
THE UNIVERSITY OF TEXAS AT SAN ANTONIO, COLLEGE OF BUSINESS

Working Paper SERIES

WP # 0010MSS-061-2007
February 15, 2007

A Primogenitary Linked Quad Tree Approach for Solution Storage
and Retrieval in Heuristic Binary Optimization

Minghe Sun

Department of Management Science and Statistics
College of Business

The University of Texas at San Antonio
San Antonio, Texas 78249

(210)458-5777 (phone) (210)458-6350 (fax)
minghe.sun@utsa.edu

http://faculty.business.utsa.edu/msun

Copyright ©2006 by the UTSA College of Busines. All rights reserved. This document can be downloaded
without charge for educational purposes from the UTSA College of Business Working Paper Series
(business.utsa.edu/wp) without explicit permission, provided that full credit, including © notice, is given to
the source. The views expressed are those of the individual author(s) and do not necessarily reflect official
positions of UTSA, the College of Business, or any individual department.

ONE UTSA CIRCLE
SAN ANTONIO, TEXAS 78249-0631
210 458-4317 | BUSINESS.UTSA.EDU

A Primogenitary Linked Quad Tree Approach for Solution Storage
and Retrieval in Heuristic Binary Optimization

Minghe Sun

Department of Management Science and Statistics

College of Business

The University of Texas at San Antonio

San Antonio, TX 78249

(210) 458-5777 (phone) (210) 458-6350 (fax)

minghe.sun@utsa.edu

http://faculty.business.utsa.edu/msun

A Primogenitary Linked Quad Tree Approach for Solution Storage

and Retrieval in Heuristic Binary Optimization

Abstract

A data structure, called the primogenitary linked quad tree (PLQT), is used to store and retrieve solutions

in heuristic solution procedures for binary optimization problems. Solutions represented by vectors of binary

variables are encoded into vectors of integers in a much lower dimension. The vectors of integers are used as

composite keys to store and retrieve solutions in the PLQT. An algorithm processing trial solutions for possible

insertion into or retrieval from the PLQT is developed. Examples are provided to demonstrate the way the

algorithm works. Another algorithm traversing the PLQT is also developed. Computational results show that the

PLQT approach takes only a very tiny portion of the CPU time taken by a linear list approach for the same purpose

for any reasonable application. The CPU time taken by the PLQT managing the solutions is negligible as compared

to that taken by a heuristic procedure for any reasonably hard to solve binary optimization problems, as shown in a

tabu search heuristic procedure for the capacitated facility location problem. Compared to the hashing approach,

the PLQT approach takes about the same amount of CPU time but much less memory space while completely

eliminating collision.

Keywords:	 Primogenitary Quad Tree, Data Structure, Heuristic Procedures, Binary Optimization,

Combinatorial Optimization.

1

A Primogenitary Linked Quad Tree Approach for Solution Storage
and Retrieval in Heuristic Binary Optimization

Many combinatorial optimization problems are NP hard and, therefore, are very difficult to solve. Exact

algorithms can solve small problems and heuristic procedures are usually employed for large problems.

Researchers have developed many metaheuristic methods, such as simulated annealing [Kirkpatrick, Gelatt and

Vecchi, 1983], tabu search [Glover, 1989, 1990a, 1990b; Glover and Laguna, 1997], scatter search (Glover, Laguna

and Martí, 2000), genetic algorithms [Holland, 1992], and ant colony optimization (Deneubourg, 1983; Deneubourg

and Goss, 1989), for hard combinatorial optimization problems. These methods provide frameworks or guidelines

in forming a strategy for solving a problem. To solve a specific hard combinatorial optimization problem, a

metaheuristic method has to be tailored to form a specific heuristic procedure to take advantage of the problem

structure. Many heuristic procedures using these metaheuristic methods have been developed for many hard

combinatorial optimization problems. For problems with realistic sizes, heuristic procedures usually take a very

long computation time to find good, but not necessarily optimal, solutions.

The focus of this study is to develop a data structure approach to store and retrieve trial solutions for binary

optimization problems, a specific type of combinatorial optimization problems, in heuristic procedures. The data

structure is called the primogenitary linked quad tree (PLQT), a quad tree with special structures. This approach is

so efficient that the computation time it takes is unnoticeable as compared to that a heuristic procedure takes.

Therefore, it is a handy tool for researchers to use in developing their heuristic procedures for binary optimization

problems.

In Section 1, the binary optimization problem and the necessity for trial solution storage and retrieval are

discussed. In Section 2, alternative ways of representing solutions are discussed and integer vectors are proposed to

encode solutions of binary optimization problems. The PLQT and algorithms managing it are described in Section

3. Examples demonstrating the insertion of integer vectors into and the retrieval of integer vectors from a PLQT are

given in Section 4. Computational results are presented in Section 5. Finally concluding remarks and summaries

are given in Section 6.

1. Introduction

The most common combinatorial optimization problems are binary optimization problems. A binary

optimization problem may be considered to involve a set of objects and a subset of the objects meeting certain

restrictions needs to be selected based on one or more criteria or objectives.

In a project or investment portfolio selection problem [Stummer and Sun, 2005], for example, the objects

are the projects or investment instruments. A portfolio is a selected subset. The major objective is the

maximization of the total expected return on investment although there are other objectives in a multiple criteria

problem [Stummer and Sun, 2005]. The restrictions include the limited budgets, diversification requirements and

balancing requirements among others.

In a facility location problem [Delmaire, Diaz, Fernandez and Ortega, 1998; Ducati, Armentano, and Sun,

2004; Sun, 2005, 2006a], as another example, the objects are the potential sites to locate facilities. A subset of these

sites is selected to actually have the facilities established. Each site has a fixed cost to establish and to operate the

facility and has fixed costs or variable costs to serve the clients, such as transporting the products to the customers.

2

The major objective is to minimize the total costs. The restrictions are to meet the client demands possibly within

the capacities of the selected facilities.

Common to all binary optimization problems is that the status of an object i can be represented by a binary

variable yi , i.e.,

⎧0, if object i is not selected
yi = ⎨

⎩1, if object i is selected.
(1)

Any selected subset, i.e., a solution, for a problem with n objects can be represented by a binary vector with n

elements y = (y0 , y1 ,…, yi ,…, yn−2 , yn−1). Each combination of the n binary variables is a possible solution.

Hence, a problem with n binary variables has 2n possible solutions. However, usually a small portion of the 2n

possible solutions is feasible, i.e., satisfying all restrictions. In a heuristic procedure, usually a very small portion of

the 2n possible solutions is evaluated. In addition to binary variables, most problems also involve real, i.e.,

continuous, variables.

