life. In a forest site 

productivity evaluation problem, ecological interpretability is a stochastic variable (Chuu, 2009). In decision 

support for investing in a potential industry, the environment conditions are stochastic variables (Zhang et 

al., 2010). In the selection of the most desirable computer development project, the chance of success is a 

stochastic variable (Nowak et al., 2004). In the selection of a site for a waste treatment facility, 

transportation cost is a stochastic variable (Lahdelma et al., 2002). In the selection of a strategic decision 

support model for a retailer’s operation, market share is a stochastic variable (Sarker and Quaddus, 2002). In 

the formation of a management strategy for a forest ecosystem, net income from timber cuttings during the 

planning period is a stochastic variable (Lahdelma and Salminen, 2009). Hence, the development of MADM 

methods with the capacity of handling stochastic attributes has attracted the attention of many researchers. 

Some approaches have been proposed to solve stochastic MADM problems from different perspectives 

(Fan et al., 2010). Keeney and Raiffa (1976) initially proposed a method based on multi-attribute utility 

theory (MAUT) for dealing with MADM problems under uncertainty. Martel and D’Avignon (1982) and 

Martel et al. (1986) aggregated evaluations of multiple experts to obtain random evaluations, called 

distributive evaluations, on the alternatives. Two indices, a confidence index and a doubt index, are 

calculated using these evaluations. A degree of credibility is obtained by combing the two indices. A fuzzy 

outranking relation characterized by the degree of credibility is used to capture the preferences of one 

alternative over another. D’Avignon and Vincke (1988) considered the preference indices given by the 

decision maker (DM), and proposed a multi-attribute procedure to aggregate random evaluations of the 

alternatives into random preference degrees. 

Stochastic dominance (SD) rules have been used to solve the stochastic MADM problem. Martel and 

Zaras (1995) used SD rules and utility functions to determine the outranking relations between alternatives 

on each attribute. Based on these outranking relations, they used the ELECTRE method (Roy, 1985, 1991) 

to obtain the rankings of the alternatives. Zaras (1999) used a rough set approach for obtaining a set of 

decision rules. Based on these rules, the non-redundant set of attributes is identified. By applying multi-

attribute SD rules to the reduced set of attributes, the rankings of the alternatives are obtained. Zaras (2001) 

combined the SD rules and the rough set approach to study the MADM problem with deterministic and 

stochastic evaluation information. Rough set is used to reduce the size of the attribute set. Multi-attribute SD 

rules defined by Zaras (2001) are used to determine the dominance relations of alternatives on the smaller 

set of attributes. Zaras (2004) studied the MADM problem with deterministic, fuzzy and stochastic 

evaluation information. He proposed mixed-data multi-attribute dominance to identify the preference 
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relation between alternatives on each attribute. Based on the dominance relations, several decision rules are 

generated by using the rough set approach and the rankings of the alternatives are obtained subsequently. 

For MADM problems with stochastic information, Nowak (2004) used SD rules to determine the dominance 

relationship associated with a pair of alternatives, and then identified strict preference, weak preference and 

indifference preference between alternatives on a single attribute. The rankings of the alternatives are then 

obtained by using the ELECTRE-III distillation procedure (Roy, 1985 1991). Nowak (2007) studied the 

stochastic MADM problem using the DM’s aspiration information. The number of alternatives is 

progressively reduced according to the DM’s aspiration threshold. Furthermore, he used the SD rules to 

select the desirable alternative from the reduced set of alternatives. Zhang et al. (2010) introduced the 

concept of stochastic dominance degree (SDD) to measure the strength of dominance of one alternative over 

another. Based on the overall SDD matrix, the rankings of the alternatives are obtained by using 

PROMETHEE-II (Brans and Vincke, 1985; Kolli and Parsaei, 1992). 

In addition, other methods for solving stochastic MADM problems have been reported in the literature. 

Văduva and Resteanu (2009) examined a MADM problem with stochastic attribute values. They first 

standardized the stochastic attribute values. The standardized stochastic attribute values are then transformed 

into Shannon’s entropy or Onicescu’s informational energy. By using a simple additive weighting approach 

or using TOPSIS (Technique for Order Preference by Similarity to Ideal Solution), the Shannon’s entropy or 

Onicescu’s informational energy of each alternative is aggregated to obtain the rankings of all alternatives. 

Fan et al. (2010) proposed a method based on pairwise comparisons of alternatives with random evaluations 

to solve stochastic MADM problems. After computing superior, indifferent and inferior probabilities on 

pairwise comparisons of alternatives, the rankings of all alternatives are obtained. Fan et al. (2013) proposed 

a method based on the ideal and anti-ideal points for the stochastic MADM problem, where consequences of 

alternatives with respect to attributes are represented by stochastic variables with cumulative distribution 

functions. In this current study, the term “nadir solution” or “nadir point” instead of “anti-ideal point” is 

used. Ideal solutions are also called positive ideal solutions and nadir solutions are also called negative ideal 

solutions in the literature. 

Prior studies have significantly enriched the theories and techniques of stochastic MADM problems. 

However, there are still limitations with existing methods. For example, in methods using MAUT, the utility 

function is often difficult to obtain (Nowak, 2004). In methods using confidence indices and preference 

indices, the meanings of these indices are sometimes not easily interpretable (Stewart, 2005). Methods based 

on SD rules sometimes cannot determine or identify the dominance relation between two distinct 

alternatives (Leshno and Levy, 2002). When the dominance relation cannot be established, the rankings of 

the alternatives cannot be determined. In methods using TOPSIS, the stochastic attribute values are 

transformed into crisp or interval values. Obviously, this transformation causes information loss. In methods 

using ideal and anti-ideal points, the cumulative distribution functions of discrete stochastic variables are 

obtained to determine the ideal and anti-ideal points. However, the probabilities of the ideal and anti-ideal 

points at some possible values may be different from those of the stochastic attribute values. Hence, the 

probability distribution functions of ideal and anti-ideal points may be independent of those of the stochastic 
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attribute values. However, in the classical TOPSIS method, the ideal and anti-ideal points are used to 

measure the preference relations using the attribute values. Hence, it is valuable to develop a novel method 

for solving stochastic MADM problems so as to overcome these limitations. 

Inspired by the use of ideal and nadir solutions in the TOPSIS method, this study provides a new way of 

ranking the alternatives when the attributes are discrete stochastic variables. The proposed method is 

motivated by the following ideas. Just like in the TOPSIS method, the chosen alternative should have the 

shortest distance from the ideal solution and the longest distance from the nadir solution. The method should 

overcome some of the limitations in the existing methods. Furthermore, this method should not need much 

judgmental input from the users such as the confidence indices, preference indices and/or utility functions in 

some existing methods, and should not need to verify the SD relations. 

The developed method has three major components. Using SD relations, an ideal variate and a nadir 

variate for a set of stochastic variables are defined first. The ideal and nadir variates are defined on a single 

attribute. For stochastic MADM problems, the ideal solution is a vector of ideal variates and the nadir 

solution is a vector of nadir variates. A metric measuring the distance between two discrete stochastic 

variables is then defined. Using the ideal and nadir solutions and the metric, the method for the stochastic 

MADM problem is finally developed. In the method, the probability distributions of the ideal and nadir 

solutions are determined first, the distances of each alternative from the ideal and the nadir solutions are then 

calculated, and the relative closeness of each alternative is finally calculated by using these distances. The 

relative closeness of the alternatives is then used to obtain the rankings of the alternatives. 

The rest of this paper is organized as follows. A brief introduction to the classical TOPSIS method is 

given in Section 2. Stochastic dominance relations, ideal and nadir variates, and stochastic expectations are 

discussed in Section 3. A metric measuring the distance between two discrete stochastic variables is 

presented in Section 4. The method based on the ideal and nadir solutions to solve the stochastic MADM 

problem is presented in Section 5. Two examples illustrating the feasibility and effectiveness of the 

proposed method are presented in Section 6. Summaries and conclusions are given in Section 7. 

