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Abstract 
A multiobjective binary integer programming model for R&D project portfolio selection with competing 

objectives is developed when problem coefficients in both objective functions and constraints are 

uncertain. Robust optimization is used in dealing with uncertainty while an interactive procedure is used 

in making tradeoffs among the multiple objectives. Robust nondominated solutions are generated by 

solving the linearized counterpart of the robust augmented weighted Tchebycheff programs. A decision 

maker’s most preferred solution is identified in the interactive robust weighted Tchebycheff procedure by 

progressively eliciting and incorporating the decision maker’s preference information into the solution 

process. An example is presented to illustrate the solution approach and performance. The developed 

approach can also be applied to general multiobjective mixed integer linear programming problems. 
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1. Introduction 

In today’s fast paced and highly competitive economy, engaging in meaningful Research and 

Development (R&D) activities is essential for any organization striving to achieve and maintain 

competiveness. R&D projects are resource intensive and, therefore, benefits gained from and costs 

associated with each R&D project must be carefully considered. R&D project selection is a complex, 

non-trivial problem with important organizational implications. 

Organizations usually have more candidate R&D projects than they have resources to support 

them. The purpose of R&D project portfolio selection is to select a feasible subset of promising projects 

as a portfolio from a set of candidate projects based on multiple criteria. R&D project portfolio selection 
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is always constrained by limited resources such as budget, research staff, laboratory space, and other 

technical scarcities. In addition, R&D project portfolio selection may have other restrictions such as 

corporate policies and contractual relationships with other stakeholders. Furthermore, uncertainties are 

always involved in R&D, such as uncertainties in the outcomes of the projects, in the resource availability 

and usage, and in the interdependence and interactions among the projects. Given these constraints and 

uncertainties, R&D managers must select a portfolio of projects based on multiple criteria representing 

corporate goals or objectives. Objectives, such as profit maximization, market share maximization, risk 

minimization, or human resource utilization minimization, are usually conflicting and fraught with 

uncertainties which further complicate the R&D project portfolio selection. The challenge is how to select 

the best portfolio of R&D projects based on these competing objectives within the resource restrictions 

while giving consideration to uncertainties. 

R&D is often an original endeavor with long lead time and unclear life time expenditure, resource 

usage and market outcome. These unique characteristics imply that much of the information required in 

making R&D decisions is very imprecise and impossible to accurately estimate. To address uncertainties, 

probabilistic and fuzzy approaches have been proposed to capture the imprecision of data by considering 

reasonable distributions to describe possible values of imprecise coefficients in optimization models. One 

drawback of such approaches is, however, that they cannot handle the situation where there is a possible 

range for each of these coefficients, but the most probable or plausible value within the range cannot be 

estimated (Carlsson et al. 2007). This calls for novel approaches which can more adequately capture the 

real world situation of R&D project portfolio selection. 

The focus of this study is to develop a method for dealing with imprecise information associated 

with the multiobjective problem of selecting a portfolio of R&D projects. The proposed method integrates 

two complementary approaches to deal with both uncertainties and multiple objectives. Uncertainties in 

the problem coefficients, both in the objective functions and constraints, are modeled through robust 

optimization while the multiobjective problem is solved through interactive multiobjective programming. 

Interval uncertainties, i.e., each imprecise coefficient belongs to an interval of real numbers without prior 

distribution details, are assumed. An interactive approach is used to capture the decision maker (DM)’s 

preference information with respect to the multiple objectives in the problem.  

The remainder of the paper is organized as follows. The relevant R&D project portfolio selection 

literature is reviewed in Section 2. The nominal multiobjective programming model for R&D project 

portfolio selection is presented in Section 3. Following a brief introduction to robust optimization, the 

robust counterpart of the nominal multiobjective programming model is formulated in Section 4. The 

linear counterpart of the robust formulation is solved within an interactive procedure through the solution 

of augmented weighted Tchebycheff programs in Section 5. An example of a R&D project portfolio 
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selection problem is presented to illustrate the proposed approach and the results of computational 

experimentation are reported in Section 6. Finally, the article concludes with a summary in Section 7. 

2. Previous Work 

Portfolio selection, whether financial, investment or R&D, is always fraught with uncertainty and is 

inherently multiobjective in nature. Steuer et al. (2005) presented a list of possible objectives in a 

financial portfolio selection problem. Because the objectives are incommensurate, the DM’s preference 

information has to be used to make tradeoffs in order to find a final portfolio. However, a review of the 

literature in this area indicates that most of proposed solution techniques either focus on the multiple 

objectives or address the uncertainties but not both. 

Multiobjective optimization solution techniques in solving the multiobjective project portfolio 

selection problem, like in other applications, can be classified into three major categories based on the 

time the DM’s preference information is articulated, i.e., those requiring a priori articulation of 

preference information, those requiring a posteriori articulation of preference information, and those 

requiring progressive articulation of preference information (Hwang and Masud 1979). 

In the first category, a priori preference information articulation from the DM regarding the 

criteria is assumed, and a compromise solution is obtained by converting multiple objectives of the 

problem to a single objective. To this end, some authors assign different weights to the objective 

functions according to their importance to the DM, and use a weighted sum of the objective functions as a 

single objective function (Ghasemzadeh et al. 1999; Klapka and Piños 2002; Medaglia et al. 2008). This 

approach can only find basic solutions for linear problems and may fail to balance objective functions in 

relation to their importance (Steuer 1986). Some authors use goal programming to address this problem 

(Graves and Ringuest 1992; Schniederjans and Santhanam 1993; Zanakis et al. 1995; Santhanam and 

Kyparisis 1995; Badri et al. 2001; Lee and Kim 2001). Azmi and Tamiz (2010) provided a review of the 

goal programming approaches. However, setting aspiration levels and weights for the goals is challenging 

and may even result in a dominated solution (Santhanam and Kyparisis 1995; Ringuest and Graves 1989). 

The second category includes approaches requiring a posteriori articulation of DM’s preference 

information. Accordingly, it is assumed that a priori preference information articulation regarding the 

criteria is unavailable. Therefore, a two-phase procedure is implemented that first identifies the whole or a 

large set of efficient i.e., Pareto-optimal or nondominated, portfolios possibly using metaheuristics 

(Doerner et al. 2004, 2006; Ghorbani and Rabbani 2009; Rabbani et al. 2010; Stummer and Sun 2005; 

Carazo et al. 2010; Yu et al. 2012), and then explores the set of identified efficient solutions possibly 

through an interactive approach (Stummer and Heidenberger 2001, 2003). However, determining the set 

of all efficient solutions is challenging and becomes increasingly demanding or even impossible as the 
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number of projects and/or the number of objectives grows because integer programming problems are 

usually NP hard. In addition, the DM may be confronted with a large number of competing portfolios in 

the second phase and selecting the one that is most preferred is not an easy task, which further 

complicates the process of project portfolio selection. 

The third category includes interactive approaches in which the DM’s preference information is 

articulated progressively during, and incorporated into, the solution process so as to locate the DM’s most 

preferred solution. Interactive methods are the most promising approaches for solving multiobjective 

programming problems (Steuer 1986). Zopounidis et al. (1998) developed a multiple objective linear 

programming model to select a portfolio of stocks and used an interactive approach to solve the problem. 

Stummer and Heidenberger (2001, 2003) presented an interactive procedure for solving the 

multiobjective R&D project portfolio selection problems. Steuer et al. (2005) discussed tools and 

techniques from multiple criteria optimization to analyze and solve the portfolio selection problem. 

The majority of project portfolio selection formulations in the literature are based on 

deterministic data. However, as mentioned earlier, an important characteristic of R&D project portfolio 

selection is that future attributes of R&D projects, e.g., costs and revenues, availability and usage of 

human resources and material supplies, development of technical skills and risks, and market outcomes, 

are very difficult to estimate. Consequently, stochastic (Abdelaziz et al. 2007; Birge and Louveaux 1977; 

Gabriel et al. 2006; Medaglia et al. 2007; Gutjahr and Reiter 2010) and fuzzy (Aryanezhad et al. 2011; 

Bhattacharyya and Kar 2011; Coffin and Taylor 1996; Tolga 2008; Łapuńka 2012) approaches are 

introduced to the classical multiobjective programming formulations to address the issue of incomplete 

and imprecise information. However, both of these approaches assume prior details about coefficient 

distributions, an assumption which is often flawed for R&D projects as ground-breaking endeavors. 

There are a few studies that address uncertainties of project portfolio selection within an 

interactive procedure. Nowak (2006) developed an interactive procedure for selecting one project that is 

based on STEM (Benayoun et al. 1971), a well-known interactive procedure for multiobjective 

programming. In this procedure, risk and uncertainty are modeled through stochastic dominance. Shing 

and Nagasawa (1999) proposed an interactive portfolio selection method for selecting a preferred 

portfolio from a set of candidate portfolios for the case where the mean and the variance of returns of 

securities have several scenarios with known occurrence probabilities. 