Usually a binary optimization problem can be formulated as a binary mathematical programming model

[Nemhauser and Wosley, 1988; Wosley, 1988] where a restriction is represented by a constraint and a criterion is

represented by an objective function. A binary minimization problem with one objective function may be written as

(,min f x y) (2)

x y) ≥ 0 for i =1,",η (3)s.t. gi (,

x∈ℜn′ , y∈Bn . (4)

Where x represents the vector of real variables and Bn is the collection of all ordered n -tuples of 0s and 1s. The

model is a pure binary programming model if n′ = 0 and is a mixed binary programming model otherwise. In this

study, n > 0 is assumed.

Each y∈Bn determines a trial solution. Once y is determined, the trial solution can be evaluated to

(,determine f x y) . Evaluating a trial solution is usually very time consuming in the solution process. In a portfolio

selection problem, for example, a linear programming problem needs to be solved [Stummer and Sun, 2005]; in a

capacitated facility location problem [Ducati, Armentano, and Sun, 2004], a transportation problem needs to be

solved; and in a single source facility location problem [Delmaire, Diaz, Fernandez and Ortega, 1998], a

generalized assignment problem, which is itself a binary optimization problem, needs to be solved, to evaluate a

solution. Therefore, each solution needs to be evaluated only once in an efficient heuristic solution procedure.

Once evaluated, the solution may be saved or stored and may be retrieved later if needed. In the solution process

using a heuristic procedure, many solutions are evaluated.

When such a problem is solved with a heuristic procedure, the solution process usually follows a selective

trajectory in the solution space. At a visited solution on the trajectory, a neighborhood is created by evaluating or

retrieving one or more trial solutions. A trial solution may be obtained by changing the value of one binary

variable, called a simple move, or by changing one binary variable from 0 to 1 and another from 1 to 0, called an

exchange or swap move. For each trial solution, the saved solutions may be searched to find out if it has already

been evaluated and saved. If found, the trial solution is retrieved and does not need to be evaluated again;

otherwise, the trial solution is evaluated and saved. Based on some predefined rules, the procedure selects one of

3

these evaluated trial solutions as the next visited solution to move to. A move is the transition from the current

solution to one in the neighborhood. Once a solution is visited, it does not need to be visited again. If a solution is

visited the second time, the same trajectory may be followed again if the predefined rules do not change and, hence,

repetition or cycling may occur. Therefore, measures are usually taken by heuristic procedures to prohibit the visit

of solutions which have been visited already. For this purpose, the visited solutions need to be memorized in some

way.

Hence, there are two purposes for storing the evaluated solutions. One purpose is to save computation

time. Once a trial solution is found to be evaluated already, it does not need to be evaluated again and only needs to

be retrieved. The other purpose is to prevent repetition or cycling. Once a solution is found to be visited, it may not

be selected to visit again.

The PLQT approach developed in this study can be used by any heuristic procedure for any binary

optimization problem. The PLQT is a new data structure recently developed by Sun [2006b] for fast access of data,

or data with composite keys, in ℜK . It is an enhancement of the more traditional quad tree data structure [Finkel

and Bentley, 1974; Habenicht, 1982, 1991; Sun and Steuer, 1996a, 1996b]. Compared to the traditional quad tree,

the PLQT uses substantially less computation time and takes considerably less memory and storage space [Sun,

2006b]. Among others, quad trees have been employed in discrete multiple criteria optimization, geometric

information systems, image processing, and computer aided design and computer aided manufacturing. Sun

[2006b] showed through computational experiment that the PLQT is much faster than the traditional quad tree,

which is in turn much faster than the linear list, in identifying, storing and retrieving nondominated solutions in

discrete multiple criteria optimization. The PLQT is even much faster in storing and retrieving trial solutions in

heuristic procedures because the PLQT does not need to be reconstructed as in the application reported by Sun

[2006b].

2. Integer Representation of Binary Solutions

Let b represent the number of bits used to represent an integer. Most computer languages use 2 or 4 bytes

of memory to represent an integer. If 2 bytes are used, b = 16 , and if 4 bytes are used, b = 32 . Both positive and

negative integers that can be represented by b bits can be used for this application. However, for easy description

only unsigned integers are used in the following discussion. Therefore, the range of integers a computer can

represent is between 0 and 2b −1 and the maximum number of different integers a computer can represent is 2b .

2.1 Integer Coding of Binary Solutions

The binary vector y = (y 0 , y 1 ,…, yi ,…, yn−2 , yn−1) representing a trial solution can also be written as a

binary number with n digits, i. e ., (yn −1 yn−2 … yi … y 1 y 0). A decimal integer z equivalent to this binary number

is determined by
n −1

iz =∑ 2 y . (5)i
i =0

The decimal integer z is unique for each binary vector y = (y 0 , y 1 ,…, yi ,…, yn−2 , yn−1) and ranges from

n0 to 2 −1 . The 2n possible solutions of a binary optimization problem with n binary variables can be naturally
nordered from 0 to 2 −1 . Therefore, the decimal integer z can be used naturally as the index to store the evaluated

4

solutions in an array with 2n elements, i.e., the solution with an index z is stored at position z . There are two

difficulties with this approach. One is representability because managing the trial solutions this way becomes

> > ≤impossible when n b . Unfortunately, most hard to solve problems have n b . When n b , the binary

optimization problem is relatively easy to solve and sophisticated heuristic procedures may not be needed. The

other difficulty is the waste of memory space. Because only a small portion of the 2n possible solutions is feasible

and only a small portion of the feasible solutions is evaluated in the solution process, it is very inefficient to store

these solutions in an array with 2n elements and the memory spaces for the infeasible solutions and for solutions

not evaluated are wasted.

Naturally the evaluated solutions may be stored in two different ways if an array or a list with fewer than

2n elements is used. One way is to arrange them in the order of increasing value of z . However, storing them in

this order is a very time consuming process. Another way is to store the evaluated solutions in the order that they

are found. The problem with this approach is that searching the array for a specific solution is a very time

consuming process. Managing these solutions using these approaches takes most, e.g., up to 99% [Stummer and

Sun, 2005], of the computation time in some heuristic solution procedures.

2.2 Hashing

Researchers have proposed and used hashing for storage and retrieval of evaluated solutions in heuristic

procedures [Woodruff and Zemel, 1993; Carlton and Barnes, 1996; Klein, 2000; Ducati, Armentano, and Sun,

2004]. Woodruff and Zemel [1993] proposed four hash functions for different neighborhood structures used in tabu

search. The original purpose was to use the saved solutions to implement tabu conditions. The first two hash

functions are given in (6) and (8) in the following.