2. A brief introduction to the classical TOPSIS method 

Originally proposed by Hwang and Yoon (1981), the TOPSIS method is an effective tool for dealing 

with MADM problems (Awasthi et al., 2011; Dymova et al., 2013; Khalili-Damghani et al., 2013; Yue, 

2012). TOPSIS simultaneously considers the distances from both the ideal and the nadir solutions. The 

alternatives are ranked by the relative closeness combining the two distances. 

Suppose a MADM problem has m  alternatives and n  attributes. For convenience of analysis, it is 

assumed that all the attributes are of benefit type, i.e., a larger value is preferred to a smaller value for any 

attribute of any alternative. The value of alternative i  on attribute j  is represented by ijx , for 1,2, ,i m   

and 1,2, ,j n  . The decision matrix consists of all these values and is represented by [ ]ij m nX x  . The 

TOPSIS method has the following steps: 

Step 1: Construct the normalized decision matrix [ ]ij m nY y   using (1) in the following 
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1

ij
ij m

iji

x
y

x





, 1,2, ,i m  ; 1,2, ,j n  . (1)

Step 2: Calculate the weighted normalized decision matrix [ ]ij m nF f   using (2) in the following 

 ij j ijf w y , 1,2, ,i m  , 1,2, ,j n  , (2)

where jw  is the weight assigned to attribute j  by the DM with 0jw   and 
1

1
n

jj
w


 . 

Step 3: Determine the ideal solution 1{ , , }nF f f     and the nadir solution 1{ , , }nF f f     using (3) 

and (4), respectively, in the following 

 max{ | 1, , }j ijf f i m    ,
 

(3)

 min{ | 1, , }j ijf f i m    .
 

(4)

Step 4: Calculate the distances of each alternative from the ideal and nadir solutions. The distance of 

alternative i  from the ideal solution is defined in (5) in the following 

 2

1
( )

n

i ij jj
d f f 


  , 1,2, ,i m  . (5)

Similarly, the distance of alternative i  from the nadir solution is defined in (6) in the following 

 2

1
( )

n

i ij jj
d f f 


  , 1,2, ,i m  . (6)

Step 5: Calculate the relative closeness ic  of alternative i  to the ideal and nadir solutions using (7) in the 

following 

 i
i

i i

d
c

d d



 


, 1,2, ,i m  . (7)

Step 6: Obtain the rankings of the alternatives according to the relative closeness ic . The larger ic  is, the 

higher alternative i  is ranked. 

As seen from the above steps, the basic idea of TOPSIS is rather straightforward. A good property of the 

TOPSIS method is that the chosen alternative has the shortest distance from the ideal solution and the 

longest distance from the nadir solution. Its simple computation process can be easily programmed into a 

spreadsheet (Shih et al., 2007). However, when the TOPSIS method is applied to the stochastic MADM 

problem, some steps need to be modified, especially when working with stochastic attribute values with 

different scales. These modifications include the normalization of the stochastic attribute values, the 

identification of the ideal and nadir solutions among a group of stochastic attribute values and the 

calculation of the distances of each alternative from the ideal and nadir solutions. All the modifications are 

discussed in this paper. 

3. Ideal and nadir variates and their properties 

The attributes are discrete stochastic variables in the stochastic MADM problem concerned in this study. 

A discrete stochastic variable, represented by  , is a variable that has a finite number, represented by l , of 
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possible positive values. Let X   be the domain, i.e., the set of all the possible positive values that   may 

take. The elements of X   are arranged in ascending order, i.e., 1 2{ , , , }lX x x x    with 1 2 lx x x    

and 1 2, , , 0lx x x  . Let ( )vP   be the probability that   is equal to vx , with ( ) 0vP   , for any vx X   and 

1,2, ,v l  , and 
1

( ) 1
l

vv
P 


 . If ( ) 1vP    for any 1,2, ,v l  , the discrete stochastic variable   

becomes deterministic, i.e., degenerates to a real number vx . 

In the following, SD concepts and definitions are discussed first. After the ideal and nadir variates are 

defined, their properties are then presented. These properties are stated in SD relations and stochastic 

expectations. 

3.1  Stochastic dominance relations 

SD relations (Martel and Zaras, 1995; Nowak, 2004) are often used to compare stochastic prospects. A 

stochastic prospect is a probabilistic alternative with known probabilities for its outcomes. SD relations 

include first order stochastic dominance (FSD), second order stochastic dominance (SSD) and third order 

stochastic dominance (TSD). These SD relations are defined on their probability distributions in the 

following. 

Definition 1. Let 1  and 2  be any two discrete stochastic variables, and let 1( )F x  and 2 ( )F x  be the 

cumulative distribution functions of 1  and 2 , respectively. Then for 1, lx x X   with 1 lx x , the SD 

relations are 

(1) 1( )F x  FSD 2 ( )F x  if and only if 1 2( ) ( )F x F x  and 1 2( ) ( ) 0F x F x   for all 1x x lx . 

(2) 1( )F x  SSD 2 ( )F x  if and only if 1 2( ) ( )F x F x  and 
1

1 2( ( ) ( )) 0
x

x
F y F y dy   for all 1x x lx . 

(3) 1( )F x  TSD 2 ( )F x  if and only if 1 2( ) ( )F x F x  and 
1 1

1 2( ( ) ( )) 0
x z

x x
F y F y dydz    for all 1x x lx . 

Remark 1. If 1( )F x  FSD 2 ( )F x , then 1( )F x  SSD 2 ( )F x  and 1( )F x  TSD 2 ( )F x ; if 1( )F x  SSD 2 ( )F x , then 

1( )F x  TSD 2 ( )F x . 

Remark 2. Let 1 , 2  and 3  be any three discrete stochastic variables, and 1( )F x , 2 ( )F x  and 3 ( )F x  be the 

cumulative distribution functions of 1 , 2  and 3 , respectively. For 1, lx x X   with 1 lx x , if 1( )F x  FSD 

2 ( )F x , and 2 ( )F x  FSD 3 ( )F x , then 1( )F x  FSD 3 ( )F x . 

From 1 2( ) ( ) 0F x F x  , we have 2 11 ( ) (1 ( )) 0F x F x    , where 
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l l
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l l

v vv v

l l

v vv v

x x

P P x x x

P P x x x

F x F x

P P x x x

P P x x x

x x

 

 

 

 



    

 

 


   
   
    
   
   
 

 

 
 

  . 

3.2  Definitions of the ideal and nadir variates 

In a stochastic MADM problem, the ideal and nadir solutions are vectors of discrete stochastic variables. 

Each component of the ideal solution is an ideal variate and each component of the nadir solution is a nadir 

variate. Each variate is defined by a set of discrete values with an associated probability distribution. For the 

evaluation of an alternative in a discrete stochastic MADM problem, larger probabilities at larger possible 

values often indicate a better evaluation of this alternative. Conversely, larger probabilities at smaller 

possible values indicate a worse evaluation of this alternative. Like the ideal and nadir solutions in the 

classical TOPSIS method, the ideal and nadir solutions correspond to the possible best and worst evaluations, 

respectively. Thus, the ideal variate defined in this study has the maximum possible probabilities among a 

set of discrete stochastic variables at larger possible values. Likewise, the nadir variate has the maximum 

possible probabilities among a set of discrete stochastic variables at smaller possible values. Consequently, 

also from Definition 1 and Remarks 1 and 2, the probability distributions of the ideal and nadir variates are 

defined in the following. 

