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In this paper, we analyze the time (viz., the number of cycles) to reach any given crack size in a
fatigue life test using a gamma stochastic process. It is assumed that the time increments are non-
stationary but independent for each specimen while the shape parameter of the gamma distribution
is a function of the crack length. In addition, using a random effect model, the between-specimen
variability is explained by modeling the scale parameter of the process with a gamma distribution.
This yields explicit formulas for the marginal lifetime distributions, the associated mean and variance,

which boosts computational efficiency.
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1 Introduction

In the industrial and manufacturing design, modeling the fatigue crack growth properties has been an
important research problem since failure risk and reliability analyses, inspection planning and main-
tenance policy all depend on the accuracy of the probabilistic model describing the material behavior.
Different modeling approaches have been studied by numerous researchers [1-24]. In particular, Kozin
and Bogdanoff [11] stated that (i) for a single specimen, the crack growth evolution over time (viz.,
the number of cycles) can be modeled as a stochastic Markov process; (ii) the between-specimen
variability of crack growth behavior can be modeled by treating suitable parameters of the stochastic
process model as random quantities; and (iii) modeling the time to first reach a given crack length
as a stochastic process over the crack length domain is the proper approach to study fatigue crack
growth.

Here, a non-homogeneous gamma process model is studied for analyzing the time to reach a given



crack length in fatigue life test under constant amplitude cycling loading. That is, time increments are
non-stationary independent from gamma distributions where the shape parameter is an appropriate
function of the crack length and the scale parameter is appropriately chosen such that the process
mean gives exactly the deterministic crack growth model of one’s choice (e.g., Paris regime). In
addition, using a random effect model, the between-specimen variability is explained by modeling
the scale parameter of the process with a gamma distribution. This yields closed-form solutions for
the marginal lifetime distributions, the associated moments of the stochastic process, which boosts
computational efficiency.

The correlation often observed between the estimates of the Paris law parameters C' and m is also
discussed. Here, a scheme to decorrelate the estimates of Paris law parameters is examined as it is
necessary for the random effect model to account for the between-specimen variability by randomizing
the crack growth rate parameter. Using this scheme, the Paris law is scalized so that the estimation
method generates quasi-uncorrelated estimates of C' and m. All the model parameters were estimated
under the maximum likelihood principle, using the experimental datasets produced by Virkler et al
[21] for model validation. Model assumptions and goodness-of-fit were assessed, and no violation was
found in general, suggesting that the proposed model is effective in analyzing and interpreting the

stochastic behavior of the crack growth evolution.

2 Model Descriptions and MLE

Here, the first passage time T'(a) for a specimen to reach a crack length a is assumed to be governed
by a non-homogeneous gamma process with constant scale parameter and shape parameter which
depends on a. A random variable T has a gamma distribution with shape parameter n > 0 and scale

parameter ¢ > 0 if its probability density function is given by

1
t; =_———t"le7tle,  t>0.

Let n(a) be a non-decreasing, right-continuous, real-valued function for a > ay with n(ag) = 0. The
gamma process with shape function n(a) and scale parameter ¢ is a continuous-time stochastic process
{T'(a); @ > ao} with the following properties: (i) T'(ag) = 0; (ii) T'(a2) — T'(a1) ~ Gamma(n(az) —
n(a1),¢) for all ag > a; > ap; (iii) T'(a) has independent increments. The mean and variance of T'(a)
are E[T(a)] = ¢ n(a) and Var[T(a)] = »? n(a), respectively. Hence, the variance-to-mean ratio is @,
which does not depend on a. Now, in order to formulate 7(a) explicitly, we start the derivation from

the Paris law, which is given as

d ; m’
a(t) = C' [AK ()] (1)
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where C' and m' are model parameters, AK(a) = AP Y (a) is the stress-intensity factor range with
AP the load range, and Y (a) a function which takes into account the shape of the crack and of the
specimen. In the present work, a scaled form of the Paris law is defined, which is given as

0 _o [

(2)

where the scaling factor AKj is uniquely determined by imposing that the estimators of C' and m are
(asymptotically) uncorrelated. Under the stochastic framework, the Paris law assumption amounts

to E[dA(t)/dt|A(t) = a(t)] = C [AK(a)/AKo|™. Hence, for the gamma process proposed here, the

n ./ [AKO] mdu ®)

and scale parameter ¢ = £C~1. Then, the first-order probability density function of T'(a) is given by

shape parameter 7(a) is given by

1 n(a)— t
ﬂ“*:rmmn@o4w@ﬁ()lap[‘§?3} t20, 0> @
with the mean and variance of T'(a) given by
E[T(a)] = €éCn(a)=C~ / [ AK, ] du (5)
Valr@] - €0 -0 [ A58 Mau ©)

Hence, E[T'(a)] matches with the deterministic (scaled) Paris law for the time to reach a given crack
length a.