The first hash function is
n−1

h = ∑w y , (6)i i
i=0

where wi for i = 0,", n −1 are a set of randomly generated integers. Then h determines the position where the

corresponding solution (or its objective function value) is stored in a 2b array. When yi changes its value in a trial

solution, h can be easily updated from its current value. For binary optimization, h in (6) can be updated using (7)

in the following,

h wi if yi changes from 1 to 0 ⎧ −
h ← ⎨h wi if yi changes from 0 to 1. (7)

⎩ +

The second hash function is

n−1 ⎞⎛
h = ⎜∑w y i i ⎟ mod Φ . (8)

⎝ i =0 ⎠

Then h is used as the index to store the corresponding solution in an array with Φ elements. The two hash

functions in (6) and (8) are in fact the same when Φ = 2b as originally proposed. However, the one in (8) explicitly

∑ i
n
=
−

0
1handles memory overflow, i.e., what to do when w y ≥Φ . In (6), Φ = 2b is assumed and the “mod” i i

operation is performed through memory overflow. When Φ < 2b , e.g., as used by Klein [2000], an array with

fewer than 2b elements is needed to store the data. In this case, a “mod” operation, which is much more time

5

consuming than integer addition or subtraction, has to be performed. When Φ < 2b , h in (8) cannot be updated

using (7). Therefore, the computation of h in (8) is much more time consuming than that in (6).

Hashing somewhat overcomes the two difficulties mentioned above but has its own disadvantages [Carlton

and Barnes, 1996]. The major disadvantage is collision which imposes another difficulty. Collision occurs when

two or more solutions have the same hash value h . As Carlton and Barnes [1996] pointed out, collision may cause

problems in the heuristic procedure if extra care is not taken in the implementation. To avoid excessive rate of

collision, an array much larger than that actually needed must be used. Therefore, the difficulty of memory waste is

not completely overcome. Auxiliary data structures may have to be used to handle collisions, as discussed in any

data structures textbooks. Because of collision, when the position that a new solution hashed to is occupied, a

comparison has to be made to check if the saved solution and the new solution are the same solution or not.

Therefore, extra computation time may be needed.

If m solutions are to be stored in an array with Φ elements, assuming h is uniformly distributed between

0 and Φ −1 , the probability of collision, denoted by P (collision) , is given by

Φ !1P (collision) = − . (9)m(Φ −m)!Φ

mIn (9), ! (mΦ Φ −)! is the number of ways to put each of the m solutions in a unique position, Φ is the number

m ⎤⎡of total ways to put the m solutions in Φ positions, and Φ ! (Φ −m)!Φ ⎦ is the probability of no collision. ⎣

Carlton and Barnes [1996] listed P(collision) for different values of m and Φ . Even with Φ = 2b , P (collision)

becomes pretty large even for reasonably small values of m . If h is not approximately uniformly distributed

between 0 and Φ −1 , P(collision) may be higher [Carlton and Barnes, 1996]. Very likely, h is not appoximately

uniformly distributed if wi for i = 0,", n −1 are not carefully chosen. Unfortunately, choosing a good set of wi

may not be an easy task.

Woodruff and Zemel [1993] listed the following three goals for a hash function. (1) Computation and

update of h should be as easy as possible. This means that the structure of h should reflect the structure of the

neighborhood sets. (2) The integer generated should be in a range that results in a reasonable storage requirement

and comparison effort (e.g. , an integer requiring two or four bytes). (3) The probability of collision should be low.

A collision occurs when two different vectors are encountered with the same hash function value. These goals may

also be used as criteria to measure other solution storage and retrieval approaches.

2.3 Integer Vector Representation of Trial Solutions

In this study, an integer vector z∈ Z K with K = ⎡⎢n b ⎥ is used to encode a trial solution. The notation ⎤

⎢ ⎥ represents the smallest integer greater than x and Z K is the collection of all K -tuples of integers. In the⎡ ⎤x

K m ′ following, z∈ Z K is used to represent a generic vector, and zi ∈ Z , z ∈ Z K and so on are used to represent

specific vectors in Z K .

The binary vector y = (y , y ,…, yi ,…, yn−2 , yn−1) is divided into K sections with b elements in each 0 1

section except for the last section. For convenience, the left most section is designated the first section, i. e. , section

0, and the right most section is designated the last, i.e ., section K −1 . The elements in section k are

6

(ykb , ykb+1 ,…, ykb +i ′ ,…, y (1)b −2 , y (1)b −1) for k = 0,", K − 2 , and (ykb , ykb+ ,…, ykb +i ′ ,…, yn−2 , y −) fork + k + 1 n 1

=k K −1 . For example, for a problem with n = 200 binary variables when b = 32 , the integer vector z has

K = ⎡⎢n = 200 32 ⎤ = 7 elements. The elements in section 0 are (y 0 , y 1 ,…, y 31), those in section 1 are b ⎤ ⎡ ⎥ ⎢ ⎥

(y 32 , y 33 ,…, y 63), and those in section 6 are (y 192 , y 193 ,…, y 199).

As z in (5), an integer zk for section k is defined as

uk

2i kb y .zk = ∑ −
i (10)

i kb=

nwhere uk = (k +1)b −1 for k = 0,", K − 2 and uK −1 = n −1 . There is a one to one correspondence between y ∈B

z z 1," zK −1) is used as the composite key to store and and z∈ Z K but K is much smaller than n . Then z = (,0

retrieve the trial solution represented by y .

Although it is very efficient to compute the vector z by using the definition in (10), the components of z

need to be computed using (10) only for the first trial solution while those for subsequent trial solutions only need

to be updated from their current values. Suppose the binary variable yi is going to change its value in the next trial

solution in a simple move. The section k ′ where yi is located in the vector y is determined by

k ′ = ⎢ ⎥⎣ ⎦i b . (11)

The notation ⎣ ⎦ represents the largest integer smaller than x . Then only the value of zk ′ will be changed from ⎢ ⎥x

its current value and the values of zk will stay the same for all k k ′ . Let ≠

i ′i ′ = − k b . (12)

Then i ′ is in the position where yi is in section k ′ . The value of zk ′ is then updated using (13) in the following

i ′⎧⎪z − 2 , if yi changes from 1 to 0 k ′ zk ′ ← ⎨ (13)
⎪z i ′
⎩ k ′ + 2 , if yi changes from 0 to 1.

′ ′ bIn the implementation, the values of 2i for 0 ≤ i ≤ −1 are computed only once and stored in an array

with b elements. Hence, they do not need to be computed each time when needed in (10) or (13). In fact in some

computer languages, they may not need to be computed and stored but can be obtained through the “bitwise shift”
′ i ′ boperation when needed because only the i ′ th bit is on and all others are off in 2i for any 0 ≤ ≤ −1. In some

′ i ′ bcomputer languages, 2i for 0 ≤ ≤ −1 can also be treated as masks and (10) and (13) can be implemented

through bitwise manipulations. Because (13) just simply toggles one bit of zk ′ on or off, it can be implemented

through the “bitwise exclusive or” operation. The values of k ′ and i ′ may be tracked and may not have to be

computed through (11) and (12) in the implementation. More complicated, such as swap or exchange, moves can

be decomposed into multiple simple moves and (11)-(13) can be used multiple times to update the relevant elements

of z .