Definition 2. Let 1 , 2 , , h  be h  discrete stochastic variables with 2h  . The ideal variate    has a 

probability distribution ( )P    as defined in (8) in the following 

 
1 1

1 1

1

1 1 1

( ) 0,

( ) 0,

( ) 1 ( ),( )

( ) max{ ( ) | 1,2, , },

( ) max{ ( ) | 1,2, , },

k k

l

k v kv k

k k u k
u

l l u l
u

P x

P x

P P xP

P P u h x

P P u h x

 

 

  
  

  

 

 
 

  
 

 
  

 

  


  

    
   




  



 



 


, (8)

such that 
1

( ) 1
l

vv
P  


 . 

In this definition of ( )P   in (8), the subscript k  is the smallest subscript such that ( ) 0kP    , where 

k  is determined in such a way that ( ) 0vP     for all 1 1v k   , 
1

( ) 1 ( )
l

k vv k
P P  

 
  , and 

( ) max{ ( ) | 1,2, , }v v u
u

P P u h      for all 1k v l   . As a result, 
1

( ) 1
l

vv k
P  

 
  is realized. In (8), 

determining k  is an important step for constructing the probability distribution of the ideal variate   . If 
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max{ ( ) | 1,2, , }
l

v uv q u
P u h


  1  and 

1
max{ ( )| 1,2, , } 1

l

v uv q u
P u h

 
    for {1,2, , 1}q l  , then k q  and 

1
( ) 1 ( )

l

q vv q
P P  

 
  . The discussion above also outlines a procedure to find the value of k . 

Definition 3. Let 1 , 2 , , h  be h  discrete stochastic variables with 2h  . The nadir variate    has a 

probability distribution ( )P    as defined in (9) in the following 

 
1 1 1

1 1 1

1

1

1 1

( ) max{ ( ) | 1,2, , },

( ) max{ ( ) | 1,2, , },

( ) ( ) 1 ( ),

( ) 0,

( ) 0,

u
u

t t u t
u

t

t v tv

t t

l l

P P u h x

P P u h x

P P P x

P x

P x

  

  

   

 

 

 

 
  

   


 
 

 

   


   
    
  


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



 


 

, (9)

such that 
1

( ) 1
l

vv
P  


 . 

Similar to k  in the definition of    in (8), the subscript t  in the definition of    in (9) is the largest 

subscript such that ( ) 0tP    , where t  is determined in such a way that ( ) max{ ( ) | 1,2, , }v v u
u

P P u h      

for all 1 1v t   , 
1

1
( ) 1 ( )

t

t vv
P P  


  , and 1( ) 0tP  

   for all 1t v l   . As a result, 

1
( ) 1

l

vv
P  


  is realized. In (9), determining t  is also an important step for constructing the probability 

distribution of the nadir variate   . If 
1

1
max{ ( ) | 1,2, , } 1

q

v uv u
P u h


    and 

1
max{ ( ) | 1,2, , }

q

v uv u
P u h


   

1  for {2, , }q l  , then t q  and 
1

1
( ) 1 ( )

q

q vv
P P  


  . The discussion above also outlines a 

procedure to find the value for t . Note that the value of t  is independent of that of k . 

Table 1. Probability distributions of 1 , 2  and 3  as well as of    and    

X 
 1  2 3    

1 2/7 2/7 
2 2/7 3/7 3/7 
3 2/7 3/7 1/7 2/7 
4 2/7 3/7 3/7  
5 3/7 1/7 3/7  

 

Example 1.  The domain X   and the probability distributions of 3h   discrete stochastic variables 1 , 

2  and 3  are presented in Table 1. Each discrete stochastic variable may take on 5l   possible positive 

values. From the probability distributions of these 3h   discrete stochastic variables, the probability 

distributions of the ideal and nadir variates    and    are determined. The results are also presented in 

Table 1. From the probability distributions of    and   , 3k   in (8) and 3t   in (9) are found for this 
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example. The graphical exposition of the probability distributions of 1 , 2  and 3  as well as those of    

and    are given in Figure 1. 

====================== 

Figure 1．appears about here 

====================== 

3.3 Properties of the ideal and nadir variates 

Let ( )F x  and ( )F x  be the cumulative distribution functions of    and   , respectively. Let ( )uF x  be 

the cumulative distribution function of u  for 1,2, ,u h  . The properties of    and    are stated as the 

following proposition and corollary. 

Proposition 1. (1) ( )F x  FSD ( )uF x , ( )F x  SSD ( )uF x , and ( )F x  TSD ( )uF x , for 1,2, ,u h  . 

(2) ( )uF x  FSD ( )F x , ( )uF x  SSD ( )F x , and ( )uF x  TSD ( )F x , for 1,2, ,u h  . 

The proof of Proposition 1 is provided in the Appendix. The following conclusion is directly from 

Proposition 1 and Remark 2. 

Corollary 1. ( )F x  FSD ( )F x , ( )F x  SSD ( )F x , and ( )F x  TSD ( )F x . 

3.4 Stochastic expectations 

Stochastic expectations (Bawa, 1975; Hadar and Russell, 1969), i.e., the expectations of stochastic 

variables, are also often used to compare stochastic prospects. They are used to show the rationales of the 

ideal and nadir variates in this study. The stochastic expectation of a discrete stochastic variable is defined in 

the following. 

Definition 4. The expectation of a discrete stochastic variable u , ( )uE  , is given by 

 
1

( ) ( )
l

u v v uv
E x P 


 . (10)

The following proposition shows another property of the ideal and nadir variates. This property explains 

the rationales of the ideal and nadir variates through stochastic expectations. 

Proposition 2. For any h  discrete stochastic variables u  for 1,2, ,u h   and 2h   with    and    

defined above, the expectations of    and    satisfy ( ) ( )uE E    and ( ) ( )uE E   . 

The proof of Proposition 2 is given in the Appendix. 

4. A metric measuring the distance between two discrete stochastic variables 

The distance between two discrete stochastic variables is determined by two factors, i.e., their values 

and their probability distributions. The distance is small between two discrete stochastic variables with 

similar values and similar probability distributions. On the other hand, the distance is large between two 

stochastic variables with different values and different probability distributions. In fact, several different 

metrics measuring the distance between discrete stochastic variables have been proposed although they may 
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have some limitations. For example, some scholars suggested using the difference between the expectations 

of two discrete stochastic variables as a measure of their distance (Văduva and Resteanu, 2009; Nowak et al, 

2004). However, the difference between the expectations of two different discrete stochastic variables may 

be 0 when this measure is used. Liu (1997) proposed a new distance measure as a remedy of the measure 

based on expectations. However, the distance between a discrete stochastic variable and itself may not be 0 

with this measure. Cha (2007) presented a survey of different distance measures between two discrete 

stochastic variables proposed in the literature. These distance measures only consider the probability 

distributions but ignore the values of the stochastic variables. The new metric measuring the distance 

between two discrete stochastic variables proposed in this study defined in the following overcomes these 

limitations. 

Definition 5. Let 1  and 2  be any two discrete stochastic variables with probability distributions 1( )P   and 

2( )P  . The distance between 1  and 2 , denoted by 1 2( , )d   , is defined in (11) in the following 

 
1 2 1 2 1 2

1
( , ) [ ( ) ( )] [ ( ) ( )]

2
Td P P B P P         (11)

where  

 1 2 1 1 1 2 2 1 2 2 1 2( ) ( ) ( ( ) ( ), ( ) ( ), , ( ) ( ))l lP P P P P P P P             (12)

and each element ijb  of the matrix ( )ij l lB b   is defined as 

 2 2( )ij l i jb x x x   , , 1,2, ,i j l  . (13)

Obviously, B  is a symmetric positive definite matrix, i.e., 1 2 1 2

1
[ ( ) ( )] [ ( ) ( )] 0

2
TP P B P P      . It can 

be seen that the smaller the difference between ix  and jx  is, the larger the value of ijb  is. Each ijb  has the 

following properties: 

(1) 20 ij lb x  ; 

(2) ij jib b ; 

(3) 2
ii lb x = max{ |ijb , 1,2, ,i j l  }; 

(4) i j i jb b     if j j i    , if j j i    , if i i j    , or if i i j    , i.e., the further away an 

element is from the main diagonal, the smaller its values is. 