Robust optimization is a relatively new approach which incorporates imprecise information by 

way of set inclusion, i.e., the true value of a coefficient is contained in an interval characterized by the 

DM without any assumption on the distribution of the coefficients. Robust optimization addresses the 

problem of data uncertainty by guaranteeing the feasibility and optimality of the solution for the worst 

instances of the problem. As it is naturally a worst case approach, feasibility often comes at the cost of 
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performance and the solutions obtained are usually overly conservative (see, e.g., Soyster 1973). 

Recognizing this drawback, Bertsimas and Sim (2004) developed “the budget of uncertainty” approach to 

control the cumulative conservativeness of uncertain coefficients in the optimization problems.  

Robust optimization has been applied to portfolio selection in different ways. Laguna (1995) 

applied robust optimization to a project selection problem. Since the large size of the discrete robust 

optimization formulations makes the use of classical optimization techniques impractical, a heuristic 

procedure was developed based on a probabilistic sampling approach. Liesiö (2006) used a robust 

approach to model the R&D project portfolio selection problem with multiple objectives when the DM’s 

preference information and the project data are incomplete. Projects included in all nondominated 

portfolios, called core projects, are identified while those not included in any nondominated portfolios, 

called exterior projects, are discarded. The final portfolio is selected by further analyzing the borderline 

projects. Düzgün and Thiele (2010) used robust optimization for single objective R&D project portfolio 

selection when the uncertainty in an objective coefficient is described using multiple ranges. Modarres 

and Hassanzadeh (2009) applied robust optimization to a single objective R&D project portfolio selection 

problem where maximization of the expected value of the R&D project portfolio subjecting to capital and 

resource constraints is considered. 

The current study develops an interactive robust optimization procedure to solve multiobjective 

R&D portfolio selection problems with interval uncertainties in the coefficients of the objective functions 

and constraints. The approach developed in this study is the first method that uses robust optimization in 

an interactive procedure and opens a new avenue for solving multiobjective R&D portfolio selection 

problems with uncertainties. The methodology can also be directly used to tackle other, such as financial 

and investment, multiobjective portfolio selection problems. 

3. Problem Statement 

The aim of the multiobjective R&D project portfolio selection problem is to select a subset as a portfolio 

from a large set of possible candidate projects considering multiple conflicting objectives, subjected to a 

set of constraints. Let K  denote the number of objective functions, m  the number of constraints, and n  

the number of candidate projects in the entire set. There is no prior requirement for the number of projects 

to be selected into the portfolio. Without loss of generality, all objective functions are assumed to be 

minimized. The multiobjective R&D project portfolio selection model is stated as in (1) in the following 

min ( )k kz f x  k  

(1)s.t. ( )i ig bx  i  

 {0,1}
j

x   j . 
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In the model, nx  is the vector of binary decision variables, 1( )
kj j

n
jkf c x x  is the k th objective 

function, and 1( ) n
j ij ji ig a x b x  is the i th constraint. Although each application is different, the 

objective functions may include the maximization of total expected profit, maximization of expected 

market share, or minimization of total expected risk, while the constraints may include limited budget, 

scarce human and material resources, and interdependence and interaction among the candidate projects. 

A project j  is selected into the portfolio if 1jx   and otherwise if 0jx  . In addition to the binary 

decision variables representing the selection of projects, other decision variables may be used in the 

model to represent the interdependencies and interactions among the projects in some specific 

applications. The multiobjective R&D project portfolio selection model (1) is the nominal model 

assuming the values of ija , ,i j , and kjc , ,k j , are exactly known. The nominal model (1) is an 

ordinary multiobjective binary integer linear programming model. 

Since the objective functions are usually in conflict, model (1) usually does not have a single 

feasible solution that simultaneously minimizes all K  objective functions. The optimal solution is 

defined to be a feasible solution that maximizes the DM’s value function (Steuer 1986; Yu 1985). 

Because the DM’s value function is not readily available, the solution process of the multiobjective R&D 

project portfolio selection model (1) is to search for a solution which is most preferred by the DM.  

The following concepts are borrowed from Steuer (1986). The set of solutions satisfying all 

constraints, i.e., { | ( ) , , {0,1}, }n
i i jX g b i x j     x x , is the feasible region, and a point Xx  is a 

feasible solution, in decision space. The set { | ( ) | }K
k kZ z f X   z x x  is the feasible region in 

criterion space. A point Zz  is a feasible solution in criterion space or a feasible criterion vector. A 

point Zz  is a nondominated criterion vector if there does not exist any criterion vector Zz , such that 

z z  and z z . Z  is used to represent the set of all nondominated solutions in criterion space. A point 

Xx  is an efficient solution in decision space if Zz  such that ( )k kz f x , k . X  is used to 

represent the set of all efficient solutions in decision space. A criterion vector ˆ Zz  is optimal if it 

maximizes the DM’s value function. However, a DM’s value function in real life problems is hard to 

estimate and its functional form is usually unknown (Yu 1985). If ẑ  is optimal, ˆ Zz , i.e., an optimal 

solution must be nondominated. A point * Kz , such that * min{ ( ), }k kz f X x x , k , is the ideal 

point. For most multiobjective programming problems, * Zz , i.e., *z  is infeasible. A point * nx , 

such that * *( )k kz f x , k , usually does not exist (Sun 2005). A point ** Kz , such that ** *
k k kz z   , 

where 0k   and small, is called a utopian point. 
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When a multiobjective programming problem is solved, especially when an interactive procedure 

or an approach requiring a posteriori articulation of the DM’s preference information is used, many 

nondominated solutions need to be generated as trial solutions. These nondominated solutions are usually 

evaluated by the DM so as to elicit preference information from the DM. Nondominated solutions are 

usually generated by solving augmented weighted Tchebycheff programs derived from the nominal 

multiobjective programming model (1) (Steuer 1986). The weighting vector space is defined as 

 1
{ | 0, 1}KK

k kk
w w


   W w .  (2)

Any w W  is a weighting vector. For a given w W , an augmented weighted Tchebycheff program for 

the nominal R&D project portfolio selection model (1) is formulated as in (3) in the following 

min **
1
( )K

k kk
z z 


    

(3)

s.t. **( )k k kz zw   k  

 ( )k kz f x  k  

 ( )i ig bx  i  

 {0,1}jx   j  

 kz  unrestricted k  

 0  ,  

where 0   is a small scalar. Usually 0.001   is sufficient. 

The augmented weighted Tchebycheff program (3) is a single objective binary integer linear 

programming problem. If its optimal solution is represented by the composite vector ( , , )w w wx z , then 

Xwx  and Zwz , i.e., wx  is efficient and wz  is nondominated. For a given w W , the augmented 

weighted Tchebycheff program (3) generates a given nondominated solution. By using a widely dispersed 

set of weighting vectors in W , a widely dispersed set of representative nondominated solutions can be 

generated. 

As previously stated, the values of most of the coefficients in the multiobjective R&D project 

portfolio selection model (1) are not known with certainty given the nature of the R&D project portfolio 

selection problem. When the values of these coefficients are not precisely known, the solution obtained 

for the nominal model (1) may not be close to the true most preferred solution of the DM or, even worse, 

could be infeasible for a realization of these uncertain coefficients. Given that ija , ,i j , and kjc , ,k j , 

are uncertain and their exact values are unknown but within a certain interval, the focus of this study is on 

finding a solution of model (1) such that the solution is not only feasible with a very high probability, but 
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also is very close to the most preferred solution of the DM. An interactive robust weighted Tchebycheff 

procedure is proposed for this purpose. 

4. Robust Optimization for R&D Project Portfolio Selection 

A robust optimization framework is briefly discussed first for single objective optimization problems. 

This framework is then extended to multiple objective optimization problems through the augmented 

weighted Tchebycheff program (3). 

4.1 The	robust	optimization	framework	for	single	objective	problems	

Consider the following standard linear programming problem 

min ( )f x   

(4)s.t. ( )i ig bx  i  

  l x u   

where 1( ) n
j ij ji ig a x b x , as in (1), is the i th constraint and 1( ) n

j j jf c x x  is the single objective 

function of the problem. The standard linear programming model in (4) with precise ija , ,i j , is the 

nominal formulation. 

Now assume that each ija  is an uncertain coefficient with unknown exact value in the interval 

ˆ ˆ[ , ]ij ij ij ija a a a   where ija  is the nominal value and ˆija  is the half-interval width of ija . The precise 

values of jc , j , are assumed to be known. The purpose of robust optimization is to find an optimal 

solution, called the robust solution, which remains feasible for almost all possible realizations of the 

uncertain problem coefficients. Obviously, as much as it is unlikely that all uncertain coefficients are 

equal to their nominal values, it is also unlikely that they are all equal to their worst-case values. The 

worst-case solution actually occurs with a negligible probability because large deviations in the 

coefficients ija  tend to cancel out each other as n  grows. Consequently, the most conservative approach, 

where all coefficients are equal to their worst-case values, leads to a severe deterioration of the optimal 

solution without being fairly justified in practice. Therefore, adjusting the degree of conservatism of the 

solution in order to make a reasonable trade-off between robustness and performance is a necessity 

(Bertsimas and Sim 2004). 