The difficulty of representability mentioned above is completely overcome with the integer vector

representation. The difficulty of memory waste is also resolved when the evaluated solutions are stored in a
nspecific order. Because of the one to one correspondence between y∈B and z ∈ Z K , the difficulty caused by

collision is completely eliminated.

7

2.4 An Example

Assume there are n = 150 binary variables in a binary optimization problem. Also assume 4 bytes are used

to represent an integer, i.e., b = 32. Then an integer vector of K = n b ⎡ ⎤ ⎡⎢ ⎥ ⎢= 150 32 ⎤ = 5 elements is needed to ⎥

represent one solution. In the current solution, assume

⎧1, if i mod 5 = 0
yi = ⎨

⎩0, otherwise,

i.e., the value of every fifth binary variable starting from y0 is 1 and all others are 0. Using (10), the current

solution is encoded as z = (z0 , z1 , z2 , z3 , z4) = (1108378657, 277094664, 2216757314, 554189328, 135300).

Suppose in the next trial solution to be checked, y49 is going to change from 0 to 1. According to (11),

49 32 ⎥ ′ 49 32⎦ =1, and according to (12), i′ = i − k b = − = 17 . Hence, only z1 needs to be updated k ′ i b ⎢ ⎥ ⎢⎣ ⎦ ⎣= =

from its current value. The new value of z1 will become 277094664+131072=277225736 according to (13).

Suppose in the following trial solution to be checked, y100 is going to change from 1 to 0. According to (11),

k ′ i b ⎢ ⎥ ⎢⎣ ⎦ ⎣= = 100 32 ⎦ = 3 , and according to (12), i′ = i − k b =100 −3(32) = 4 . As a result, only z3 needs to be ⎥ ′

updated. The new value of z3 will become 554189328–16 = 554189316 according to (13). If both y49 and y100

are changed in the next trial solution in an exchange move, then both z1 and z3 are updated at the same time.

2.5 The Linear List Approach

A natural approach to manage the evaluated solutions encoded with integer vectors is to keep them in a list

or an array. In addition to the integer vector z , other relevant information may also be saved for each evaluated
1 m′ solution. Suppose m′ evaluated solutions represented by the integer vectors z , " , zi , " , z have been added

to the list already in this order. When a new vector z is processed for addition to or retrieval from the list, it is

compared with each zi component by component starting from z1 . Such a comparison is called a pairwise vector
icomparison. Once any corresponding components of z and zi are found to be different, i.e., zk ≠ zk for any

0 ≤ ≤ −1 , this pairwise vector comparison between z and zi will stop. The rest of the components do not k K

need to be compared. Therefore, most of the pairwise vector comparisons in this approach are partial comparisons.
i k K iIf zk = zk for all 0 ≤ ≤ −1 for any i , then zi = z . In this case, the process stops after z is retrieved. If z

i mhas been compared with all zi for 1 ≤ ≤ ′ but none of them can be retrieved, z is then added to the end of the

list as zm′+1 . This approach is called a linear list approach and will be used as a benchmark to measure the

performance of the PLQT approach in the computational experiment. The following is the algorithm of the linear

list approach.

Routine linearlist(m′ , z)

Step 1 Let i =1.

Step 2 Let k = 0 .

Step 3 If zk ≠ zk
i , go to Step 6.

Step 4 Let k ← +1 . If k Kk ≤ −1 , go to Step 3.

Step 5 Return zi .

8

Step 6 let i ← +1. If i m′ , go to Step 2.

Step 7 Let zm′+1 = z and m′ ← m′ +1 . Return.

i ≤

3. The PLQT Data Structure and Algorithms

A PLQT is used to process, store and retrieve data, or data having composite keys, with hierarchical

relationships in ℜK for K ≥1. The data processed with a PLQT in this application are the integer vectors

representing the trial solutions, i.e., data in Z K . Terminologies in genealogy used to describe the hierarchical

relationship between a person and his or her ancestors, siblings and successors are usually borrowed to describe the

hierarchical relationship among the elements of a PLQT. Sun [2006b] gave a detailed description of PLQTs. In

this section, only the terminologies necessary for the application in this study are given and the algorithms

managing the PLQT are then developed. In the following, z∈ℜK is also used to represent a generic vector and

zr s t∈ℜK , z ∈ℜK , z ∈ℜK and so on are used to represent specific vectors in ℜK .

3.1 PLQT Structure and Terminology

A PLQT is a finite set of elements one of which, if any, is called the root and the rest are partitioned into

2K disjoint sets each of which is itself a PLQT, called a subtree. Each element in a PLQT is a node that has two

parts, a data part and an address part. The data part represents a record that may be a vector z∈ℜK or may have a

vector z∈ℜK as its composite key. In the later case, the record has other data fields. In the application of this

study, z ∈ Z K computed with (10) or updated with (13) is the composite key. Other data fields may include the

value of the objective function and possibly the values of other real variables, i.e., x ∈ℜn′ , of the corresponding

solution. Because the composite key uniquely identifies a data record contained in a node, z refers to the

composite key, the record and the node of the PLQT. The address part represents the relationship of the node to

other nodes in the hierarchy. Usually, T is used to represent a generic PLQT and Tz is used to represent a PLQT

with z as its root. Sometimes, z ∈T is used to indicate the fact that z is a node in T .
r s sIf zs ∈T r is the root of any of the subtrees of z , zr is called the parent of z and z is called a son of

z

rz . For data in ℜK , a node may have up to 2K sons. The sons are ordered, or indexed, sequentially from 0 to

2K −1 . Some of the sons may not exist in T . A position in T is available for each son whether it exists or not. r rz z

s r s rIf z is a son of z and is put at the φth position when the sons are ordered, z is called the φ − son of z and φ

sis called the successorship of z to zr . S z() is used to denote the successorship of z to its parent, i.e., z is the

S z() − son of its parent. The son of z ∈T with the smallest successorship among all existing sons of z is called

the eldest (first-born) existing son of z . F z() is used to denote the eldest existing son of z .

Each node except for the root has a unique parent. A node that does not have an existing son is a leaf

node. If z ∈T is a leaf node, it does not have any successors; otherwise, each son of z and all the successors of
s seach son of z are the successors of z . If z is the φ − son of zr ∈T , zs and all the successors of z are the

r r rφ − successors of z . All the φ − successors of z form a subtree rooted at the φ − son of z . The root of a PLQT

is assigned a level 0. The level of each other node is 1 greater than that of its parent. The level of the PLQT is the

9

level of the node with the largest level in the PLQT. All the nodes at the same level form one level of the PLQT.