The following example illustrates the calculation of the distance between two stochastic variables.  

Example 2.  For the two stochastic variables 1  and 2 , their probability distributions are 

1

1

1 1

1

1

0, 1

0.5, 2

( ) 0.3, 3

0, 4

0.2, 5

P




 




  
 



 and 

2

2

2 2

2

2

0, 1

0, 2

( ) 0.5, 3

0.5, 4

0, 5

P




 




  
 



. 

According to (12), 1 2( ) ( ) (0,0.5, 0.2, 0.5,0.2)P P      and according to (13), the matrix B  is  
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25 24 21 16 9

24 25 24 21 16

21 24 25 24 21

16 21 24 25 24

9 16 21 24 25

B

 
 
 
 
 
 
  

. 

According to (11), the distance between 1  and 2  is then 1 2( , )d    0.6 . 

The distance measure 1 2( , )d    between 1  and 2  defined in (11) has all the properties of a metric, i.e., 

non-negativity, symmetry and triangle inequality. Furthermore, when 1  and 2  are deterministic, 1 2( , )d    

reduces to the Euclidian distance. These properties are stated formally in the following. 

Property 1 (Non-negativity). For any two discrete stochastic variables 1  and 2 , 1 2( , ) 0d     and 

1 2( , ) 0d     if and only if 1 2( ) ( )P P  . 

Property 2 (Symmetry). For any two discrete stochastic variables 1  and 2 , 1 2 2 1( , ) ( , )d d    . 

Property 3 (Triangle inequality). For any three discrete stochastic variables 1 , 2  and 3 , 

1 2 2 3 1 3( , ) ( , ) ( , )d d d       . 

Property 4. If both 1  and 2  are deterministic, then the distance 1 2( , )d    is identical to the Euclidean 

distance. 

The proofs of Properties 3 and 4 are given in the Appendix. 

5. The method for solving the stochastic MADM problem 

Consider a stochastic MADM problem. Let 1 2{ , , , }mA A AA   with 2m   be a finite set of alternatives, 

and 1 2{ , , , }nQ Q QQ   with 2n   be a finite set of attributes. Let 1( ,ww = 2 ,w , )T
nw , with 0 1jw   

for all 1, ,j n   and 
1

1
n

jj
w


 , be an attribute weighting vector, where jw  is the weight assigned to 

attribute jQ . Also let ( )ij m nZ z   be the decision matrix, where ijz  is the evaluation of alternative iA  on 

attribute jQ . Each ijz  is a discrete stochastic variable with a domain jX   such that 1 2{ , , , }
jj j j jlX x x x    

with 1 2 jj j jlx x x    and 1 2, , , 0
jj j jlx x x  , where jl  is the number of possible values of attribute jQ . 

For a real life problem, the values of the elements of jX   are the possible scores assigned to the alternatives 

on attribute jQ . The domain jX   can be different for different attributes, i.e., there exist ,j jQ Q  Q , with 

j j   such that j jX X 
   and j jl l  . The probability that ijz  is equal to jvx  is represented by ( )v ijP z , 

with ( ) 0v ijP z   for all 1,2, , jv l   and 
1

( ) 1jl

v ijv
P z


 . The probability distributions of the evaluations of 

the m  alternatives on each attribute jQ  are usually represented in the form as shown in Table 2. Each 
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column of the table represents the probability distribution ( )v ijP z  of alternative iA  over the domain jX  . In 

a real life problem, these probabilities are obtained by the corresponding relative frequencies. 

Table 2. Evaluations of the m  alternatives on attribute jQ  

jX 

 1A 2A  mA

1jx
 1 1( )jP z 1 2( )jP z  1( )mjP z

2jx
 2 1( )jP z 2 2( )jP z  2 ( )mjP z

     

jjlx  1( )
jl jP z 2( )

jl jP z  ( )
jl mjP z

 

The stochastic MADM problem concerned in this study is to rank the alternatives in the finite set A . In 

the proposed method for the stochastic MADM problem, the domains of various attributes are normalized if 

they are different, the ideal and nadir solutions are identified, the distances of each alternative from the ideal 

and nadir solutions are calculated, the relative closeness of each alternative is determined, and the 

alternatives are finally ranked. The method based on the ideal and nadir solutions for the stochastic MADM 

problem is described in more detail in the following. 

5.1 Normalization of attribute values 

Different attributes may often be on different scales, i.e., having different domains, for discrete 

stochastic MADM problems. To handle the attribute values with different scales in such cases, the attribute 

values need to be normalized into the same scale, e.g., from 0 to 1. Let jvx  denote the normalized value of 

jvx  in the domain jX   for attribute j . Then jvx  is given by 

 
j

jv
jv

jl

x
x

x
  , 1,2, , jv l   and 1,2, ,j n  . (14)

Each element in the domain 1 2{ , , , }
jj j j jlX x x x    is converted to an element in the domain 1{ ,j jX x   

2 , , }
jj jlx x   according to (14) in the normalization process. The normalization of the attribute values does 

not change the probabilities of the attribute values. Let ijz  be the normalized attribute value of alternative 

iA  on attribute jQ  and ( )v ijP z   be the probability that ijz  is equal to jvx . The probabilities then satisfy 

( ) ( )v ij v ijP z P z    and 
1

( ) 1jl

v ijv
P z


   . 

The normalization only ensures the commensurability among the domains of different attributes, but the 

different attributes still have their values in their individual domains. For the normalized attribute values of 

different attributes to be comparable, the union of all the normalized domains, donated by X  , is used as the 

common domain, i.e., 1 2 nX X X X        . 
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Without loss of generality, assume the common domain has l  elements, i.e., 1 2{ , , , }lX x x x   , and 

the normalized attribute ijz  is treated as a discrete stochastic variable within X  . Let ( )g ijP z  be the 

probability that ijz  is equal to gx , for 1,2, ,g l  . Then ( )g ijP z  is given by 

 
( ), if  and 

( )
0, if 

v ij g j g jv
g ij

g j

P z x X x x
P z

x X





        
, 1,2, ,g l   and {1,2, , }jv l  . (15)

5.2 Identification of the ideal and nadir solutions 

Because the ideal and nadir solutions are used as reference points in ranking the alternatives, 

appropriately defining them and identifying them are important steps in the proposed method. Let 

1 2( , ,Z z z    , )T
nz  and 1 2( , , , )T

nZ z z z      be the ideal and nadir solutions, where jz  and jz  are the 

ideal and nadir variates of attribute jQ , respectively. Both jz  and jz  are discrete stochastic variables, and 

each of them has a set of values with an associated probability distribution. Let ( )v jP z  and ( )v jP z  denote 

the probabilities that jz  and jz  are equal to vx , where ( )v jP z  and ( )v jP z  are determined based on 

Definitions 2 and 3, respectively. 

After the probability distributions of jz  and jz  are determined for each attribute jQ , for 1, ,j n  , the 

ideal solution Z   and nadir solution Z   are identified. 