This concept is quantified by reformulating the nominal model in (4). The absolute value of the 

scaled deviation from its nominal value of the uncertain coefficient ija , denoted by ij , is defined as 

 ˆ|( ) / |ij ij ij ija a a    ,i j . (5)
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Apparently, ij  takes values in the interval [0,1] . A budget of uncertainty i  is imposed to the i th 

constraint in the following sense 

 1

n

ij ij



   0 i n   , (6)

where 0i   and i n   correspond to the nominal and worst cases, respectively. Bertsimas and Sim 

(2004) showed that letting the budget of uncertainty i  vary in the interval [0, ]n makes it possible to 

build a model where performance is appropriately adjusted against robustness. Intuitively, the use of i  

can rule out large deviations in 
1

n

ij jj
a x

  that play a predominant role in worst-case analysis. When each 

ija  is treated as a variable, the nonlinear robust formulation of the nominal model in (4) can be stated as 

min ( )f x   

(7)s.t. 1
max[ ( , )| ]

i

n

i i ij i ij
g b


  a

a x  i  

  l x u .  

where ia  is the vector of uncertain coefficients in the i th constraint with each ˆ ˆ[ , ]ij ij ij ij ija a a a a    and 

1( , ) n
j ij ji ig a x a x is the counterpart of ( )ig x  in (4) but with each ija  treated as a variable. Bertsimas 

and Sim (2004) proved that the nonlinear robust formulation in (7) has the following robust linear 

counterpart  

min 1

n

j jj
c x

   

(8)

s.t. 1 1

n n

ij j i i ij ij j
a x q r b

 
      i  

 ˆi ij ij jq r a y   ,i j  

 ,j j j j j jy x y l x u      j  

 0iq   i  

 0jy   j  

 0ijr   ,i j  

A highly attractive feature of this formulation is that this linear counterpart is of the same class as 

the nominal model in (4) which can be easily solved with standard optimization techniques. Moreover, if 

some of the variables of the original model are constrained to be integers, they then retain the same 

integer type in the robust counterpart (8). Finally, Bertsimas and Sim (2004) showed that even if the 

budget of uncertainty constraints are not satisfied, the robust solution will remain feasible with a very 

high probability. 
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4.2 Application	to	multiple	objective	problems	

Under uncertainty, the problem coefficients in (1) are uncertain and, hence, the selected portfolio 

must be robust, i.e., the solution should remain feasible (constraint robust), efficient and most preferred 

by the DM (objective function robust) under almost all possible realizations of uncertain coefficients. 

Both ija  and kjc  are considered uncertain and their uncertainty is captured using the interval uncertainty 

discussed earlier. The nominal value ija  and the half-interval width ˆija  of each ija  are the same as in the 

single objective optimization problem discussed above. The nominal value and the half-interval width of 

kjc  are represented by kjc  and ˆkjc , respectively. The k th uncertain objective function is expressed as 

1( , ) n
j kj jk kf c x c x  where kc  is the vector of uncertain coefficients in the k th objective function with 

each ˆ ˆ[ , ]kj kj kj kj kjc c c c c   . While being the counterpart of ( )kf x  in (1), ( , )k kf c x  is a function of both kc  

and x , because each kjc  is treated as a variable. Similar to ij  defined for ija  in (5), the absolute value of 

scaled deviation kj   of kjc  from its nominal value kjc  is defined as 

 ˆ|( ) / |kj kj kj kjc c c     ,k j . (9)

Similar to (6), a budget of uncertainty k  is imposed to the k th objective function such that 

 1

n

kj kj



   0 k n   , (10)

where 0k   and k n   correspond to the nominal and worst cases, respectively. Note that while i  

controls the robustness of the i th constraint, k  controls the robustness of the k th objective function 

against the level of conservatism. For notational convenience, let mΓ  and KΓ  be the vectors of 

budgets of uncertainty for the constraints and for the objective functions, respectively. Imposing the 

budgets of uncertainty for the constraints and the objective functions will ensure that the solution will 

remain both constraint robust and objective function robust. The nonlinear robust formulation of the 

nominal multiobjective programming model in (1) is stated as  

min 1
max ( , ) |

k

n

k k k kj kj
z f 


     c

c x k  

(11)s.t. 1
max ( , ) |

i

n

i i ij i ij
g b


    a

a x  i  

 {0,1}jx   j . 

Unlike the single objective model (7), each kjc  in the objective functions is also considered uncertain in 

(11). 
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Any feasible solution to the above model is called a robust feasible solution. The set of all robust 

feasible solutions, i.e., 1{ | max[ ( , ) | ] , (0,1)}
i

n n
ji i ij i i jX g b i x      

a
x a x , is called the robust 

feasible region in decision space for a given vector  . A Xx   is called a robust feasible solution in 

decision space. The set ,
1{ | max[ ( , ) | ], }

k

K n
jk k k kj kZ z f X
       

c
z c x x    is the robust feasible 

region in criterion space for the given vectors   and  . A ,Z z    is called a robust feasible solution in 

criterion space or a robust criterion vector. A nondominated robust criterion vector ,Z z   , an efficient 

robust solution Xx  , and an optimal robust solution ,ˆ Z z    can be defined similarly to their 

counterparts for the nominal model (1). The robust ideal point * Kz is defined such that 
*

1min{max[ ( , ) | ], }
k

n
jk k k kj kz f X     

x c
c x x  . A robust utopian point is also defined as ** Kz  such 

that ** *
k k kz z    with 0k   and small. 

For a given weighting vector w W , a robust augmented weighted Tchebycheff program for the 

nonlinear programming model in (11) is formulated from (3) as the following 

min **
1
( )K

k kk
z z 


    

(12)

s.t. **( )k k kz zw   k  

 1
max[ ( , ) | ]

k

n

k k k kj kj
z f 


   c

c x  k  

 1
max[ ( , )| ]

i

n

i i ij i ij
g b


  a

a x  i  

 {0,1}jx   j  

 kz  unrestricted k  

 0  .  

Similar to the coefficients in the objective function of model (7), the coefficients in the objective function 

of model (12) are exactly known. 

An optimal solution to (12) minimizes the augmented weighted Tchebycheff metric between **z  

and any ,Z z    while respecting the budget of uncertainty constraints. The solution to this formulation 

has some interesting properties. First, it is a nondominated solution for the selected   and  . Second, 

unlike its nominal counterpart, it is robust, i.e., insensitive to existing uncertainties in both the objective 

functions and constraints. This means that given all possible realizations of ija  and kjc , the solution of (12) 

not only will have a much higher probability of being feasible than the nominal solution of (3) but also 

will have a corresponding criterion vector which performs comparably well to the nondominated nominal 
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criterion vector. These properties are significant because model (12) can assist the DM as a tool in finding 

nondominated robust solutions by properly balancing performance versus robustness. Using this 

formulation, the nominal solution closest to the nominal utopian point **z , measured by the augmented 

weighted Tchebycheff metric, is slightly sacrificed but, in return, this sacrifice is compensated by the 

robustness of the solution. 

Proposition 1. Model (12) has the following mixed binary integer linear programming counterpart 

min d   

(13)

s.t. 1
0K

kk
d  


     

 0k kw     k  

 **
1 1

n n

kj j k k kj k kj j
c x q r z

 
         k  

 1 1

n n

ij j i i ij ij j
a x q r b

 
      i  

 ˆk kj kj jq r c y    ,k j  

 ˆi ij ij jq r a y   ,i j  

 j jx y , 0jy  , {0,1}jx   j  

 0iq   i  

 , 0k kq    k  

 0kjr   ,k j  

 0ijr   ,i j  

 , 0d   .  

Proof. See Appendix B. 

5. The Interactive Robust Weighted Tchebycheff Procedure 

In recent years, many interactive methods have been proposed to solve the nominal model (1) of the 

multiobjective project portfolio selection problem. In this study, the interactive weighted Tchebycheff 

procedure (Steuer and Choo 1983; Steuer 1986) is used as a framework to solve the robust version (11) of 

the multiobjective project portfolio selection problem. The interactive weighted Tchebycheff procedure is 

a weighting vector space reduction method (Steuer 1986) in which the weighting vectors are generated 

from progressively reduced subsets of W  defined in (2). 

The mixed binary integer linear programming counterpart (13) of the robust augmented weighted 

Tchebycheff program (12) is used to generate nondominated robust solutions. Within the interactive 

weighted Tchebycheff procedure, a set of dispersed weighting vectors is generated at each iteration. The 
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set is then filtered to reduce to a smaller manageable subset. The mixed binary integer linear 

programming model in (13) is then solved for each weighting vector in this smaller subset to obtain a set 

of nondominated criterion vectors. The resulting nondominated robust criterion vectors are then filtered to 

obtain a smaller subset of dispersed ones. This subset is presented to the DM who selects the most 

preferred robust solution. In the next iteration, the weighting vector space is reduced around the weighting 

vector corresponding to the current most preferred solution selected by the DM, new dispersed weighting 

vectors are generated in this reduced weighting vector space, the newly generated set of weighting vectors 

is filtered, new nondominated robust solutions are generated, and so on. The procedure terminates after a 

predetermined number of iterations have been performed or when the DM is satisfied with a 

nondominated robust solution that has already been found. 