The shape of a PLQT refers to the way it is filled. With the same number of nodes, the larger its level is, the more

sparsely it is filled.
s r rNodes sharing the same parent are siblings. If z is the φ − son of z and zt is the ϕ − son of z with

s s tφ < ϕ , then zt is a younger sibling of z . If there does not exist any other sibling between z and zt , then z is

s () is used to denote the immediate existing younger sibling of z .

For notational convenience, N z () are defined as nodes in a PLQT. However, they are used as

the immediate existing younger sibling of z . N z

() and F z

pointers in the implementation. Therefore, N z () refer to pointers and the nodes they point to in the () and F z

following discussion. In the implementation, a node is represented by a structure, N z () are represented () and F z

by pointers and S z() is represented by an integer. For most applications, an integer with one byte or two bytes,

e.g., a “unsigned char” or “unsigned short” data type in C, is sufficient for S (z) . Compositions of these notations

may be used when convenient. For example, S F z)) is used to represent the successorship of F z((() to z and

((
S N z)) is used to represent the successorship of N (z) to its parent.

The address part of a node z ∈ T has three fields, N z () and S z() , F z () . In the application studied by

Sun [2006], another pointer pointing to the parent of the node is also used. However, in the current study, such a

pointer is not necessary. A pointer points to NULL, i.e., nowhere, if the node that it points to does not exist. From

z , N (z) and F (z) can be accessed directly. All other successors of z can be accessed from z only through F (z)

and all other younger siblings of z as well as their successors can be accessed from z only through N z() . The

siblings are connected and managed as a linked list.

3.2 Hierarchical Relationship among Nodes

Each evaluated solution is treated as a node in the PLQT. As discussed above, the integer vectors z

determined through (10) or updated through (13) representing the trial solutions are the composite keys of the nodes

in a PLQT. The way in which these integer vectors are organized in a PLQT is described in the following.
r ∈ Z KWhen two integer vectors z and zt ∈ Z K are compared component wise, a binary digit φ isk

defined as
r⎧⎪0, if zk

t ≥ zk (14)φ = ⎨k
⎪1, otherwise ⎩

and an equivalent decimal integer φ is

K −1
kφ = ∑φ 2 . (15)k

k =0

t t rThen φ is the successorship of z to zr , i.e., z is a φ − successor of z , and φK −1φK −2... φ0 is the binary

tequivalent of φ . With φ defined in (14) and φ defined in (15), z = zr is possible only if φ = 0 . Although there k

r rare other ways to define the successorship of zt to z , i.e., to order the successors of z , the way given in (14) and

(15) is convenient to implement and efficient to execute.

10

When a pairwise vector comparison is made in the PLQT approach, all corresponding components of the

two vectors must be compared and the integer φ is computed. Therefore, unlike the partial comparison in the

linear list approach, a pairwise vector comparison in the PLQT approach is a full comparison.

Just like in (10) and (13), the values of 2k for 0 ≤ k K − 1 do not need to be computed each time when ≤

(15) is used in the implementation. They need to be computed only once and then stored in a K dimensional array
′ ′ ≤ −for later use. In fact, the array of 2i for 0 ≤ i b 1 used in (10) and (13) is sufficient for (15) for any application.

The value of each 2k can also be obtained through the “bitwise shift” operation each time when it is used.

Obtaining the value of 2k through the “bitwise shift” operation does not take more time than locating it in an array.

The value of φ in (15) can also be computed through bitwise manipulations because the φ th bit is simply toggled k

on when φ k = 1 . In C, for example, it can be implemented through the “bitwise or” operation or the “bitwise

exclusive or” operation.

3.3	 Node Insertion and Retrieval in a PLQT

Routine process() in the following is used to process z for possible insertion into or for possible retrieval

from T r . If z is in T already, it is retrieved; otherwise, it is inserted. The retrieved node is passed back rz z

u r	 rthrough the argument z . The process starts from z by determining the successorship φ of z to z . If φ = 0

r	 uand z z= , then z is in T r already and the process returns z = zr in Step 1. If the process continues, it checks
z

r	 rF zr	 () does not exist or if its successorship is larger than φ , z is then () , the eldest existing son of z . If F z

rinserted as the new F z() and the process returns zu = NULL in Step 2. Otherwise, it follows the immediate

younger sibling of each node until reaching the last node or reaching a node with a successorship larger than φ in

s s s s() ≤ φ . If S zStep 3. This step stops at a node z with S z () = φ , then z becomes the root of the new subtree

s	 sinto which z is inserted or from which z is retrieved in Step 4. Otherwise if S z	 ()() < φ , z is inserted as N z

rand as the φ − son of z , and the process returns zu = NULL in Step 4. The routine is recursive. A pairwise vector

rcomparison between z and an existing node of T r is made only at the root z each time when Routine process()
z

is called.

r uRoutine process(z , z , z)
r	 rStep 1. 	 Determine φ by which z is a φ − successor of z through (14) and (15). If φ = 0 and z z= , let

zu ← zr and return.

r
() ((z r zr () ← NULL, S zStep 2. If F zr = NULL or S F z)) > φ , let N () ← F (z) , F () ← z , F z () ←φ and

zu ← NULL, and then return.

s s
Step 3.	 Let z ← F zr () ((s () .() . While N zs ≠ NULL and S N z)) ≤ φ , let z ← N zs

s s	 s sStep 4.	 If S (z) = φ , execute process(z , z , zu). Otherwise, let N (z) ← N (z) , N (z) ← z , F z() ← NULL,

S z u() ←φ and z ← NULL, and then return.

11

At each level of the PLQT where Routine process() reaches, at most one pairwise vector comparison is

made. At the last level where it reaches, a pairwise vector comparison is made only when z is retrieved but no

comparison is made when z is inserted. Therefore, the number of pairwise vector comparisons needed to process a
snode is determined by the level of the PLQT. For each node z chased in Step 3, only an integer comparison

s sbetween φ and S z() is made. After such an integer comparison is made, all successors of z are jumped over.

s r s() > φ needs to be visited. Only the sons of one node may Furthermore, none of the successors z of z with S z

need to be searched at the next level where Routine process() reaches. Because a node has at most 2K sons, the

expected number of integer comparisons in Step 3 is at most 2K − 1 at each level of the PLQT. As a result, only a

very tiny portion of the PLQT needs to be searched to find a specific node in the PLQT or to insert a node into the

PLQT. Hence, the PLQT approach for trial solution storage and retrieval is computationally very efficient.

When a trial solution is to be checked in a heuristic procedure, an integer vector z is determined first

through (10) or (13). Then z is processed by Routine process() for possible insertion into or retrieval from T r . If
z

z is inserted into T r , the process returns zu = NULL. In this case, the trial solution will be evaluated and then
z

stored with z in the PLQT. If z is in T r already, the process retrieves the solution with the stored node. In this
z

case, the trial solution does not need to be evaluated again.