5.3 Distances from Z   and Z   and the relative closeness of each alternative 

Because ijz , jz  and jz  are all discrete stochastic variables, the distances ijd   and ijd   of ijz  from jz  

and  can be computed using (16) and (17) jz , respectively, in the following that are directly from (11), 

1
( , ) [ ( ) ( )] [ ( ) ( )]

2
T

ij ij j ij j ij jd d z z P z P z B P z P z         , 1,2, ,i m   and 1,2, ,j n   (16)

1
( , ) [ ( ) ( )] [ ( ) ( )]

2
T

ij ij j ij j ij jd d z z P z P z B P z P z         , 1,2, ,i m   and 1,2, ,j n  , (17)

where 1 1 2 2( ) ( ) ( ( ) ( ), ( ) ( ), , ( ) ( ))ij j ij j ij j l ij l jP z P z P z P z P z P z P z P z            in (16) and ( ) ( )ij jP z P z    

1( ( )ijP z 1( ),jP z 2 2( ) ( ), ,ij jP z P z   ( ) ( ))l ij l jP z P z   in (17). The components ijb  of B  are defined in (13). 

The distances id   and id   of each alternative iA  from Z   and Z   are the weighted sum of the 

individual distances ijd   and ijd  . They are calculated with (18) and (19), respectively, in the following 

2 2

1

n

i j ijj
d w d 


  , 1,2, ,i m   (18)

2 2

1

n

i j ijj
d w d 


  , 1,2, ,i m  . (19)

With the results in (18) and (19), the relative closeness *
ic  of each alternative iA  is calculated in (20) in 

the following 
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 * i
i

i i

d
c

d d



 


, 1,2, ,i m  . (20)

5.4 Rankings of the alternatives 

The larger the relative closeness *
ic  is, the better the alternative iA  is. Therefore, the alternatives are 

ranked using their relative closeness *
ic  as defined in (20). 

The method for the stochastic MADM problem based on the ideal and nadir solutions is given step by 

step in the following. 

Step 1. Normalize the attribute value ijz  into ijz  using (14) and (15) if different attributes have different 

domains. 

Step 2. Determine the probability distributions of the components of the ideal solution Z   and the nadir 

solution Z   using definitions 2 and 3, respectively. 

Step 3. Calculate the distances of each alternative from the ideal solution id   and from the nadir solution 

id   using (18) and (19), respectively. 

Step 4. Calculate the relative closeness *
ic  for each alternative iA  for 1, ,i m   using (20). 

Step 5. Rank the alternatives in descending order of *
ic  for 1, ,i m  . 

6. Illustrative examples 

Two illustrative examples are presented in this section. The main purpose of these examples is to show 

the effectiveness and to demonstrate the use of the proposed method. The results obtained with the proposed 

method are also compared with those of some existing methods. 

6.1 An example with the same attribute domain 

In this example, the problem is to select the most desirable computer development project(s). Because 

the attributes in this example have the same domain, normalization of the attribute values is not necessary. 

The problem was previously studied by Martel and Zaras (1995) and Nowak (2004). The result obtained 

with the method proposed in this study is compared with that obtained with the ELECTRE-III method (Roy, 

1985, 1991; Nowak, 2004). 

In the problem, 10m   computer development projects with 4n   attributes are considered. The 

computer development projects are represented by the alternatives 1A , 2A , 3A , 4A , 5A , 6A , 7A , 8A , 9A  and 10A . 

The attributes are 1Q : personal resources effort; 2Q : discounted profit; 3Q : chances of success, and 4Q : 

technological orientation. The weights assigned to the attributes are 1 0.09w  , 2 0.55w  , 
3

0.27w   and 

4 0.09w  . 

Each attribute is evaluated on a scale from 1 to 10, i.e., a score, with 1 being the lowest and 10 the 

highest, i.e., {1,2, ,10}X     with 10l  , by 7 experts. The evaluations of the alternatives on the attributes  
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Table 3. Evaluations of the alternatives on attribute 1Q  

Score 
( X  ) 

Alternative 

1A  2A  3A  4A 5A 6A 7A 8A 9A  10A

1   1/7   
2 3/7 1/7 1/7  1/7
3 1/7  1/7 2/7  2/7
4  2/7 2/7  2/7
5 2/7 1/7 3/7 1/7 3/7 1/7 2/7 1/7
6  2/7 1/7 2/7 1/7 1/7 1/7 1/7 
7 1/7  1/7 1/7 2/7 2/7  3/7 1/7
8  1/7 2/7 1/7 2/7 1/7  1/7 
9   3/7 2/7   
10   1/7 2/7 1/7   

Table 4. Evaluations of the alternatives on attribute 2Q  

Score 

( X 
) 

Alternative 

1A  2A  3A  4A 5A 6A 7A 8A 9A  10A

1   1/7 3/7  
2 2/7  3/7 3/7  1/7
3 1/7  1/7 4/7 1/7  1/7 
4   1/7 1/7 1/7 
5 2/7  1/7 1/7   
6  1/7 1/7 1/7 2/7 1/7  1/7 
7  1/7 1/7 1/7  4/7 2/7
8 1/7 3/7 2/7 3/7 2/7 2/7   3/7
9 1/7 2/7 3/7 1/7 1/7   
10   1/7   1/7

Table 5. Evaluations of the alternatives on attribute 3Q  

Score 
( X  ) 

Alternative 

1A  2A  3A  4A  5A  6A  7A  8A  9A  10A  

1   2/7  1/7
2   3/7 1/7  2/7
3 1/7  1/7 1/7 4/7 1/7 
4 3/7  1/7 1/7  2/7 
5  1/7 1/7 2/7  2/7 2/7
6 1/7    2/7
7  1/7 1/7 2/7  2/7 
8 1/7 2/7 4/7 2/7 3/7 2/7   
9 1/7 3/7 3/7 1/7 1/7 1/7   
10   2/7 1/7 2/7   

 

are presented in Tables 3-6. Each column of a table lists the relative frequencies, representing corresponding 

probabilities, that each alternative iA  is assigned the different values in X   for one of the 4n   attributes. 

Because all 4n   attributes share the same domain in this example, the normalization step, i.e., Step 1 

in the proposed method, is not required. According to definitions 2 and 3, the probability distributions of the 

components of the ideal and nadir solutions are determined as shown in Tables 7 and 8, respectively. 
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Table 6. Evaluations of the alternatives on attribute 4Q  

Score 
( X  ) 

Alternative 

1A  2A  3A  4A  5A  6A  7A  8A  9A  10A  

1   2/7  
2    1/7 
3 3/7  1/7   
4   1/7 1/7 
5 2/7  1/7 1/7 2/7  
6   1/7 1/7 1/7 1/7 3/7 3/7
7   1/7 1/7 1/7   1/7
8 1/7 4/7 3/7 3/7 3/7 2/7 3/7 1/7 1/7 1/7
9  2/7 1/7 1/7 1/7 1/7   1/7
10 1/7 1/7 2/7 3/7 1/7 1/7 1/7  1/7 1/7

Table 7. The probability distributions of the components of the ideal solution Z   

Ideal 
solution 

Score 
1 2 3 4 5 6 7 8 9 10 

1z


   2/7 3/7 2/7

2z    3/7 3/7 1/7

3z    2/7 3/7 2/7

4z    2/7 2/7 3/7

Table 8. The probability distributions of the components of the nadir solution Z   

Nadir 
solution 

Score 
1 2 3 4 5 6 7 8 9 10 

1z


 1/7 3/7 2/7 1/7   

2z  3/7 3/7 1/7   

3z  2/7 3/7 2/7   

4z  2/7 1/7 3/7 1/7   

Table 9. Distances of the 10m   alternatives from the ideal and nadir solutions 

Alternative id   id   

1A 2.3896 1.9810

2A 0.6706 3.7782

3A 0.3409 4.1273

4A 1.2208 3.2018

5A 0.9977 3.4062

6A 1.5789 2.9722

7A 3.5175 0.9482

8A 4.2326 0.2378

9A 1.9415 2.4659

10A 1.7033 3.0641
 

From (18) and (19), the distances of each alternative from the ideal and the nadir solutions are calculated 

as shown in Table 9. 
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According to (20), the relative closeness of each alternative is calculated as follows 

*
1 0.4532c  ; *

2 0.8492c  ; *
3 0.9237c  ; *

4 0.7239c  ; *
5 0.7735c  ; 

*
6 0.6531c  ; *

7 0.2123c  ; *
8 0.0532c  ; *

9 0.5595c  ; *
10 0.6427c  . 