In the following, the integer I  represents the iteration number. While indicating superscripts in 
( )IW , ( )Iw  and ( )Iz , I  denotes power in Ir . The interactive robust weighted Tchebycheff procedure 

(Steuer and Choo 1983; Steuer 1986) described step-by-step in the following is similar to that in Drinka et 

al. (1996). 

Step 1. Determine the maximum number of iterations maxI , the number of solutions P  to be presented to 

the DM at each iteration, and the weighting vector space reduction factor r . Let 0I   and 

[ , ] [0,1]k kl u   for all k . Obtain *
kz  by solving the robust model (A.1) for each k  and then 

determine the robust utopian point **z . 

Step 2. Let = +1I I . From ( ) { | ( , ), 1}I K
k k k kk

W w w l u w     randomly generate 20K weighting 

vectors. Reduce the 20K  weighting vectors to obtain the 2P  most widely dispersed ones.  

Step 3. Solve the robust mixed binary integer linear programming model (13) for each weighting vector 

to obtain 2P  nondominated robust criterion vectors. Reduce the 2P  nondominated robust 

criterion vectors to P  most dispersed ones.  

Step 4. Present the P  nondominated robust criterion vectors, together with the most preferred solution 

from the previous iteration ( 1)I z  if 1I   to the DM to acquire the most preferred solution ( )Iz  at 

iteration I . 

Step 5. Terminate the solution process if maxI I  or if the DM is satisfied with ( )Iz ; continue otherwise. 

Step 6. Compute the weighting vector ( )Iw  that can generate the current most preferred solution ( )Iz  

with  

 
( ) ** 1

( )
( ) ** 1

1

( )
( )

I
I k k

k K I
k kk

z z
w

z z




 





, (14)

and update kl  and ku  using (15) in the following 
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( )

( )

( ) ( )

[0, ], 2 0
[ , ] [1 ,1] , 2 1

[ 2, 2], Otherwise.

I I I
k

I I I
k k k

I I I I
k k

r w r

l u r w r

w r w r

  
   
  

 (15)

Go to Step 2. 

Note that when     and    , the above procedure reduces to the interactive weighted 

Tchebycheff procedure for the nominal problem (1) . The 20K  weighting vectors in Step 2 is a generally 

accepted size in order to generate widely dispersed weighting vectors (Steuer 1986). Similar to Steuer 

(2003), the relative distance measure is used to reduce the 20K weighting vectors to 2P  in Step 2, and to 

reduce the 2P  robust criterion vectors to P  in Step 3. Appendix C has a discussion on the approach used 

to reduce the set of vectors. 

The choices of maxI  and P  are dependent on DM’s preferences. Larger values for maxI  increase 

the decision making time and the burden on the DM but increase solution quality, whereas larger values 

of P  make the comparison of multiple solutions more time consuming and increase the burden on the 

DM but may elicit more preference information from the DM. Both maxI  and P  may be revised during 

the solution process upon DM’s desire. For a detailed discussion of the interactive weighted Tchebycheff 

procedure, see Steuer and Choo (1983) and Steuer (1986). 

In practice, a variation to the interactive robust weighted Tchebycheff procedure is the combined 

Tchebycheff/reference point interactive multiobjective programming procedure (Steuer et al. 1993). This 

variation is not convenient in performing a computational experiment but may more quickly lead to a 

solution satisfied by the DM. In this variation, a reference point or an aspiration vector ( )a Kz  

specified by the DM instead of the current most preferred solution ( )Iz  is used to compute ( )Iw  in (14) in 

Step 6. The reference point ( )az  is not in the set of criterion vectors presented to the DM but the DM 

specifies this reference point as a desired solution. The weighting vector ( )Iw  is then computed with (16) 

in the following 

 
( ) ** 1

( )
( ) ** 1

1

( )
( )

a
I k k

k K a
k kk

z z
w

z z




 





. (16)

The aspiration vector ( )az  specified by the DM may be dominated or infeasible. However, when ( )az  

replaces **z , the augmented weighted Tchebycheff program projects ( )az  to the nondominated set Z  or 
,Z   . Note that the variable 0   in (12) and (13) becomes unrestricted in sign when ( )az  replaces **z  

in the augmented weighted Tchebycheff program. 

Value functions are usually used as proxy DMs in computational experiments to test the 

performance of solution procedures. LP -metric value functions are used to act as proxy DMs in this study 
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in order to simulate the solution process using the interactive robust weighted Tchebycheff procedure 

with the involvement of a DM. The LP -metric value function of a criterion vector Kz  has the 

following functional form 

 
1

**
1

( ) [ ( )]K

k k kk
V w z z


    z

PP
P K , (17)

where K  is a large constant ensuring ( ) 0V zP  for all feasible robust criterion vectors, w W  is a 

weighting vector selected by the user for the purpose of computational experiment, and 1P  is an integer. 

The value function ( )V zP  in (17), however, is used only as a proxy DM to evaluate representative 

solutions in Step 4 of the interactive robust weighted Tchebycheff procedure and is not used directly in 

searching for the optimal solution in the solution process. 

6. An Illustrative Example 

A project portfolio selection problem presented in Santhanam and Kyparisis (1995) is used to demonstrate 

the proposed interactive robust Tchebycheff procedure. Ringuest and Graves (2000) also used the same 

problem to test their solution method. 

An IT company faces the selection of a portfolio from a total of 14n   projects where data on 

costs, benefits, and other related information for these projects are estimated. Existing cost 

interdependencies and synergistic benefits among projects are also identified. There are 2m   resource 

constraints for hardware costs and software costs of the projects that must be satisfied. The problem has 

3K   objectives: maximization of total benefits, minimization of total risk scores, and minimization of 

total miscellaneous costs. The total hardware and software budgets are 20,000 and 6000, respectively. 

Table 1 and Table 2 present the original problem data. 

Insert Table 1 & Table 2 Here 

Similar to those in Santhanam and Kyparisis (1995), 22 binary variables ( )jx  are defined and 

used to model the selection of a portfolio from the 14n   projects as well as to model the 8 project 

interdependencies. The final linearized multiobjective binary integer linear programming model is 

formulated as model (D.1) in Appendix D. Note that maximization of total benefits is treated as a 

minimization objective function in model (D.1). However, the corresponding positive values of this 

objective function are reported in the tables and texts. The ideal solution is * (60643, 5, 0)z . For this 

illustrative example, 0k  , k , is used, hence ** *z z . 

In the following, a large set of nondominated solutions is generated first for the deterministic, i.e., 

the nominal, model by solving augmented weighted Tchebycheff programs (3). The interactive weighted 

Tchebycheff procedure is then applied to the nominal model. The interval uncertainties on coefficients in 
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the objective functions and constraints are considered next and the interactive robust weighted 

Tchebycheff procedure is applied to find preferred robust solutions for proxy DMs represented by the LP -

metric value functions (17). A simulation study is finally performed to evaluate the feasibility and quality 

of the solutions by introducing uncertainties into the coefficients. The parameters used in the LP -metric 

value function (17) are arbitrarily set to 20,000K  and (0.3, 0.4, 0.3) w  for this example. In the 

interactive robust weighted Tchebycheff procedure, max 8I  , 8P  , and 0.2r   are used. In the 

following tables reporting results, the headings S&K, R&G and H&N&S represent the results from 

Santhanam and Kyparisis (1995), Ringuest and Graves (2000), and the current study, respectively.  

All computations were conducted on a personal computer with a 2 GHz Core 2 Duo processor 

and 3 GB of RAM. The reported results reflect the performance of the proposed approach on this 

computer. 

6.1 Generation	of	nondominated	solutions	

The augmented weighted Tchebycheff program (3) formulated from model (D.1) is used to generate 

nondominated solutions for the nominal model (1). Generation of a large set of nondominated solutions is 

usually the first phase in solving multiobjective programming problems requiring a posteriori articulation 

of the DM’s preference information (Hwang and Masud 1979). A set of 300 weighting vectors is 

randomly generated from W  defined in (2) that is then reduced to a subset of 200 most dissimilar ones. 

An augmented weighted Tchebycheff program is solved for each of the 200 weighting vectors. Because 

some augmented weighted Tchebycheff programs formulated with different weighting vectors share the 

same optimal solution, only 39 distinct nondominated criterion vectors are obtained. The solution process 

took a total CPU time of 190 seconds. 

Santhanam and Kyparisis (1995) solved this problem with a goal programming approach with 

preemptive priorities. They considered two different priorities with different goal targets and solved 25 

problems which yielded 8 nondominated and 1 dominated solutions. Ringuest and Graves (2000) solved 

the same problem using the Parameter Space Investigation (PSI) method (Steuer and Sun 1995). Using 

the PSI method, they randomly generated binary solutions over a hyperrectangle that completely encloses 

the feasible region. These binary solutions were then evaluated by each of the constraints to check for 

feasibility. Those not satisfying any of the constraints were discarded until 100 feasible solutions were 

generated. The total number of solutions, including feasible and infeasible, is not reported. The solution 

set was then screened for dominance which resulted in 33 distinct solutions among which 31 are not 

dominated by others. Table 3 lists all solutions reported by Santhanam and Kyparisis (1995), Ringuest 
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and Graves (2000), and those generated by solving augmented weighted Tchebycheff programs in this 

study. 