The maximum likelihood estimation method is used to estimate the model parameters. Let tq;
denote the observed time for an individual specimen to reach the crack length a; (j = 1,...,M).
From the properties (ii) and (iii) of gamma process, the increments At; = t,; —tq;_, (j =1,..., M)
(tao = 0) are independent gamma variables with shape parameters An; = n(a;) —n(a;_1) and common

scale ¢ = £C~1. Then, the likelihood function of the observed data is given by

—1y—nlam) _ tﬂM
€cy exp( 50_1) @
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The MLE 6 m and § can be obtained by maximizing the logarithm of (7), where both An; =
f u)/AKo)"™du and n(anm) = & faM[AK(u}/AKo |”™du involve the parameters m
and £.



2.1 Random effect for between-specimen variability

Although the within-specimen variability is explained by the proposed gamma process, a between-
specimen variability cannot be explained by the (fixed effect) model. Here, it is assumed that the
parameter C' varies randomly across specimens following a gamma distribution with parameters § and
v~1 so that the marginal density of T}, is obtained in closed-form as well as its moments. That is, the

density function of C is given as

f(c)= %C‘s_le_"’c , C>0 (8)
so that the density function of T, is explicitly obtained as
)= B((;(i))i o) E{z};ﬂw "o ®)
The mean and variance of T, are then
E[T(a)] = ~én(a)/(6—-1) foré>1 (10)
Var[T(a)] = (v§)*n(a)m(a) +6—1]/[(6 —1)*(6 —2)] for § > 2 (11)

It is also known that the random variable W = § T, /[y £ n(a)] has an F' distribution with vy = 2n(a)
and s = 20 degrees of freedom. Therefore, the cumulative distribution function of T, can be written

as

For any fixed time ¢, A; the crack length at time ¢ is a random variable over the population of

specimens, and it follows that

P(A; > a) = P(Ta <t) = Fyp(a)05 l%;(a)] (13)
which is known as crack exceedance probability.

Again, the maximum likelihood estimation method is used to estimate the model parameters
including the hyper-parameters § and «y for the distribution of C'. Let t,,; denote the observed times
to reach the crack lengths a;; < --- < a;py, for the i-th specimen (i = 1,...,N). Conditioned on the
random effect C, the increments At;j = tq,; —ta;;_,, j =1,..., M; for the specimen i are independent
random variables having a gamma distribution Gamma(At;;; An;j, €C71), so that the likelihood
function is given by (7). Averaging this likelihood over the distribution of the random parameter C,
which is assumed to be Gamma(C; y~1,6), it is obtained
(€9)°T (6 + mi(ans,)) TIiZa(Ati)Am

L(&,m,,6|data;) = _ .
F(é) H?izl F(AT}'EJ) (E’y + téM,-}E_Fm(GMé)

(14)
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Then, the likelihood function for all the N observed sample paths is obtained to be

N
L(&,m,,d|data) = [ [ Li(¢,m, v, |datay). (15)

i=1

The MLE é‘, m, 7 and & are obtained by maximizing the logarithm of (15).

2.2 Decorrelated MLE of C and m

Decorrelating the estimates of C' and m is discussed in this section since it is necessary for the random
effect model to account for the between-specimen variability by randomizing the crack growth rate
parameter C across a population of specimens. Here, the scale factor AKj in (2) is determined such
that the MLE of C' and m are quasi-uncorrelated across a population of V specimens. In this way,
decorrelated and conventional estimates share common statistical properties in repeated sampling. To
determine AKj, let us first consider the case when the method of least squares is applied for estimating

the Paris law parameters after linearization of the randomized, scaled Paris equation:
log(da/dt),,; = log C + m(log AK(a;) — log AK;) + log X (t) (16)