Therefore, the rankings of the alternatives are 3 2 5 4 6 10A A A A A A     9 1A A  7A  8A . 

The result of the method proposed in this study is compared with that of the extended ELECTRE-III 

method (Nowak, 2004) in Table 10. In the ELECTRE-III method as presented in Nowak (2004), the 

preference and veto thresholds of these four attributes are 1jp   and 3jv  , for 1,2,3,4j  . The SD 

relations are verified first. The deviations between the mathematical expectations of stochastic evaluations 

are then calculated. The values of concordance and discordance indices are finally obtained by comparing 

the deviations with the preference and veto thresholds. 

Table 10. Comparison of results of the two methods 

Methods Ranking of alternatives 
The proposed method  3 2 5 4 6 10A A A A A A     9 1A A  7A  8A  

The ELECTRE-III method 3 2 5 4 6 10A A A A A A     9 1A A  7A  8A  

 

Compared with the ELECTRE-III method, the method developed in this study has three good 

characteristics: 

Clear rankings of the alternatives. As shown in Table 10, the results of the two methods are pretty 

consistent. Each alternative has a distinct ranking with the method proposed in this study. However, the 

rankings of alternatives 4A  and 5A  and those of alternatives 9A  and 10A  cannot be distinguished with the 

ELECTRE-III method. The main reason is that the probability distributions of the attribute values need to be 

transformed into mathematical expectations in the ELECTRE-III method. This transformation, however, 

causes information loss. Moreover, if SD relations cannot be verified, the values of both the concordance 

and discordance indices are 0, implying that these indices are meaningless. 

Independent of the preference and veto thresholds. The method proposed in this study does not need 

the preference and veto thresholds. However, the rankings of the alternatives obtained are very close to those 

using the preference and veto thresholds in the ELECTRE-III method. Subjective judgments are introduced 

into the decision process when the preference and veto thresholds are used. Actually, using different 

preference and veto thresholds may lead to different rankings of the alternatives. Hence, the DM must 

specify accurate and reasonable preference and veto thresholds in the ELECTRE-III method. Unfortunately, 

these thresholds are often very difficult to specify. 

Independent of the SD relations. Furthermore, the ELECTRE-III method for solving the stochastic 

MADM problem needs to verify SD relations but the method proposed in this study does not. As a result, the 

proposed method in this study simplifies the computation process. 
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6.2 An example with different attribute domains 

The main purpose of this example is to show how the evaluations on the attributes with different 

domains are normalized and the union of the different domains is used as the common domain. Suppose an 

overseas investor is interested in selecting a company with the most potential to invest in SY city in China. 

A total of 6m   companies, as alternatives, with 3n   attributes are considered. The 6m   companies are 

1A : an auto manufacturer; 2A : a pharmaceutical firm; 3A : a food processing company; 4A : a logistics 

company; 5A : an apparel manufacturer, and 6A : a computer software company. The attributes are 1Q : return 

on investment; 2Q : growth, and 3Q : impact on environment. The 3n   attributes are all assumed to be of 

benefit type. The weights assigned to the attributes are 1 0.3w  , 2 0.5w   and 3 0.2w  . Because of the 

difference in the characteristics of the attributes, the scales on different attributes are different. For attribute 

1Q , the domain is 1 {1,2,3,4,5}X    with 1 being the worst and 5 being the best, while for attributes 2Q  and 

3Q , the domains are 2 3X X   {1, 2, 3, 4, 5, 6, 7} with 1 being the worst and 7 being the best. Because the 

attributes in this example have different domains, the normalization step is needed to put the evaluations 

under the same scale. This overseas investor invited 5 experts to provide their evaluations of the alternatives 

for each attribute. The evaluations of the alternatives on the attributes are presented in Tables 11-13. 

Table 11. Evaluations of the alternatives on attribute 1Q  

Score 
( 1X  ) 

Alternatives 

1A  2A  3A  4A  5A  6A  

1 1/5 1/5 2/5 1/5  
2 1/5 1/5 3/5  
3 1/5 1/5 3/5 2/5 
4 2/5 2/5 1/5 2/5 0 
5 3/5 3/5 

Table 12. Evaluations of the alternatives on attribute 2Q  

Score 
( 2X  ) 

Alternatives 

1A  2A  3A  4A  5A  6A  

1 1/5 2/5 1/5 3/5  
2  
3 1/5 1/5 
4 1/5 2/5 1/5 1/5 
5 2/5 1/5 2/5 1/5 1/5 2/5 
6 1/5 2/5 1/5 
7 1/5 2/5  

 

The attribute values are normalized using (14) and (15). The union of the domains is obtained and is 

used as the common domain X  . The normalized attribute values in the common domain X   are shown in 

Tables 14-16. 
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Table 13. Evaluations of the alternatives on attribute 3Q  

Score 
( 3X  ) 

Alternatives 

1A  2A  3A  4A  5A  6A  

1 3/5 2/5  
2 1/5 1/5 2/5  
3 2/5 1/5 1/5 
4 2/5 2/5 1/5 1/5 
5 1/5 2/5 
6 2/5 2/5 1/5 
7 3/5  

Table 14. Normalized evaluations of the alternatives on attribute 1Q  

Score 
( X  ) 

Alternatives 

1A  2A  3A  4A  5A  6A  

1/7  
1/5 1/5 1/5 2/5 1/5  
2/7  
2/5 1/5 1/5 3/5  
3/7  
4/7  
3/5 1/5 1/5 3/5 2/5 
5/7  
4/5 2/5 2/5 1/5 2/5  
6/7  
1 3/5 3/5 

Table 15. Normalized evaluations of the alternatives on attribute 2Q  

Score 
( X  ) 

Alternatives 

1A  2A  3A  4A  5A  6A  

1/7 1/5 2/5 1/5 3/5  
1/5  
2/7  
2/5  
3/7 1/5 1/5 
4/7 1/5 2/5 1/5 1/5 
3/5  
5/7 2/5 1/5 2/5 1/5 1/5 2/5 
4/5  
6/7 1/5 2/5 1/5 
1 1/5 2/5  

 

According to definitions 2 and 3, the probability distributions of the components of the ideal and nadir 

solutions are determined as shown in Tables 17 and 18, respectively. 

From (18) and (19), the distances of each alternative from the ideal and the nadir solutions are calculated 

as shown in Table 19. 
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Table 16. Normalized evaluations of the alternatives on attribute 3Q  

Score 
( X  ) 

Alternatives 

1A  2A  3A  4A  5A  6A  

1/7 3/5 2/5  
1/5  
2/7 1/5 1/5 2/5  
2/5  
3/7 2/5 1/5 1/5 
4/7 2/5 2/5 1/5 1/5 
3/5  
5/7 1/5 2/5 
4/5  
6/7 2/5 2/5 1/5 
1 3/5  

Table 17. The probability distributions of the components of the ideal solution Z   

Ideal 
solution 

Score 
1/7 1/5 2/7 2/5 3/7 4/7 3/5 5/7 4/5 6/7 1 

1z


    2/5  3/5

2z     1/5  2/5 2/5

3z      2/5 3/5

Table 18. The probability distributions of the components of the nadir solution Z   

Nadir 
solution 

Score
1/7 1/5 2/7 2/5 3/7 4/7 3/5 5/7 4/5 6/7 1 

1z


  2/5  3/5   

2z  2/5   1/5 2/5   

3z  3/5  2/5   

Table 19. Distances of the 6m   alternatives from the ideal and nadir solutions 

Alternative id   id   

1A 0.2238 0.1520

2A 0.2208 0.1726

3A 0.2492 0.1761

4A 0.1746 0.2976

5A 0.3041 0.1812

6A 0.1300 0.2511
 

According to (20), the relative closeness of each alternative is calculated as follows 

*
1 0.4045c  ; *

2 0.4623c  ; *
3 0.4140c  ; *

4 0.6303c  ; *
5 0.3733c  ; *

6 0.6589c  . 