Insert Table 3 Here 

A complete enumeration (CE) was performed to find all efficient solutions for this problem. The 

problem has 234 feasible solutions of which 63 are efficient and 171 are not. From the set of efficient 

solutions, 54 distinct nondominated criterion vectors are found. There is a difference between the number 

of efficient solutions and the number of nondominated criterion vectors because some different portfolios 

share the same criterion vectors. Because projects 7 and 8 have the same coefficients in the objective 

functions, given that the solution remains feasible, replacing one with the other in an efficient portfolio 

will create a different efficient portfolio with the same criterion vector. A further examination of the 31 

solutions not dominated by others reported in Ringuest and Graves (2000) found only 15 of them are 

actually nondominated. 

The total number of feasible solutions, number of nondominated solutions and the number of 

nondominated criterion vectors found by these methods are summarized in Table 4. Table 4 shows that 

the augmented weighted Tchebycheff program can generate a richer set of nondominated criterion vectors 

than the other methods with similar computational efforts. In addition, solutions generated with the 

augmented weighted Tchebycheff programs are guaranteed to be nondominated whereas those found with 

the other two methods may be dominated. 

Insert Table 4 Here 

6.2 Interactive	weighted	Tchebycheff	procedure	applied	to	the	nominal	model	

The interactive weighted Tchebycheff procedure is applied to the nominal model to search for a final 

solution for proxy DMs represented by the LP -metric value functions (17). For the nominal model, 

0k   for 1,2,3k   and 0i   for 1,2i  .  

Because all nondominated solutions are found through CE, the optimal solution for each proxy 

DM can be found by directly evaluating all nondominated solutions with the corresponding value 

function and then selecting the solution with the largest value. These optimal solutions are then used to 

measure the quality of the solutions obtained with different methods. Solutions obtained with the 

interactive weighted Tchebycheff procedure at successive iterations as well as the optimal solutions 

obtained by R&G, S&K, and CE are summarized in Table 5, Table 6 and Table 7 for the LP -metric value 

functions with 2P , 4P  and  P , respectively. As it is clear from these tables, the interactive 

weighted Tchebycheff procedure can find the optimal solution within 3 or 4 iterations. In addition, 

although Santhanam and Kyparisis (1995) and Ringuest and Graves (2000) did not use any value function 
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as proxy DM to search for the optimal solution, their best solutions for the LP -metric value functions with 

2P , 4P  and  P  are close to the optimal solutions. 

Insert Table 5, Table 6 & Table 7 Here 

6.3 Interactive	robust	weighted	Tchebycheff	procedure	applied	to	the	robust	model	

In the following, the data in Table 1 and Table 2 are viewed as nominal values and interval uncertainties 

are introduced into all costs, benefits, and risk scores. Table 8 and Table 9 present the half-interval widths 

for the data in Table 1 and Table 2, respectively. 

Insert Table 8 & Table 9 Here 

Given all possible outcomes of the uncertainties, the purpose of the solution process is to find a 

DM’s most preferred nondominated solution which is robust in terms of uncertainties in both constraints 

and objective functions. In the solution process, the mixed binary integer linear programming counterpart 

(13) of the robust augmented weighted Tchebycheff program (12) is solved in Step 3 of the iterative 

robust weighted Tchebycheff procedure. However, in order for the DM to be impartial toward robustness 

of the presented solutions, the proxy DM is assumed to always choose the preferred solution in Step 4 

using the nominal criterion vectors, i.e., the criterion vectors computed with the nominal coefficient 

values in the objective functions are evaluated with the LP -metric value functions (17). For 

demonstration purposes, arbitrary values of 0.7k   for all 1,2,3k   and 0.5, 1.0, 1.5i   for all 

1,2i   are used in order to examine the effect of the budget of uncertainty levels on solution feasibility 

and quality. To keep the results concise, only the final solutions obtained with the iterative robust 

weighted Tchebycheff procedure are reported. The solutions for the LP -metric value functions with 

2P , 4P and  P  are reported in Table 10, Table 11 and Table 12, respectively. 

Insert Table 10, Table 11 & Table 12 Here 

As expected, the value function is negatively correlated with the budget of uncertainty levels 

because an increase in the budget of uncertainty generally shrinks the feasible region and may render the 

current solution infeasible. It is also observed that as consequences of choosing an optimal robust solution 

instead of the optimal nominal solution, the value function deteriorates by at most 0.49%, 0.80%, and 

1.45% for the LP -metric value functions with 2P , 4P and  P , respectively. Therefore, it appears 

that for each P , the optimal robust solution is at the close proximity of the optimal nominal solution.  

6.4 Simulation	study	

Since input data are fraught with uncertainty, comparing the performance of solutions using the nominal 

criterion vectors may not legitimately capture the effects of uncertainty on solution feasibility and quality. 
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To address this issue, a simulation study is performed to mimic the performance of the above nominal and 

robust solutions in the real world. 

For each uncertain coefficient in the objective functions and in the constraints of the uncertain 

project portfolio selection problem, a value is randomly selected from its uncertainty interval. These 

selected coefficient values, instead of the nominal values, are then used in model (D.1) to formulate the 

project portfolio selection model. The formulated model is not solved but is used to evaluate the final 

solutions of the nominal model and of the robust model obtained with the interactive robust weighted 

Tchebycheff procedure. The best solutions reported in Santhanam and Kyparisis (1995) and Ringuest and 

Graves (2000) are also evaluated with the formulated model. Each set of randomly selected coefficient 

values represents one realized instance of the uncertain coefficients in the project portfolio selection 

problem. A total of 10,000 sets of randomly selected coefficient values are generated. Each solution is 

then evaluated by the constraints of the formulated model to determine if it is feasible. Only if the 

solution is feasible, it is evaluated with the three objective functions of the formulated model to obtain the 

corresponding values for each kz . The criterion vectors z  are then evaluated by (17) to calculate the 

corresponding value of ( )V zP  whereas **
kz  is also updated for the realized coefficient values. The 

percentage of feasible solutions over the 10,000 realizations of the uncertain coefficients, the average, 

worst, and the 10%, 50%, and 90% percentiles of ( )V zP  for the LP -metric value functions with 2P , 

4P  and  P , are reported in Table 13, Table 14, and Table 15, respectively. Similar results on the 

individual objective functions are reported in Table E.1, Table E.2, and Table E.3 in Appendix E. 

Insert Table 13, Table 14 & Table 15 Here 

From these tables, it is first observed that non-robust solutions have generally low chance of 

feasibility. On the other hand, the robust solutions have generally very high percentage of feasibility. This 

is a critical issue because the feasibility of a solution is always the primary concern of any mathematical 

programming problem. In Table 13, Table 14, and Table 15, results for any budget of uncertainty higher 

than 1.5i   are not reported because the feasibility of solutions is always satisfied when 1.5i  and 

hence, further increase in i  may deteriorate the quality of the solutions without the need to improve 

feasibility. In addition, for the 2L -metric value function in Table 13, 100% of the solutions are feasible 

when 0.5i  . Hence, the solutions obtained for 0.5i   might not have been reported in this table. 

Note that every solution corresponding to 0.5i  , including solution (1,11,12,13,14) computed from 

1.5i  , is always outperformed by solution (1,6,11,12,13,14) computed from 0.5i  .  

Table 16 in the following presents the final robust solutions for the LP -metric value functions 

with 2P , 4P  and  P . In the table, the percentages of improvement in feasibility and the 
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corresponding deteriorations in solution quality are presented. The relative deterioration is calculated with 

respect to the corresponding optimal nominal solutions. 

Insert Table 16 Here 

7. Conclusions 

In this study, the problem of selecting a portfolio of R&D projects is considered when there are multiple 

conflicting objectives and when there are uncertainties in problem data including objective function and 

constraint coefficients. A robust augmented weighted Tchebycheff program is formulated and its linear 

counterpart is employed within the interactive robust weighted Tchebycheff procedure to generate robust 

nondominated solutions. The final portfolio is most preferred by the DM and is robust in terms of all 

possible realizations of uncertain problem coefficients. Through an illustrative example, the robust 

solutions are shown to have not only a very high percentage of feasibility but also a worst and average 

performance that is comparable to that of the nominal solutions.  

An extraordinary strength of the proposed approach is that this robustness is achieved without 

bothering the DM in supplying unknown distribution details for the imprecise coefficients which is a 

major inconvenience in practical applications. Moreover, the proposed approach can be readily extended 

to other multiobjective mixed integer linear programming problems with uncertainties existing in both 

objective function and constraint coefficients. Therefore, a future research direction is to apply the 

proposed interactive robust weighted Tchebycheff procedure to such problems. 
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Appendix A: Determining the robust ideal point 

Proposition 2. The robust ideal point *z  can be determined from the following model for all 1, ,k K  , 

min kz   

(A.1)

s.t. kj j k k kj kj j
c x q r z        k  

 ij j i i ij ij j
a x q r b      i  

 ˆk kj kj jq r c y    ,k j  

 ˆi ij ij jq r a y   ,i j  

 , (0,1)j j j jy x y x    , 0jy   j  

 0iq   i  

 0kq  ,  unrestrictedkz  k  

 0kjr   ,k j  

 0ijr   ,i j . 
 