where X (t) is usually assumed to be a stationary lognormal stochastic process. It is known that the
least squares method generates correlated estimates of log C and 7. This correlation can be completely
eliminated by assuming log AK, =log AKg = M~! Z?il log AK(a;). Thus, in such a framework, the
decorrelating factor AKy = exp (M~! Z?il log AK (aj}) can be computed before estimating C and
m. Also, AKj is inside the range (AK (amin), AK (@max))- In addition, since AK (a;) = AP Y (a;), it is
easy to see that AKj is the product of AP by the geometric mean of the values Y'(a;) (j =1,..., M) so
that the ratio AK /AKj is independent of load conditions. When multiple specimens are considered, if
the crack lengths a; (j = 1,..., M) at which the empirical rate is estimated are the same across all the
paths, individually decorrelated estimates (log (}i, ;) can be obtained by using a common AKj across
the specimens. Under a stochastic approach considered here, it is not possible to derive a closed-form
expression of AKj as a function of a;’s, and a numerical procedure must be applied to search for the
AKj such that the covariance between the MLE of C and i is zero. Since the covariance of C' and
m depends on the true values of the corresponding unknown parameters, an iterative procedure is
required which utilizes the MLE in place of the true values.

With the scaled Paris law in (2), the model parameters now have a clear physical meaning. The
parameter £ has dimension of crack length while the parameter C' has dimension of length over time,
and can be viewed as the instantaneous crack growth rate in correspondence of the crack length a for

which AK(a) = AKp. The ratio AK/AKj is independent of load conditions, so as the load effects



on the expected time to first reach a crack length a are all embedded into C'. Owing to the invariance
property of MLE, the estimates under the scaled Paris law are also linked to the conventional non-
scaled estimates (i.e., AKp = 1) by the following: m = i/, G=¢& AKJY and E=¢ AKY,

2.3 Goodness-of-fit assessments

The stochastic model discussed here assumes that the time increments At; =t,, —t,,_, between the
crack length increments Aa; = a; — a;j_1 are independent gamma variables with shape parameters
An; = n(a;) —n(a;j_1) and common scale parameter ¢ = £C~!. Using the Probability Integral Trans-
formation Z; = FGa(At;; Anj,p), where FGa(-) is the gamma distribution function, the original
problem is transformed into the problem of testing if a sample of independent observations comes
from a standard uniform distribution. Among many statistical procedures, we considered popular
ones such as (i) the Kolmogorov statistic D; (ii) the Cramer-von Mises statistic W?; and (iii) the
Anderson-Darling statistic A%2. In the present application, the MLE of the model parameters are

based on a large number of experimental points, hence assumed to be close to the true parameter

values, assuring the validity of testing procedure.

3 Analysis of Virkler data

The datasets by Virkler et al. [21] were used to assess the accuracy of the proposed stochastic model in
analyzing fatigue crack growth data observed in constant-amplitude loading tests. Virkler data consist
of measurements of crack length versus number of cycles collected by using N = 68 specimens. An
Aluminum 2024-T3 alloy rectangular specimen (558.8 mm long by 152.4 mm wide) with a thickness
of 2.54 mm and a center-cracked tension geometry was used throughout the tests. The initial half
crack length in the analysis was selected to be 9.0 mm while the final crack length was 49.8 mm.
The accumulated number of cycles for each specimen was recorded at each 0.20 mm of crack growth
over the range (9.0-36.2), at 0.40 mm over the range (36.2-44.2), and at 0.80 mm over the range
(44.2-49.8). The load range was 18.69 kN, with a stress ratio 0.2. The stress-intensity factor range
AK (a) was computed as

_ AP [ 7w ( Ta )

AK(a) =5/ g see (3

(17)
where B and W are specimen thickness and width, respectively, and o = 2a/W (a < 0.95). Figure
1 below illustrates the evolution of the observed cycle size as a function of the crack length and AK
of all 68 specimens. The solid red line is the mean behavior and dotted red lines are one-standard

deviation envelope of the mean.
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Figure 2: Conventional and individually decorrelated MLE of C versus m
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Figure 1: Plots of the cycle size versus the crack length and AK
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Figure 3: The time to reach a crack length of 15.0, 17.4, 21.0 and 26.0 mm versus decorrelated MLE
of C' in log scales