Therefore, the rankings of the alternatives are 6 4 2 3 1 5A A A A A A     . 

The result obtained with the method proposed in this study is compared with that of the method based on 

SDD (Zhang et al, 2010). The rankings of the alternatives by the method based on SDD are 6 4 3A A A   
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1 2 5A A A   . The rankings of alternatives 1A  and 2A  are reversed in the method based on SDD from 

those by the method proposed in this study. The reason may be explained through the following example. 

Look at 12z  and 22z  only in Table 15. Since 
12

(1 7) 1 5zF   
22

(1 7) 2 5zF    and 
12

(4 7) 3 5zF    
22

(4 7)zF   

2 5 , 
12

1 7

0
( ) 1 70zF x dx   22

1 7

0
( )zF x dx 1 35  and 

12

4 7

0
( )zF x dx 6 35  

22

4 7

0
( )zF x dx   4 35 , 

12

1 7

0 0
( ) 1 735

x

zF t dtdx    22

1 7

0 0
( )

x

zF t dtdx   2 735  and 
12

4 7

0 0
( )

x

zF t dtdx  16 245 
22

4 7

0 0
( )

x

zF t dtdx   

32 685 , the SD relation for 
12

( )zF x  and 
22

( )zF x  cannot be determined by the method based on SDD. 

According to the method in Zhang et al (2010), the SDD for 12z  over 22z  is 
12 22

( ( ) ( ))z zF x SDF x    

12 22
( ( ) ( )) 0z zF x SDF x    , although 12z  and 22z  are two different stochastic variables. With the method 

proposed in this study, the two distances from the ideal solution are 12 2( , ) 0.3714d z z   and 

22 2( , ) 0.3143d z z   and the two distances from the nadir solution are 12 2( , ) 0.2057d z z   and 

22 2( , ) 0.2629d z z  , respectively. The relative closeness of each alternative based only on attribute 2Q  are 

*
1 0.3564c   and *

2 0.4555c  . Obviously, 22 12z z   is determined. Therefore, comparing with the method 

based on SDD (Zhang et al, 2010), the comparison result of attribute values using the method proposed in 

this study is clearer and subtler. Furthermore, the method proposed in this study does not require the 

verification of the SD relations and, therefore, simplifies the computation process. 

7. Conclusions 

This paper presents a novel method for solving the stochastic MADM problem. This method 

simultaneously considers distances of the alternatives both from the ideal and nadir solutions. The relative 

closeness of an alternative is obtained by combining the distances from the ideal and nadir solutions. The 

alternatives are ranked using their relative closeness. The probability distributions of ideal and nadir variates, 

as components of the ideal and nadir solutions, are defined and their properties and rationales are discussed. 

A metric measuring the distance between two discrete stochastic variables is defined. Some properties of the 

metric are discussed. The probability distributions of the ideal and nadir solutions in stochastic MADM 

problems are defined. 

Compared with existing methods for solving the stochastic MADM problem, the proposed method has 

distinct characteristics. It overcomes some limitations in the existing methods, i.e., it does not need to 

construct a multi-attribute utility function, does not need to transform the stochastic information into other 

types of information and does not need to identify the SD relations. Furthermore, this new method for the 

stochastic MADM problem based on the ideal and nadir solutions has a clear logic, a simple computation 

process and a broad applicability. Since the proposed method can obtain clear alternative rankings, it gives 

the DMs one more tool for solving stochastic MADM problems. 

For future research, the proposed method can be extended to more complex stochastic MADM problems. 

One type of such problems is when the attribute values are in the form of continuous stochastic variables. 
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Another type of such problems is when the attribute values are in the form of discrete stochastic variables 

with uncertain probability information. 

Acknowledgement 

This work was partly supported by the National Natural Science Foundation of China (NSFC, Project 

No. 71021061, 71271050) and the Specialized Research Fund for the Doctoral Program of Higher Education 

(SRFDP, Project No. 20110042110011). 

Appendix 

Proof of Proposition 1. In the following, the property that ( )F x  FSD ( )uF x  is proved. The other 

properties can be proved analogously. 

The cumulative probability distribution functions of u  and   , ( )uF x  and ( )F x , are given by 
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There are two cases to be considered. 

Case 1: ( ) max{ ( ) | 1,2, , }v v u
u

P P u h      for 2, ,v l  , 1( ) 1P    
2

( )
l

vv
P  

  and 1( ) 0P    . 

Obviously, 
1 1

( ) ( ) 1
l l

v u vv v
P P  

 
   , for 1,2, ,u h  . 

For 1,2, ,u h   and 1, , 1g l  , it can be seen that 
1 1

( ) ( )
l l

v u vv g v g
P P  

   
  . Then, 

1 1 1 1
( ) ( ) ( ) ( )

l l l l

v u v u v vv v g v v g
P P P P    

     
      , i.e., 

1 1
( ) ( )

g g

v u vv v
P P  

 
  . Furthermore, 

1 1
( ) ( ) ( ) ( )

g g

u v u vv v
F x P P F x  

 
     for 1g gx x x   . 

Particularly, for g l , i.e., g lx x x  , 
1 1

( ) ( ) ( ) ( ) 1
g g

u v u vv v
F x P P F x  

 
     . Therefore, 

( ) ( )uF x F x  for all 1x x lx . According to Definition 1, ( )F x  FSD ( )uF x . 

Case 2: ( ) max{ ( ) |v v u
u

P P   1,2, , }u h   for v k 2, ,l , 1 2
( ) 1 ( )

l

k vv k
P P  

  
  , and 

( ) 0vP     for 1, ,v k   and 1 k l  . Obviously, ( ) 0vP     for v k +1 ,l , and 
1

( ) 1
l

vv k
P  

 
 . 

For u , a new discrete stochastic variable u   is introduced, where ( ) ( )v u v uP P    for v k 2, ,l , 

and 1( ) 1k uP 
  

2
( )

l

v uv k
P 

 
 . It can be seen that 1( )k uP 

 1 
2

( )
l

v uv k
P 

  =
1

1
( )

k

v uv
P 

  and 

1
( )

l

v uv k
P 

 
 =1. 
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Let ( )uF x  denote the cumulative probability distribution function of u  . ( )uF x  is given by  
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For 1,2, ,u h  , since 
1

( ) 1
l

v uv k
P 

 
  , then ( ) 0v uP     for 1, ,v k  . Because ( ) 0v uP    for 

1, ,v k  , then 
1 1

( ) ( )
g g

v u v uv v
P P 

 
   for 1, ,g k  . Furthermore, because ( ) ( )v u v uP P    for 

2, ,v k l   , then 
1

1 1 2
( ) ( ) ( )

g k g

v u v u v uv v v k
P P P  

   
    1

( )
g

v uv k
P 

 
 1

( )
g

v uv
P 


  for 

2, , 1g k l   . 