Proof. The robust ideal point *z  can be determined using the following non-linear model for all 

1, ,k K  , 

min max[ ( , ) | ]
k

k k k kj kj
z f     c

c x   

 (A.2)s.t. max[ ( , )| ]
i

i i ij i ij
g b   a

a x  i  

 {0,1}jx   j . 

Model (A.2) can be reformulated as model (A.3) in the following 

min kz   

 (A.3)

s.t. max[ ( , ) ]
k

k k kj kj k
f z    c

c x k  

 max [ ( , ) ]
i

i i ij i ij
g b   a

a x  i  

 {0,1}jx   j  

  unrestrictedkz  k  

Model (A.1) is directly obtained from model (A.3) by following the derivation of (8) from (7).■ 



25 

Appendix B: Proof of Proposition 1 

Model (12) is first reformulated as 

min d   

(B.1)

s.t. kk
d       k  

 k kw   k  

 
**max[ ( , ) ]

k
k k kj k kj k

f z     c
c x k  

 max [ ( , ) ]
i

i i ij i ij
g b   a

a x  i  

 {0,1}jx   j . 

Using the derivation of (8) from (7), (13) follows.■  

Appendix C: Procedure for filtering a set of vectors 

The following procedure reduces 2P  robust criterion vectors to P  most dispersed ones using the d-norm 

relative distance measure (Steuer 2003). In the procedure, 2Z P  represents the set of the robust criterion 

vectors that have not been selected while ZP  the set of the most dispersed ones that have been selected. 

Step 1. Calculate 2z max{z | }P
k k Z z , 2z min{z | }P

k k Z z , 1 1(z z ) / (z z )k k k k kk
     . 

Randomly select a vector from 2Z P  and transfer it to ZP .  

Step 2. Find max 2Z Pz  so that maxz  is the most dissimilar vector from all vectors in ZP , that is 

2

1 1
max

1 1Z ZZ
min ( | z z |) max min ( | z z |)

P PP

d dK Kd d
k k k k k kk k

 
   

            
 

z zz  

Step 3. Transfer maxz  to ZP . If | Z |P P , then terminate; otherwise go to Step 2. 

The procedure above is used in Step 3 of the interactive robust weighted Tchebycheff procedure 

to reduce 2P  criterion vectors to P  most dispersed ones. It is also used in Step 2 to reduce 20K  

weighting vectors to 2P  most dispersed ones. 
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Appendix D: The basic formulation for the illustrative example 

1 1 2 3 4 5 6 7 8 9 10

11 12 13 14 3.4 12.13.14

2 1 2 3 4 5 6 7 8 9 10 11 13

3 11 12

min ( ) 1600 425 213 213 2600 750 11 11 3 18
40800 1200 3000 8000 85 3400

min ( ) 5 4 3 3 3 3 2
min ( ) 10200 300

f x x x x x x x x x x x

x x x x x x

f x x x x x x x x x x x x x

f x x x

           
     

           
  13 14

1 2 3 4 5 6 3.4 4.5

4.6 5.6 4.5.6

1 2 3 4 5 6 7 8 9 10

2.3 2.4 3.4 4.5

750 2000
s.t.

16000 500 350 500 2500 1000 268 350
250 250 600 20000

3250 1000 350 500 2500 1000 28 27 7 44
155 225 188 200 17

x x

x x x x x x x x

x x x

x x x x x x x x x x

x x x x

 
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   
        
     4.6 5.6 4.5.6

1 2 2 3 3 4 5 7 5 8 5 9

5 10 1 11 11 12 11 13 11 14

2 3 2.3 2 3 2.3 2 4 2.4 2 4 2.4

3 4 3.4

5 125 375 6000
0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0,

1, 2 0, 1, 2 0,

x x x

x x x x x x x x x x x x

x x x x x x x x x x

x x x x x x x x x x x x

x x x

  
                
              
             
  3 4 3.4 4 5 4.5 4.5.6 4 5 4.5 4.5.6

4 6 4.6 4.5.6 4 6 4.6 4.5.6 5 6 5.6 4.5.6

5 6 5.6 4.5.6 4 5 6 4.5.6 4 5 6 4.5.6

1.2

1, 2 0, ( ) 1, 2( ) 0,
( ) 1, 2( ) 0, ( ) 1,
2( ) 0, 2, 3 0,

x x x x x x x x x x x

x x x x x x x x x x x x

x x x x x x x x x x x x

x x

             
            

             
 1.3 1.4 12.13.14 12 13 14 12.13.14

1

2, 3 0,
1
(0,1)j

x x x x x x

x

x j

       

 

(D.1) 

Appendix E: Robustness in objective functions of selected solutions  

Table E.1, Table E.2, and Table E.3 in this appendix report the results of the simulation study on the 

values of kz  for 1,2,3k  , i.e., the values of the three individual objective functions in the illustrative 

example. Results in these tables are reported in a similar manner as those for the LP -metric value 

functions. However, in addition to the percentage of feasible solutions, the average, worst, and the 10%, 

50%, and 90% percentiles of the values of each kz , the nominal and robust values of each kz  are also 

reported. Each of the three components of the robust criterion vectors ,Z z    is reported in a separate 

table. Results in these tables confirm that the performance of the robust criterion vectors is comparable to 

that of the nominal solutions. 

Insert Table E.1, Table E.2 & Table E.3 Here 
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Table 1. Original estimates for independent benefits, costs, and risk scores 
Project Mandated Contingent 

upon 
Annual 
Benefits 

Hardware 
costs 

Software 
costs 

Miscellaneous 
costs 

Risk 
scores 

1 Yes - 1600 16,000 3250 0 5 
2 No 1 425 500 1000 0 4 
3 No 2 213 350 350 0 3 
4 No 2 213 500 500 0 3 
5 No - 2600 2500 2500 0 3 
6 No - 750 1000 1000 0 3 
7 No 5 11 0 28 0 1 
8 No 5 11 0 27 0 1 
9 No 5 3 0 7 0 1 

10 No 5 18 0 44 0 1 
11 No 1 40,800 0 0 10,200 2 
12 No 11 1200 0 0 300 0 
13 No 11 3000 0 0 750 1 
14 No 11 8000 0 0 2000 0 

Table 2. Original estimates for interdependent costs and benefits 
Interdependent 
projects 

Additional 
benefits 

Shared 
Hardware costs 

Shared software 
costs 

2, 3   155
2, 4   225
3, 4 85 268 188
4, 5  350 200
4, 6  250 175
5, 6  250 125

12, 13, 14 3400  
4, 5, 6  600† 375†

† Original values changed to match the formulation of Appendix D. 
 

Table 3. Comparison among solutions found by the three methods 
No Benefit Risk Cost Projects selected S&K R&G H&N&S Status 

1 1600 5 0 1 ✓ Nondominated 
2 4200 8 0 1,5 ✓ ✓ Nondominated 
3 4218 9 0 1,5,10 ✓ ✓ Nondominated 
4 4229 10 0 1,5,7,10 ✓ ✓ Nondominated 
5 4240 11 0 1,5,7,8,10 ✓ Nondominated 
6 4243 12 0 1,5,7,8,9,10 ✓ Nondominated 
7 42400 7 10200 1,11 ✓ ✓ Nondominated 
8 43600 7 10500 1,11,12 ✓ ✓ Nondominated 
9 45000 10 10200 1,5,11 ✓ Nondominated 