The three goals listed by Woodruff and Zemel [1993] for a hash function are now used as criteria to

measure the PLQT approach. For criterion 1, the computational effort needed to update z in the PLQT approach is

approximately the same as that needed to update h in the hashing approach if Φ = 2b . Both of them need an

integer addition or subtraction as shown in either (7) or (13). As mentioned above, a “mod” operation is needed in

the hashing approach if Φ < 2b . For criterion 2, although the PLQT approach needs to store the integer vector z ,

the pointers N (z) and F (z) , and the integer S (z) for an evaluated solution, it still uses only a very tiny portion of

the memory space used by the hashing approach for any reasonable application because the hashing approach may

need memory spaces for 2b float numbers. The linear list approach needs to store the integer vector z for each

evaluated solution but not the address part in a node of a PLQT. The PLQT approach needs more integer and

pairwise vector comparisons than the hashing approach if the hashing approach does not have a mechanism to

handle collision. However, comparisons are needed in the hashing approach if a mechanism handling collision is

included. As shown by the computational results, the computational effort of the PLQT approach is negligible as

compared to that of a heuristic procedure for any reasonable application even though comparisons are needed. For

criterion 3, the PLQT approach completely eliminates collision while the probability of collision is high in the

hashing approach even with Φ = 2b [Carlton and Barnes, 1996].

In summary, as compared to the hashing approach, the PLQT approach needs equal computational effort

and much less memory space but completely avoids the difficulty of collision. Compared to the linear list

approach, the PLQT approach takes memory space to store N z () and S z() , F z () for each trial solution

represented by z but saves tremendous amount of computation time.

3.4 Traversal of a PLQT

Sometimes the PLQT may need to be traversed, e.g., when the contents of all nodes in the PLQT need to
rbe printed. Routine outtree() in the following serves this purpose. To traverse T , the routine starts with z byrz

12

r r r	 rprinting the content of z in Step 1. If F z	 ()) is executed in Step 2. If N z() exists, then outtree(F z	 () exists,

rthen outtree(N z()) is executed in Step 3. This routine is also recursive. The nodes in a PLQT may be traversed in

different orders. The order used in Routine outtree() is called “preorder” by data structure textbooks for other types

of tree data structures.

rRoutine outtree(z)
rStep 1. 	 Print out z .

r	 r() ≠ NULL, execute outtree(F zStep 2. If F z ()).

r	 rStep 3.	 If N z ()).() ≠ NULL, execute outtree(N z

4. Examples

PLQTs can be depicted graphically. In a graph, each node is represented by a rectangle. The vector z is

at the bottom and the successorshop to its parent S (z) is on the top of the rectangle. The pointers N (z) and F (z)

are represented by arrows if they point to other nodes and are not shown if they point to NULL. PLQTs with data

in Z 3 are used in the following examples. For easy illustration, each component of z has only one or two digits in

the examples. In storing and retrieving trial solutions in a heuristic procedure with b = 32 , each component of z

has up to 10 digits. The purpose of these examples is to show how Routine process() works rather than to verify the

efficiency of the PLQT approach.

4.1	 Insertion of a Node between Siblings

Lets first process the vector z1 = (17, 59, 7) for possible insertion into or retrieval from the PLQT in

Figure 1. In Step 1 of Routine process(), z1 is determined to be a 4–successor of (3, 36, 27), the root of the PLQT.

Because the root has an eldest existing son already, Step 2 is not executed. In Step 3, it chases the pointers and

stops at node (80, 84, 26), the 4–son of the root. In Step 4, Routine process() is called again to insert z1 into or

retrieve z1 from the subtree rooted at (80, 84, 26).

In Step 1 of Routine process(), z1 is determined to be a 7–successor of (80, 84, 26), the root of the subtree.

Because (80, 84, 26) has an eldest existing son already, Step 2 is skipped. In Step 3, the chasing of pointers stops at

node (47, 59, 12). Because the successorship of (47, 59, 12) is also 7, this node becomes the root of the new subtree
1into which z1 is to be inserted or from which z is to be retrieved.

In Step 1 of Routine process(), z1 is determined to be a 5–successor of (47, 59, 12). Step 2 is skipped

again because (47, 59, 12) has an eldest existing son already. In Step 3, it stops at node (36, 49, 19) when chasing

the pointers. Because the successorship of (36, 49, 19) is less than 5, z1 is inserted as the immediate existing

younger sibling of (36, 49, 19) and as the 5–son of (47, 59, 12). The resulting PLQT is shown in Figure 2.

Figures 1 and 2 approximately here

4.2	 Insertion of a Node as the Only Existing Son

Next z2 = (48, 34, 63) is processed for possible insertion into or retrieval from the PLQT in Figure 2. In

Step 1 of Routine process(), z2 is determined to be a 2–successor of (3, 36, 27), the root of the PLQT. Because (3,

36, 27) has an eldest existing son already, Step 2 is not executed. In Step 3, it stops at (67, 30, 32) when chasing the

13

pointers. Because (67, 30, 32) is the 2–son of (3, 36, 27), it becomes the root of the new subtree into which z2 is

inserted or from which z2 is retrieved.

In Step 1 of Routine process(), z2 is determined to be a 1–successor of (67, 30, 32). Because (67, 30, 32)

does not have any existing son, z2 is inserted as the 1–son, and also as the eldest existing son, of (67, 30, 32) in

Step 2. The resulting PLQT is shown in Figure 3.

Figure 3 approximately here

4.3	 Insertion of a Node as the Eldest Existing Son

In the following, z3 = (88, 38, 26) is processed for possible insertion into or retrieval from the PLQT in

Figure 3. In Step 1 of Routine process(), z3 is determined to be a 4–successor of (3, 36, 27), the root of the PLQT.

Because (3, 36, 27) has an eldest existing son already, Step 2 is not executed. In Step 3, the pointer chasing stops at

(80, 84, 26). Because (80, 84, 26) is the 4–son of (3, 36, 27), it becomes the root of the new subtree into which z3

is inserted or from which z3 is retrieved.

In Step 1 of Routine process(), z3 is determined to be a 2–successor of (80, 84, 26). Because the

successorship of the eldest existing son of (80, 84, 26) is larger than 2, z3 is inserted as the 2–son, and as the new

eldest existing son, of (80, 84, 26) in Step 2. The resulting PLQT is shown in Figure 4.

Figure 4 approximately here

4.4	 Retrieval of a Node

Finally z4 = (33, 54, 29) is processed for possible insertion into or retrieval from the PLQT in Figure 4. In

Step 1 of Routine process(), z4 is determined to be a 0-successor of (3, 36, 27). Because (3, 36, 27) has existing

sons already, Step 2 is not executed. In Step 3, the pointer chasing stops at (92, 76, 39) that becomes the root of the

new subtree into which z4 is inserted or from which z4 is retrieved.