First, the MLE of the parameters C’, m’ and & for each individual specimen were obtained under
the conventional Paris regime. As expected, a very strong correlation exists between the MLE. To
obtain decorrelated MLE of the parameters C' and m for each individual specimen, the scaled Paris
law formulation in (2) was considered. Using an iterative procedure, individually decorrelating factors
were derived such that the covariance Cou(ag,fﬁg} of matrix ¥ = I;l given in appendix is null for
each specimen. Then, based on the individual values, an average decorrelating factor AKp = 0.3767
was computed. Dividing this by the load range AP, it was obtained a = 0.0202. Using the scaled
Paris law in (2) with this decorrelating constant, the MLE 6, m and E were then computed for each
single specimen. Figure 2 shows the plots of conventional and individually decorrelated MLE of C
and m.

In Figure 3, the decorrelated MLE @,; (i =1,...,68) for each specimen are plotted against the
observed times to reach the crack lengths of 15.0, 17.4, 21.0 and 26.0 mm, in log scales for both
axes. It appears that the MLE @,; and the observed times to reach the crack lengths is inversely
proportional to each other through a proportionality constant independent of load conditions for each
crack length. To interpret these results, it is recalled that €1 f:] [AK,/AK (u)]™du is the MLE of the

expected time to reach the crack length a, and specifically, the expected time to reach the maximum



observed crack length ajs is always estimated by the observed time t,,,. This suggests that in case of
individually decorrelated MLE, the integral I(a; ) = [, [AKo/AK (w)]™itdu = Joo (@/Y (u) il oy
depends very weakly on the estimate 7;. As a result, the ratio of mean times to reach a given crack
length a is approximately equal to the inverse ratio of the corresponding parameters C, independent
of load conditions. It supports the model formulation in (2), which factorizes to the product of two
terms: one (C') depending on load conditions and the other (I(a;m)) depending only on a. This is in

favor of decorrelated estimates when analyzing fatigue crack growth data because the time to reach a

given crack length is strongly depending on the current value of C.

3.1 Goodness-of-fit assessments

The goodness-of-fit of the model was analyzed using the probability integral transformation. The
random quantities Z; = FGa(At;; Amnj;,p) were calculated across each individual specimen. Then,
the ordered Z(;) were compared to the empirical estimates of the distribution function computed for
the time increment At;, and the Anderson-Darling statistic A? was computed. The level of significance
was set at 0.10 for rejecting the null hypothesis of standard uniform distribution. With the estimated
p-value of 0.26471, it was concluded that no significant evidence against the gamma process for the
time to reach a given crack length was found.

The correlation coefficient between Z; and the initial time t,;_,, and the correlation coefficient

_1
between Z; and the initial crack length a;_1, associated to each interval At;, were calculated for each
specimen path. The 95% confidence interval for the correlation coefficient between Z; and t,;_, was
(-0.112, 0.194), and the null hypothesis of p = 0 was not rejected at the significance level of 0.05. The
95% confidence interval for the correlation coefficient between Z; and a;_; was (-0.037, 0.264), and

the null hypothesis of p = 0 was not rejected at the significance level of 0.05. Again, no significant

evidence against the proposed model was found.

3.2 Random effect for between-specimen variability

Table 1 below shows the sample statistics of the decorrelated MLE of @, m and E along with their
asymptotic standard deviations. Comparing asymptotic and sampling standard deviations, we see
that the parameters C' and £ are to be considered as random quantities across specimens. Ratios of
sample to asymptotic standard deviations is 3.82 for C' and 3.83 for £&. For the case of m, the ratio is
2.73. Hence, a formal statistical procedure for testing the hypothesis of a common parameter across
specimens was used based on the likelihood ratio test. The null hypothesis of a common m against

the alternative hypothesis of different m; values was tested by using the likelihood ratio statistic
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Table 1: Sample statistics of the decorrelated MLE (@ in mm per 10° cycles; é‘ in mm)

Sample Statistics c m 5
Mean 10.723 | 2.938 | 0.008384
Standard deviation (SD) 0.717 | 0.167 | 0.003537
Coefficient of variation (%) 6.68 | 5.69 42.18
Minimum 8.540 | 2.376 | 0.004624
Maximum 12.323 | 3.348 | 0.026264
Ratio of max to min 1.44 1.41 5.67
Asymptotic SD 0.187 | 0.061 | 0.000922
Ratio of sample to asymptotic SD 3.82 2.73 3.83