10 45018 11 10200 1,5,10,11 ✓ Nondominated 
11 45040 13 10200 1,5,7,8,10,11 ✓ ✓ Nondominated 
12 45043 14 10200 1,5,7,8,9,10,11 ✓ Nondominated 
13 46200 10 10500 1,5,11,12 ✓ Nondominated 
14 46218 11 10500 1,5,10,11,12 ✓ Nondominated 
15 46240 13 10500 1,5,7,8,10,11,12 ✓ ✓ Nondominated 
16 46243 14 10500 1,5,7,8,9,10,11,12 ✓ Nondominated 
17 46600 8 11250 1,11,12,13 ✓ Nondominated 
18 48000 11 10950 1,5,11,13 ✓  Nondominated 
19 48040 14 10950 1,5,7,8,10,11,13 ✓ ✓ Nondominated 
20 48043 15 10950 1,5,7,8,9,10,11,13 ✓ Nondominated 
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21 49200 11 11250 1,5,11,12,13 ✓ Nondominated 
22 49240 14 11250 1,5,7,8,10,11,12,13 ✓ Nondominated 
23 49243 15 11250 1,5,7,8,9,10,11,12,13 ✓ Nondominated 
24 50400 7 12200 1,11,14 ✓ ✓ Nondominated 
25 51600 7 12500 1,11,12,14 ✓ ✓ Nondominated 
26 53000 10 12200 1,5,11,14 ✓ ✓ Nondominated 
27 53018 11 12200 1,5,10,11,14 ✓ ✓ Nondominated 
28 53029 12 12200 1,5,8,10,11,14 ✓  Nondominated 
29 53040 13 12200 1,5,7,8,10,11,14 ✓ Nondominated 
30 53043 14 12200 1,5,7,8,9,10,11,14 ✓ Nondominated 
31 53400 8 12950 1,11,13,14 ✓ Nondominated 
32 54200 10 12500 1,5,11,12,14 ✓ Nondominated 
33 54240 13 12500 1,5,7,8,10,11,12,14 ✓ ✓ Nondominated 
34 54243 14 12500 1,5,7,8,9,10,11,12,14 ✓ Nondominated 
35 56000 11 12950 1,5,11,13,14 ✓ ✓ Nondominated 
36 56018 12 12950 1,5,10,11,13,14 ✓  Nondominated 
37 56029 13 12950 1,5,7 or 8,10,11,13,14 ✓  Nondominated 
38 56040 14 12950 1,5,7,8,10,11,13,14 ✓ Nondominated 
39 56043 15 12950 1,5,7,8,9,10,11,13,14 ✓ Nondominated 
40 58000 8 13250 1,11,12,13,14 ✓ ✓ Nondominated 
41 60600 11 13250 1,5,11,12,13,14 ✓ Nondominated 
42 60618 12 13250 1,5,10,11,12,13,14 ✓  Nondominated 
43 60629 13 13250 1,5,7,10,11,12,13,14 ✓  Nondominated 
44 60640 14 13250 1,5,7,8,10,11,12,13,14 ✓ Nondominated 
45 60643 15 13250 1,5,7,8,9,10,11,12,13,14 ✓ ✓ ✓ Nondominated 
46 4232 11 0 1,5,8,9,10 ✓  Dominated by No 5 
47 43150 10 10200 1,6,11 ✓  Dominated by No 9 
48 44350 10 10500 1,6,11,12 ✓  Dominated by No 13 
49 45022 12 10200 1,5,7,8,11 ✓  Dominated by 1,5,8,10,11 (CE) 
50 46214 12 10500 1,5,8,9,11,12 ✓  Dominated by No 14 
51 48011 12 10950 1,5,8,11,13 ✓  Dominated by 1,5,10,11,13 (CE) 
52 48022 13 10950 1,5,7,8,11,13 ✓  Dominated by 1,5,8,10,11,13 (CE) 
53 48032 14 10950 1,5,7,9,10,11,13 ✓  Dominated by No 19 
54 49211 12 11250 1,5,7,11,12,13 ✓  Dominated by 1,5,10,11,12,13 (CE) 
55 49222 13 11250 1,5,7,8,11,12,13 ✓  Dominated by 1,5,8,10,11,12,13 (CE) 
56 49232 14 11250 1,5,7,9,10,11,12,13 ✓  Dominated by No 22 
57 52350 10 12500 1,6,11,12,14 ✓  Dominated by No 26 
58 53032 13 12200 1,5,7,9,10,11,14 ✓  Dominated by No 29 
59 54203 11 12500 1,5,9,11,12,14 ✓  Dominated by 1,5,10,11,12,14 (CE) 
60 54222 12 12500 1,5,7,8,11,12,14 ✓  Dominated by 1,5,8,10,11,12,14 (CE) 
61 56032 14 12950 1,5,7 or 8,9,10,11,13,14 ✓  Dominated by No 38 
62 60632 14 13250 1,5,8,9,10,11,12,13,14 ✓  Dominated by No 44 

Table 4. Performance summary of the three methods 
Method Feasible 

solutions 
Nondominated 
solutions 

Nondominated 
criterion vectors 

Santhanam and Kyparisis (S&K) 9 8 8 
Ringuest and Graves (R&G) 100 16 15 
Augmented weighted Tchebycheff (H&N&S) 39 39 39 
Complete enumeration (CE) 234 63 54 
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Table 5. Deterministic solutions for the 2L -metric value function 
Source Selected solution Benefit Risk Cost 2 ( )V z  
H&N&S Iter. 1-2 1,5,11,12,14 54,200 10 12,500 15,781.1605 
H&N&S Iter. 3 1,11,12,13,14 58,000 8 13,250 15,946.6906 
H&N&S Iter. 4-8 1,5,7,8,10,11,12,13,14 60,640 14 13,250 16,024.9983 
R&G 1,5,7,8,9,10,11,12,13,14 60,643 15 13,250 16,024.9980 
S&K 1,5,7,8,9,10,11,12,13,14 60,643 15 13,250 16,024.9980 
CE 1,5,7,8,10,11,12,13,14 60,640 14 13,250 16,024.9983 

Table 6. Deterministic solutions for the 4L -metric value function 

Source Selected solution Benefit Risk Cost 4 ( )V z  
H&N&S Iter. 1 1,11,12,14 51,600 7 12,500 16,016.0299 
H&N&S Iter. 2 1,5,11,12,14 54,200 10 12,500 16,185.5093 
H&N&S Iter. 3-8 1,5,7,8,9,10,11,14 53,043 14 12,200 16,209.3660 
R&G 1,5,7,9,10,11,14 53,032 13 12,200 16,208.6466 
S&K 1,5,11,14 53,000 10 12,200 16,206.5382 
CE 1,5,7,8,9,10,11,14 53,043 14 12,200 16,209.3660 

Table 7. Deterministic solutions for the L -metric value function 
Source Selected solution Benefit Risk Cost ( )V z  
H&N&S Iter. 1 1,11,12,14 51,600 7 12,500 16,250.0000 
H&N&S Iter. 2 1,5,11,12,14 54,200 10 12,500 16,250.0000 
H&N&S Iter. 3 1,11,14 50,400 7 12,200 16,340.0000 
H&N&S Iter. 4-8 1,5,7,8,9,10,11,12,13 49,243 15 11,250 16,580.0000 
R&G 1,5,7,9,10,11,12,13 49,232 14 11,250 16,576.7000 
S&K 1,11,14 50,400 7 12,200 16,340.0000 
CE 1,5,7,8,9,10,11,12,13 49,243 15 11,250 16,580.0000 

Table 8. Half-interval widths for independent benefits, costs, and risk scores 
Project Annual 

Benefits 
Hardware 
costs 

Software 
costs 

Miscellaneous 
costs 

Risk 
scores 

1 320 2575 710 0 1.25
2 42.5 150 350 0 0.6
3 10.65 105 122.5 0 0.3
4 10.65 150 175 0 0.3
5 260 750 875 0 0.3
6 75 300 350 0 0.3
7 1.1 0 9.8 0 0.05
8 1.1 0 9.45 0 0.05
9 0.09 0 2.45 0 0.1
10 1.8 0 15.4 0 0.1
11 10200 0 0 3060 0.2
12 120 0 0 30 0
13 300 0 0 75 0.1
14 1600 0 0 300 0
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Table 9. Half-interval widths for interdependent costs and benefits 
Interdependent 
projects 

Additional 
benefits 

Shared 
Hardware costs 

Shared 
software costs

2, 3   54.25
2, 4   78.75
3, 4 4.25 80.4 65.8
4, 5  105 70
4, 6  75 61.25
5, 6  75 43.75
12, 13, 14 1020  
4, 5, 6  75 43.75

Table 10. Robust solutions for the 2L -metric value function  

i  Selected 
solution 

Nominal 
benefit 

Nominal 
risk 

Nominal 
cost 2 ( )V z  

0.5 1,6,11,12,13,14 58,750 11 13,250 15,984.6369
1.0 1,6,11,12,13,14 58,750 11 13,250 15,984.6369
1.5 1,11,12,13,14 58,000 8 13,250 15,946.6906

Table 11. Robust solutions for the 4L -metric value function  

i  Selected 
solution 

Nominal 
benefit 

Nominal 
risk 

Nominal 
cost 4 ( )V z  

0.5 1,2,3,6,11,14 51,788 17 12,200 16,108.8844
1.0 1,6,11,12,14 52,350 10 12,500 16,080.2516
1.5 1,6,11,12,14 52,350 10 12,500 16,080.2516

Table 12. Robust solutions for L -metric value function  

i  Selected 
solution 

Nominal 
benefit 

Nominal 
risk 

Nominal 
cost ( )V z  

0.5 1,2,3,4,11,14 51,336 17 12,200 16,340.0000
1.0 1,11,14 50,400 7 12,200 16,340.0000
1.5 1,11,14 50,400 7 12,200 16,340.0000

Table 13. Solution performance for 2L -metric value function 

Solution Source Feasibility 
Percentage

Percentiles 
Average Worst 

10% 50% 90% 
1,5,7,8,9,10,11,12,13,14 R&G/S&K 46.99% 15,303.0 16,021.3 16,764.5 16,029.6 15,026.5
1,5,7,8,10,11,12,13,14 Nominal 47.20% 15,303.5 16,020.4 16,763.8 16,029.2 15,026.5
1,6,11,12,13,14 Robust ( i =0.5,1.0) 100.00% 15,260.7 15,984.8 16,710.3 15,984.3 14,972.8
1,11,12,13,14 Robust ( i =1.5) 100.00% 15,227.5 15,947.2 16,662.9 15,945.7 14,937.6