In Step 1 of Routine process(), z4 is determined to be a 7–successor of (92, 76, 39). Because (92, 76, 39)

has existing sons already, Step 2 is not executed. In Step 3, it stops at (33, 54, 29) when chasing the pointers.

Because (33, 54, 29) is the 7–son of its parent, it becomes the root of the new subtree into which z4 is inserted or

from which z4 is retrieved.

In Step 1 of Routine process(), z4 is determined to be a 0–successor of (33, 54, 29) and to be equal to (33,

54, 29). Hence, (33, 54, 29) is retrieved.

5. Computational Results

A computational experiment is designed to test the performance of the proposed PLQT approach. The data

structure and the algorithms were coded in C. To establish a benchmark, the linear list approach, also coded in C, is

also used for the same test problems. Because the hashing approach uses a totally different strategy, it is not used in

the computational experiment for comparison purpose. A tabu search heuristic procedure for the capacitated

facility location problem is used as an example to provide some insight about the CPU time taken by the PLQT

approach relative to the total CPU time taken by a heuristic procedure. All the computations were conducted on a

Sun Enterprise 450 computer with two 400 Mhz processors (only one is used) and 1.5 GB RAM.

14

5.1 Test Problems

Randomly generated test problems are used. Each test problem is measured by the number of integer

vectors m , i.e ., the number of trial solutions to be inserted into or retrieved from a PLQT, the dimension of the

integer vectors K , and the rate of duplication r . Integer vectors are randomly generated from Z K . With b = 32 ,

each component zk of any integer vector z is in the range 0 ≤ zk < 232 . Five values for m are used with

m = 5,000, 10,000, 20,000, 40,000 and 80,000, respectively. Three values for K are used with K = 3, 5 and 7,

respectively. With b = 32 , these K values are for binary optimization problems with up to n = 96, 160, and 224

binary variables. The values of r used are r = 0.0, 0.2, 0.4, 0.6 and 0.8, respectively. To imitate the process trial

solutions are generated in a heuristic solution procedure, some integer vectors are duplicated. The duplicate integer

vectors are mingled randomly with the rest. Before an integer vector is generated, a random number r ′ is

generated first. If r ′ < r , one integer vector randomly selected among all those previously generated is copied;

otherwise, a new integer vector is generated. Given the method these test problems are generated, the actual

duplication rate in each test problem is approximate but very close to r , i.e. , approximately rm integer vectors

appear more than once among the m integer vectors. Each combination of m , K and r defines a problem

category. As a result, 75 problem categories are used in the computational experiment. For each problem category,

30 randomly generated test problems are used. For each problem, the integer vectors are processed one by one for

possible insertion into or retrieval from a PLQT. An integer vector is inserted into the PLQT if it is not in the

PLQT already and is retrieved otherwise. The integer vectors of each test problem are processed in the same order

in the linear list approach as in the PLQT approach.

Some capacitated facility location problems in the OR-Library [Beasley, 1990] are used for the

computational experiment to measure the CPU time taken by the PLQT approach relative to that taken by a

heuristic procedure. The size of each problem is measured by the number of potential locations for the facilities n

× ×and the number of clients n ′′ . The 12 problems with n n ′′ = 50 × 50 and the 12 problems with n n ′′ = 100 × 1000

are used. The test problems are organized into 6 groups with 4 problems in each group in the OR-Library. The

names of the problems are originally used in the OR-Library. For each of these problems, a total of approximately

5,000 trial solutions are either evaluated or retrieved from the PLQT. When a trial solution is evaluated, a

transportation problem is solved. ILOG CPLEX® 10.0.1 is used to solve transportation problems through the

function call CPXNETprimopt(). After the first transportation problem is solved, each of the subsequent

transportation problems is solved from the optimal solution of another. Starting from the optimal solution of one

trial solution, 10 other trial solutions are checked. The basis of this starting solution is saved through the function

call CPXNETgetbase(). Each of the 10 trial solutions is obtained from this starting solution by opening or closing

one facility. A facility is closed by setting its capacity to 0 and is opened by restoring its original capacity through

the function call CPXNETchgsupply(). The basis of the starting solution is passed to CPLEX by the function call

CPXNETcopybase().

5.2 Test Results

For each test problem, the number of pairwise vector comparisons and CPU time used to process all

vectors, denoted by cp and t for the PLQT approach and cl and tl for the linear list approach, are recorded. Thep

averages of cp and t of the 30 test problems in each problem category, denoted by cp and t , are reported inp p

Table 1. The averages of cl and tl of the 30 test problems in each problem category, denoted by cl and tl , are

15

reported in Table 2. The ratio t tl p is computed for each test problem. The minimum (min), average (avg) and

maximum of these ratios of the 30 test problems in each problem category are reported in Table 3.

Tables 1, 2 and 3 approximately here
Given fixed m and K , cp and t all decrease as r increases with one exception. As r increases, thep

number of nodes in the PLQT decreases. Therefore, fewer nodes need to be searched or compared when a vector is

processed for possible insertion or retrieval. However, each vector must be processed whether it is inserted or

retrieved. Hence, when r increased from 0.0 to 0.8, the number of nodes in the PLQT reduced by about 80%, cp

reduced slightly and tp reduced less than 50%. When r increased from 0.0 to 0.2, cp increased, rather than

decreased, slightly for K = 5 and 7 as shown in Table 1. This exception is possibly caused by the shape of the

PLQT. The decrease in cl or tl is more drastic as r increases as shown in Table 2. The ratio t tl p also decreases

as r increases as shown in Table 3. With this decrease, the linear list approach still takes much more CPU time

than the PLQT approach even for problems with r = 0.8 .

Given fixed m and r , cp decreases but t increases when K increases. When K increases, the number p

of sons of each node increases and the PLQT becomes shorter and flatter in general. Therefore, the number of

nodes to be compared decreases when a vector is processed. However, more components need to be compared

when a pairwise vector comparison is made and more nodes need to be searched when a vector is processed and,

hence, more CPU time is needed. For fixed m and r , no specific pattern is noticed for the changes in cl while tl

increases slightly as K increases. The ratio t tl p also decreases as K increases. However, tl is from several

times to several hundred times larger than t even with K = 7 .p

Given fixed K and r , cp , tp , cl and tl all increase as m is doubled each time. However, cl grows

much faster than c does and tl grows much faster than tp does. When m increased 16 folds from 5,000 to p

80,000, c increased slightly over 20 folds and t increased slightly over 25 folds, but both cl and tl increased over

200 folds. The ratio t tl p also increases as m increases. Hence, the more trial solutions need to be processed in a

heuristic procedure, the more efficient the PLQT approach is as compared to the linear list approach.