A=-2 [ Z?‘;l Eg(é}, c;, m) — Zi\;l Ii(a, C;, ﬁg}], where [;(-) denotes the log-likelihood of the specimen
i under the specified hypothesis. This is asymptotically distributed as x? with v = N — 1 degrees of
freedom. Maximizing the log-likelihood of data under both hypotheses and computing the A statistic,
a strong evidence against the null hypothesis of a common m was found. Thus, all the parameters of
the proposed model should be in principle considered as random variables across specimens. However,
the real question is to what extent the variability of each parameter affects the variability of the
observed quantity of interest, which is the time to first reach a given crack length a. In this regard,
m acts on the expected value and variance of T, only through the integral fa‘z [AKo/AK (u)]™du,
whose value depends very weakly on m in case of individually decorrelated MLE. On the other hand,
£ should have a negligible effect on determining the variability of T, across the specimens since only
the expected value of £ would contribute to the marginal variance of T,,. Therefore, to explain the
variability across specimens, it seems reasonable to use the model with fixed £ and m but gamma
distributed Gamma(C; v~ !,8) parameter C across specimens. Using this model, the MLE £ m, 7
and 3§ were computed and used to make inference and prediction about several quantities of interest.

Comparison between MLE and sample estimates of mean of T, is given as function of the crack
length a in Figure 4. The slight underestimation of the sample mean for small crack sizes is due to
the non-Paris behavior of crack growth rate in that region. For moderate and large crack sizes, the
difference between the predicted and observed mean values of T}, is within +1%. Also, the observed
and estimated values of the variance of T, agreed quite well.

The MLE of T, corresponding to crack lengths 15.0, 17.4, 21.0 and 26.0 mm, are given along

10
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Figure 6: Sample and MLE of the exceedance probability for time values 0.34, 0.96, 1.58, 2.25 and
2.87 cycles per 10°

with the corresponding sample estimates in Figure 5 while Figure 6 describes the MLE of the crack
exceedance probability curves corresponding to the time values 0.34, 0.96, 1.58, 2.25 and 2.87 cycles
per 10%, along with the corresponding sample estimates. Both plots show good fits of the model. The
MLE and the sample estimates of (10 (20) 90) percentiles of the distribution of T, are shown as a
function of the crack length a in Figure 7. The sample estimate of the pth quantile is obtained as
Q(p) =(1—f)x;+ f rjs1 where j=p (N+1), f = [p (N +1)] —j, and z; is the j-th order statistic,
if 1 < j < N. Again, underestimation is observed at small crack sizes due to non-Paris behavior of
crack growth rate in that region. For moderate and large crack size values, the difference between
predicted and observed values is within +3%.

The hypothesis of gamma distribution for the hyperparameter C was tested using the Anderson—
Darling A? statistic, and this hypothesis could not be rejected at the significance level of 0.10. Figure
8 below depicts the empirical and theoretical densities and distributions as well as the Q-Q plot and
P-P plot based on the probability integral transformation of ordered observations of C under gamma

distribution. The fit of gamma model to observed data appears to be good.
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4 Conclusions

In this work, the time to reach a given crack size a was directly modeled as a random process over the
crack size domain. The advantages of this approach are: (1) since the time to reach any crack size is
a random process with independent increments, its distribution is completely defined; (2) the process
mean matches with the conventional deterministic crack growth rate model (viz., Paris law); and (3)
population heterogeneity can be explained by using a random effect, still leading to analytical solutions
for the marginal distribution of the time to reach any given crack size as well as its mean and variance.
The adequacy of the gamma process in analyzing and interpreting the crack growth under constant
amplitude cyclic loading was assessed by using the experimental datasets from Virkler et al. [21]. By
incorporating a suitable scale factor AKjy into the crack growth rate model, the quasi-decorrelated
MLE of the parameters could be obtained. It was observed that the scaling factor is proportional to
the load range and does not depend on the stress ratio. Also, it was observed that the decorrelated
MLE of C for each specimen are perfectly correlated to the observed time to reach the maximum crack
length and are strongly correlated to the observed time to reach a given crack size a. Subsequently,
a random effects model based on the decorrelated MLE was constructed where C' is assumed to be
a gamma random variable. The mean and variance of the time T, to reach a given crack length a,
the probability distribution of T, corresponding to the selected values of a, the exceedance probability
corresponding to the selected cycle times, and the percentiles of the distribution of 7, as a function
of a were investigated under the random effects model, and all supported the adequacy of the model
in describing the crack growth evolution.