Table 14. Solution performance for 4L -metric value function 

Solution Source Feasibility 
Percentage

Percentiles 
Average Worst 

10% 50% 90% 
1,5,7,8,9,10,11,14 Nominal 46.99% 15,535.9 16,200.9 16,824.0 16,194.3 15,259.8
1,5,7,9,10,11,14 R&G 48.02% 15,534.5 16,200.0 16,823.2 16,192.8 15,259.4
1,5,11,14 S&K 51.65% 15,532.7 16,199.1 16,819.8 16,191.6 15,257.9
1,2,3,6,11,14 Robust ( i  =0.5) 78.26% 15,460.0 16,094.1 16,654.7 16,078.8 15,181.0
1,6,11,12,14 Robust ( i =1.0,1.5) 100.00% 15,410.8 16,071.6 16,672.0 16,058.6 15,129.3



31 

Table 15. Solution performance for L -metric value function  

Solution Source Feasibility 
Percentage 

Percentiles 
Average Worst 

10% 50% 90% 
1,5,7,8,9,10,11,12,13 Nominal 46.99% 15,890.2 16,330.3 16,821.2 16,343.5 15,687.1
1,5,7,9,10,11,12,13 R&G 48.02% 15,887.7 16,327.6 16,818.8 16,341.2 15,687.1
1,2,3,4,11,14 Robust ( i =0.5) 99.99% 15,608.8 16,339.4 17,026.6 16,332.7 15,338.2
1,11,14 S&K/Robust ( i =1.0,1.5) 100.00% 15,608.8 16,339.4 16,908.7 16,299.9 15,338.2

Table 16. Preferred robust solutions for LP -metric value functions 

P  Robust solution Improvement in 
feasibility percentage 

Deterioration in value function  
Average Worst 

2 1,6,11,12,13,14 52.80% 0.28% 0.36% 
4 1,2,3,6,11,14 31.27% 0.71% 0.52% 
4 1,6,11,12,14 53.01% 0.84% 0.86% 
∞ 1,2,3,4,11,14 53.00% 0.07% 2.22% 
∞ 1,11,14 53.01% 0.27% 2.22% 

Table E.1. Benefit function performance for deterministic and robust solutions 
P

 
Solution Source Feasibility 

Percentage
Nominal 

Benefit
Robust 
Benefit

Percentiles 
Average Worst 10% 50% 90% 

2 1,5,7,8,10,11,12,13,14 Nominal 47.20% 60,640 - 52,400.4 60,504.7 68,846.8 60,622.3 47,817.5
2 1,5,7,8,9,10,11,12,13,14 R&G/S&K 46.99% 60,643 - 52,403.4 60,507.8 68,849.9 60,625.1 47,820.4
2 1,6,11,12,13,14 Robust ( i =0.5,1.0) 100.00% 58,750 51,610 50,563.8 58,756.2 66,899.9 58,760.0 46,073.9

2 1,11,12,13,14 Robust ( i =1.5) 100.00% 58,000 50,860 49,799.7 58,003.2 66,149.0 58,010.4 45,359.9
4 1,5,7,8,9,10,11,14 Nominal 46.99% 53,043 - 44,868.4 52,918.0 61,246.8 53,023.0 40,976.6
4 1,5,7,9,10,11,14 R&G 48.02% 53,032 - 44,861.8 52,926.9 61,245.1 53,023.2 40,965.8
4 1,5,11,14 S&K 51.65% 53,000 - 44,806.4 52,943.7 61,166.3 53,003.6 40,934.7
4 1,2,3,6,11,14 Robust ( i  =0.5) 78.26% 51,788 44,648 43,591.1 51,762.3 59,947.2 51,799.3 39,892.1

4 1,6,11,12,14 Robust ( i  =1.0,1.5) 100.00% 52,350 45,210 44,129.7 52,355.2 60,525.6 52,353.0 40,535.3
∞ 1,5,7,8,9,10,11,12,13 Nominal 46.99% 49,243 - 41,112.1 49,123.0 57,374.7 49,220.1 38,473.4
∞ 1,5,7,9,10,11,12,13 R&G 48.02% 49,232 - 41,103.2 49,115.3 57,376.3 49,220.0 38,463.1
∞ 1,2,3,4,11,14 Robust ( i =0.5) 99.99% 51,336 44,196 43,112.6 51,334.5 59,473.8 51,340.0 39,455.2

∞ 1,11,14 S&K/Robust ( i =1.0,1.5) 100.00% 50,400 43,260 42,175.5 50,393.8 58,538.6 50,403.2 38,494.5

Table E.2. Risk function performance for deterministic and robust solutions 
P

 
Solution Source Feasibility 

Percentage
Nominal 

Risk
Robust 

Risk
Percentiles 

Average Worst 10% 50% 90% 
2 1,5,7,8,10,11,12,13,14 Nominal 47.20% 14.000 - 12.969 13.995 15.018 13.993 15.755
2 1,5,7,8,9,10,11,12,13,14 R&G/S&K 46.99% 15.000 - 13.958 14.989 16.033 14.993 16.843
2 1,6,11,12,13,14 Robust ( i =0.5,1.0) 100.00% 11.000 11.875 9.972 10.987 11.997 10.985 12.737

2 1,11,12,13,14 Robust ( i =1.5) 100.00% 8.000 8.875 6.983 7.991 8.989 7.987 9.484
4 1,5,7,8,9,10,11,14 Nominal 46.99% 14.000 - 12.962 13.993 15.021 13.994 15.792
4 1,5,7,9,10,11,14 R&G 48.02% 13.000 - 11.973 12.993 14.023 12.995 14.831
4 1,5,11,14 S&K 51.65% 10.000 - 8.983 9.994 11.009 9.992 11.677
4 1,2,3,6,11,14 Robust ( i  =0.5) 78.26% 17.000 17.875 15.848 16.982 18.107 16.986 19.375

4 1,6,11,12,14 Robust ( i =1.0,1.5) 100.00% 10.000 10.875 8.977 9.986 10.997 9.986 11.705
∞ 1,5,7,8,9,10,11,12,13 Nominal 46.99% 15.000 - 13.958 14.989 16.033 14.993 16.843
∞ 1,5,7,9,10,11,12,13 R&G 48.02% 14.000 - 12.960 13.993 15.028 13.995 15.882
∞ 1,2,3,4,11,14 Robust ( i  =0.5) 99.99% 17.000 17.875 15.852 16.976 18.108 16.982 19.382

∞ 1,11,14 S&K/Robust ( i =1.0,1.5) 100.00% 7.000 7.875 5.981 6.995 7.989 6.988 8.439
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Table E.3. Cost function performance for deterministic and robust solutions 
P Solution Source Feasibility 

Percentage
Nominal 

Cost
Robust 

Cost
Percentiles Average Worst 10% 50% 90% 

2 1,5,7,8,10,11,12,13,14 Nominal 47.20% 13,250 - 10,785.5 13,264.7 15,653.3 13,236.2 16,578.3
2 1,5,7,8,9,10,11,12,13,14 R&G/S&K 46.99% 13,250 - 10,784.9 13,262.3 15,656.6 13,234.5 16,578.3
2 1,6,11,12,13,14 Robust ( i =0.5,1.0) 100.00% 13,250 15,392 10,799.1 13,251.9 15,684.5 13,247.8 16,636.2

2 1,11,12,13,14 Robust ( i  =1.5) 100.00% 13,250 15,392 10,799.1 13,251.9 15,684.5 13,247.8 16,636.2
4 1,5,7,8,9,10,11,14 Nominal 46.99% 12,200 - 9,732.6 12,205.5 14,602.8 12,185.0 15,531.5
4 1,5,7,9,10,11,14 R&G 48.02% 12,200 - 9,729.2 12,205.5 14,609.6 12,187.2 15,531.5
4 1,5,11,14 S&K 51.65% 12,200 - 9,731.0 12,197.8 14,611.9 12,182.2 15,531.5
4 1,2,3,6,11,14 Robust ( i  =0.5) 78.26% 12,200 14,342 9,765.0 12,213.6 14,649.9 12,209.2 15,539.2

4 1,6,11,12,14 Robust ( i  =1.0,1.5) 100.00% 12,500 14,642 10,045.6 12,507.6 14,931.3 12,497.9 15,825.7
∞ 1,5,7,8,9,10,11,12,13 Nominal 46.99% 11,250 - 8,791.8 11,243.0 13,652.8 11,233.9 14,376.4
∞ 1,5,7,9,10,11,12,13 R&G 48.02% 11,250 - 8,786.9 11,244.4 13,653.9 11,235.9 14,376.4
∞ 1,2,3,4,11,14 Robust ( i =0.5) 99.99% 12,200 14,342 9,750.6 12,202.0 14,637.2 12,198.2 15,539.2

∞ 1,11,14 S&K/Robust ( i =1.0,1.5) 100.00% 12,200 14,342 9,750.6 12,202.0 14,636.3 12,198.1 15,539.2

 


	Cover Sheet -0011MSS-MINGHESUN-2013
	Robust Multiobjective Programming for Project Selection