Also because 
1

11 1
( ) ( ) ( )

k k

v u v u k uv v
P P P  

 
      1

1
( )

k

v uv
P 

 , then 
1 1

( ) ( )
g g

v u v uv v
P P 

 
   for 

1, , 1g k l   . Therefore, the following can be obtained 

1 1
( ) ( ) ( ) ( )

g g

u v u v u uv v
F x P P F x  

 
    , for 1g gx x x    and 1, ,g k  . 

1 1
( ) ( ) ( ) ( )

g g

u v u v u uv v
F x P P F x  

 
    , for 1g gx x x    and 1, , 1g k l   . 

It can be seen that ( ) ( )u uF x F x  for any 1 lx x x  . According to Definition 4, ( )uF x  FSD ( )uF x . 

On the other hand, because ( ) ( ) 0v u vP P      for 1, ,v k  , 
1 1

( ) ( ) 0
g g

v u vv v
P P  

 
     can be 

obtained for 1, ,g k  . 

Since ( ) ( ) ( )v u v u vP P P       for 2, ,v k l   , then 
1 1

( ) ( )
l l

v u vv g v g
P P  

   
    for 

1,g k  , 1l  . Furthermore, by 
1 1

( ) ( ) 1
l l

v u vv k v k
P P  

   
    , 

1
( )
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P 

 
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1 1 1 1 1
( ) ( ) ( ) ( ) ( )

l l l l g

v u v u v v vv k v g v k v g v k
P P P P P      

         
         , for 1,g k  , 1l  . 

Therefore, the following can be obtained 

1 1
( ) ( ) ( ) ( )

g g

u v u vv v
F x P P F x  

 
     , for 1g gx x x   and 1, ,g k  . 

1 1
( ) ( ) ( ) ( )

g g

u v u vv k v k
F x P P F x  

   
     , for 1g gx x x    and 1,g k  , 1l  . 

1 1
( ) ( ) ( ) ( ) 1

g g

u v u vv v
F x P P F x  

 
      , for lx x  and g l . 

It can be seen that, ( ) ( )uF x F x
   for any 1 lx x x  . According to Definition 1, ( )F x  FSD ( )uF x , 

for 1,2, ,u h  . 
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Because ( )F x  FSD ( )uF x , ( )F x  SSD ( )uF x  and ( )F x  TSD ( )uF x , for 1,2, ,u h  , from Remarks 

1 and 2. Analogously, ( )uF x  FSD ( )F x , ( )uF x  SSD ( )F x , and ( )uF x  TSD ( )F x  can be proved for 

1,2, ,u h  .  

Proof of Proposition 2. There are two cases to be considered. 

Case 1: ( ) max{ ( ) | 1,2, , }v v u
u

P P u h      for ,2,v l  , 1 2
( ) 1 ( )

l

vv
P P  


   and 1( ) 0P    . 

Obviously, ( ) ( )v u vP P    for 2, ,v l   and 
1

( ) 1
l

vv
P  


 . It can be seen that 

2 2
( ) ( )

l l

v u vv v
P P  

 
  . Furthermore, 1 12 2

1 ( ) ( ) 1 ( ) ( )
l l

v v u uv v
P P P P    

 
      . Thus, 

12
( ) ( ) ( )( ( ) ( ))

l

u v v v uv
E E x x P P    


    . Because 1x vx , then ( ) ( ) 0uE E    . 

Case 2: ( ) max{ ( ) | 1,2, , }v v u
u

P P u h      for v k 2, ,l , 1 2
( ) 1 ( )

l

k vv k
P P  

  
  , and 

( ) 0vP     for 1, ,v k   and 1 k l  . Obviously, ( ) 0vP     for v k +1 ,l  and 
1

( ) 1
l

vv k
P  

 
 . 

In order to compare ( )E    and ( )uE  , a new discrete stochastic variable u   is introduced, where 

( ) ( )v u v uP P   , for 2, ,v k l   , and 1 2
( ) 1 ( )

l

k u v uv k
P P   

   . It can be seen that 

1( )k uP 
 1

1
( )

k

v uv
P 


  and 

1
( )

l

v uv k
P 

 
 =1. Then, the expectation of u   can be given as follows. 

( )uE   
1

( )
l

v v uv
x P 


 1

12 1
( ) ( )

l k

v v u k v uv k v
x P x P 

  
   . 

Thus, 
1 1

( ) ( ) ( ) ( )
l l

u u v v u v v uv v
E E x P x P   

 
     1

11
( )( )

k

v u k vv
P x x


  . 

Because vx 1kx   and ( ) 0v uP    for 1, , 1v k  , then ( ) ( ) 0u uE E    . 

On the other hand, since ( ) ( )v u v uP P    and ( ) ( )v u vP P    for 2, ,v k l   , then ( ) ( )v u vP P    , 

for 2, ,v k l   , and 
2 2

( ) ( )
l l

v u vv k v k
P P  

   
  . Therefore, 1 12

1 ( ) ( ) ( )
l

v u k u kv k
P P P   

  
    

2
1 ( )

l

vv k
P  

 
  . Thus, 12

( ) ( ) ( )( ( ) ( ))
l

u v k v v uv k
E E x x P P    

 
     . 

Because 1kx  vx  and ( ) ( )v u vP P     for 2, ,v k l   , then ( ) ( ) 0uE E    . Hence, 

( ) ( ) 0uE E    .  

Proof of Property 3. For simplicity, let 1 2 1 2( ) ( ) ( , , , )lP P          and 2 3 1( ) ( ) ( ,P P       

2 , , )l  . Hence, 1 3 1 1 2 2( ) ( ) ( , , , )l lP P                , where 1 2( ) ( )v v vP P    , 

2 3( ) ( )v v vPP    , for 1,2, ,v l  . Obviously, 
1

0
l

vv



  and 

1
0

l

vv



 . 

Since TB B  and ( )T T TB B    , then T TB B    . Therefore, 

   2 2

1 2 2 3 1 3( , ) ( , ) ( , )d d d        



24 

2 2
1 1 1

( ) ( )
2 2 2

T T TB B B       
   

          
   

 

1 1

2 2
T T T TB B B B           

T T TB B B       . 

For TB  , there are two cases to be considered: 

Case 1: When 0TB   . Obviously, 0T T TB B B       . 

Case 2: When 0TB   . Since ( )T TB B     is an antisymmetric matrix, then 

2( )T T TB B B       

( )T T TB B        

1 1 1 1
( )

l l l l

i ij j v v j qv qi j q v
b b     

   
      

1 1 1
( ) ( )

l l l l

ij qv iv qj i q j v j vi j q v j
b b b b      

   
       

1 1
( )( )( )

l l l l

ij qv iv qj i q q i j v j vi j q i v j
b b b b        
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2

1 1
( )( )

l l l l

ii qq iq qi i q q ii j q i v j
b b b b    

   
       

2 2 2

1 1
( )( )

l l l l

ii iq i q q ii j q i v j
b b    

   
      . 

Because 2 2 2( )ii l iq l i qb x b x x x      for ,q i =1, 2, ,l , then 2( )T T TB B B      0 . Therefore, 

0T T TB B B       , i.e., 1 2( , )d    2 3( , )d    1 3( , )d   .  

Proof of Property 4. Suppose 1  and 2  are deterministic with values vx  and tx , respectively. Then the 

probability distributions of 1  and 2  can be written as 

1
1

1

1, ,   {1,2, , }
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0, ,   1,2, , ,   
v

k

x v l
P

x k l k v





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


 and 
2

2
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x t l
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x y l y t





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


. 

Without loss of generality, assume v t . Hence, 1 2

1 1

( ) ( ) (0, ,0,1,0, ,0, 1,0, ,0)
v t v l t

P P 
   

       . From (11)-

(13), the distance between 1  and 2  is 
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Figure 1. Probability distributions of 1 , 2  and 3  as well as of    and    
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