As a future work, it is desired to improve the proposed stochastic model to analyze the crack
growth data not completely belonging to Region II regime. Since the crack growth rate behaves non-
linearly at the borders of Region II, a modified (deterministic) model based on the Paris law will be
considered for the stochastic process mean, and its performance will be compared to that based on
the scaled Paris model considered in this work. A further model validation is also sought using the

datasets from Ghonem and Dore (1985).
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6 Appendix

6.1

Maximum likelihood estimation for a single specimen path

The log likelihood function based on (7) is

M

M
log L(C,m, €|data) = — ) " log['(An;) —n(a,, ) log(C™") + > (An; —1)log At; — £ 'Ct,,,  (6.1)

j=1 j=1
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By equating the first partial derivatives of (6.1) with respect to each parameter to zero, we obtain

C = L (M) /ta,,, (6.2)
i [ (€70, (m)) 108%}—11M( )log (67 1 () /ta, ), (6.3)
i i () [ (€115 ()) — log Aty = Tons () log (€ Funs () /ta,,) (6.4)
where
Ijm) — f:"l[AKo/AK(u>]ﬁdu,
hm(m) = L [AKo/AK (w)]™du,
Lj(m) = f [AKo/AK (w)]™ log (AKo/AK (u))du
Ly () = E [AKo/AK (u)]™ log (AKo/AK (u))du
and 9(z) = §-logD(2) is the digamma function. The MLE i and £ are obtained by numerically

solving the non—hnea:r system of (6.3) and (6.4), and then C is obtained subsequently from (6.2).

The elements of the Fisher information matrix I,, are

8%log L
—E(ig) = Ju=C2¢"Tim(m),

8%log L M
—E om2 = J22=5_2;I§j(m)w'(£_1flj(m)),
8%log L
-B 2 = Ji3= 4ZI11(m 111.?( ))_£_3I1M(m),

= Jig = Jog = —C ¢ Hop(m),

= Jiz=J31 =0,

M
= Jas=Jap=—£2 Iij(m)I;(m)y (€ I1j(m)) + £ 2Ion(m),
=1

2
where 9/(z) = % log I'(z) is the trigamma function. The elements of the variance-covariance matrix
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Y. =TI are then

T

= (JoaJss — J33)/ det(L,),

)
Var(m) = (Ji1Jas)/det(1,),

Var() = (Juda —Jh)/ det(I,),
Cov(C,m) = —(JizJa3)/det(L,),
Cov(C,E) = (Jiatas)/det(L,),
Cov(,€) = —(Ji1Jas)/ det(I,)

where det(In) = Ji1J29J33 — J11J223 — J33J122.

6.2 Maximum likelihood estimation for the random effects model

The log likelihood function for the random effects model is

N
log L(m, &,6,v|data) = Zlong(m,f,c‘I,ﬂdatai)
i=1
N N M;
= Nélog(¢y)+ > logT(mi(ay,) +6) — NlogT'(6) — > ) " log ['(An;)
i=1 i=1 j=1
N M; N
+Y ) (An — 1) log Ati; — Y (miay,) +6) log(tin, +€7)  (6.5)
i=1 j=1 i=1

Here, M; = M, An;; = Anj;, and n;(a,, ) = n(a,,) fori =1,...,N. By computing the first partial

derivatives of (6.5) with respect to each parameter and equating them to zero, we obtain

L (71)

5= - T (6.6)
NEALL @G +tar) ) -
N
Ny log(&7 + tinr) — log(€7) = ¥(8 + & T (7)) — ¥(3), (6.7)
N ;5':1 N M N N
>3 Iy() | log Ati; — 0g(€7)| = N Y- Iy () [ (€10 () — ()] (6.8)
i=1 j=1 j=1

N M N M

I ()Y > Lj(m) [w(é‘—lfu(m)) —log Ata‘j] = Iy (M) ) Y Iy() [¢(§—111j(m)) - 103;Afij]=
i=1j=1 i=1 j=1

(6.9)

The MLE 7, &, and 5 are computed by numerically solving the non-linear system of (6.7-6.9), and
then J is obtained subsequently from (6.6).
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