The PLQT approach is undoubtedly very efficient as compared to the linear list approach. For any

reasonable application, the PLQT approach does not cause any computational burden for the heuristic procedure as

the results in Table 1 show. However, the CPU time taken by the linear list approach becomes considerable when

n , therefore, K is large, when m is large, i.e ., when many solutions need to be processed, and when r is small,

i.e. , when the duplication rate of the trial solutions is low. The number of pairwise vector comparisons needed

when a vector is processed in a PLQT is roughly determined by the level of the PLQT. However, the number of

comparisons in a linear list is determined roughly by the length of the list. Although most of the pairwise vector

comparisons in the linear list approach are partial comparisons, it takes much more CPU time because it needs

many more comparisons.

5.3 CPU Time Taken in a Heuristic Procedure

The computational results of the tabu search heuristic procedure for the capacitated facility location

problem are reported in Table 4. The column labeled m1 is the average number of trial solutions stored in the final

16

PLQT, i.e., average number of trial solutions evaluated for the 4 problems in each group. The column labeled m2

is the average number of solutions retrieved from the PLQT in the solution process for the 4 problems in each

group. The minimum (min), average (avg) and maximum (max) CPU times used for the 4 problems in each group

are reported. The CPU time includes the time used to manage the PLQT. For problems with n = 50 facilities,

K = 2 components are required and for problems with n = 100 facilities, K = 4 components are required in each

integer vector z . Although K = 2 and K = 4 are not used in the computational experiment above, the results in

Table 1 for m = 5,000 for other values of K indicate that the CPU time used to manage the PLQT is smaller than

the rounding error of the CPU time taken by the tabu search heuristic procedure.

Table 4 approximately here
The amount of CPU time taken to manage the PLQT relative to the total CPU time taken by a heuristic

procedure depends on the effort needed to evaluate trial solutions of the problem being solved. The capacitated

facility location problem is used as an example only. For those problems with trial solutions easier to evaluate, such

as the uncapacitated facility location problem [Sun, 2005, 2006a], relatively more CPU time may be taken to

manage the PLQT. For such problems, the heuristic procedure may benefit less from the PLQT approach. When

storing and retrieving trial solutions take more time than evaluating them, storing the evaluated solutions becomes

unnecessary. For problems with trial solutions harder to evaluate, such as the single source capacitated facility

location problem [Delmaire, Diaz, Fernandez and Ortega, 1998], the evaluation of trial solutions is more time

consuming and the CPU time taken to manage the PLQT becomes less noticeable. For such hard problems, a

heuristic procedure will benefit much more from the PLQT approach.

6. Conclusions

A PLQT data structure is proposed to store and retrieve trial solutions in heuristic procedures for binary

optimization problems. Each trial solution represented by a binary vector is encoded into an integer vector that is

used as the composite key to store and retrieve the trial solution in a PLQT. An algorithm is developed to insert

trial solutions into or retrieve trial solutions from the PLQT and another algorithm is developed to traverse the

PLQT. The PLQT approach is surprisingly efficient. It uses a very tiny portion of the CPU time used by the linear

list approach for the same test problems and for any reasonable application. Compared to the total time used by a

heuristic procedure to solve a reasonably complicated binary optimization problem, the CPU time taken to manage

the PLQT is hardly noticeable.

The PLQT approach can be employed by any heuristic procedure to store and retrieve evaluated solutions.

By employing the PLQT approach, heuristic procedures may become more powerful in solving hard binary

optimization problems. Future research may be directed to applications of this PLQT approach to heuristic

procedures for different binary optimization problems. With minor modifications in encoding a solution into an

integer vector, the PLQT approach may be applied to combinatorial optimization problems with more general

integer variables.

17

References

Beasley, J. E. (1990), “OR-Library: Distributing Test Problems by Electronic Mail,” Journal of the Operational

Research Society, 41(11), 1069-1072.

Carlton, W.B. and J.W. Barnes (1996), “A Note on Hashing Functions and Tabu Search Algorithms,” European

Journal of Operational Research, 95(1), 237-239.

Delmaire, H.J., J. A. Diaz, E. Fernandez and M. Ortega (1998), “Reactive Grasp and Tabu Search Based Heuristics

for the Single Source Capacitated Plant Location Problem,” Information Systems and Operations Research, 37,

194-225.

Deneubourg, J.L. (1983). “Probabilistic Behaviour in Ants: A Strategy of Errors?” Journal of Theoretical Biology,

105, 259–271.

Deneubourg, J.L. and S. Goss. (1989). “Collective Patterns and Decision-Making.” Ethology, Ecology and

Evolution, 1, 295–311.

Ducati, E. A., V. A. Armentano, and M. Sun (2004), “A Tabu Search Heuristic Procedure for the Capacitated

Facility Location Problem,” Faculdade de Engenharia Elétrica e de Computação,Universidade Estadual de

Campinas, Caixa Postal 6101, Campinas - SP, CEP 13083-970, Brazil.

Finkel, R. A. and J. L. Bentley (1974), “Quad-Trees, A Data Structure for Retrieval on Composite Keys,” Acta

Informatica 4, 1-9.

Glover, F. (1989), “Tabu Search, Part I,” ORSA Journal on Computing, 1(3), 190-206.

Glover, F. (1990a), “Tabu Search, Part II,” ORSA Journal on Computing, 2(1), 4-32.

Glover, F. (1990b), “Tabu Search: A Tutorial,” Interfaces, 20(4) 74-94.

Glover, F. and M. Laguna (1997), Tabu Search, Kluwer Academic Publishers, Hingham, MA.

Glover, F., M. Laguna and R. Martí (2000), “Fundamentals of Scatter Search and Path Relinking,” Control and

Cybernetics, 39(3), 653-684.

Habenicht, W. (1982), “Quad Trees, A Datastructure for Discrete Vector Optimization Problems,” Lecture Notes in

Economics and Mathematical Systems, 209, 136-145.

Habenicht, W. (1991), “ENUQUAD An Enumerative Approach to Discrete Vector Optimization Problems,”

Presented at the International Workshop on Multicriteria Decision Making: Methods, Algorithms and

Applications, Liblici, Czechoslovakia, March 18-20.

Holland, J. (1992), Adaptation in Natural and Artificial Systems, An Introductory Analysis with Applications to

Biology, Control, and Artificial Intelligence, MIT Press, Cambridge, MA.

Kirkpatrick, S., C. D. Gelatt Jr., and M. P. Vecchi (1983), “Optimization by Simulated Annealing,” Science, 220,

671-680.

Klein, R. (2000), “Project Scheduling with Time-Varying Resources Constraints,” International Journal of

Production Research, 38(16), 3937-3952.

Nemhauser, G. L. and L. A. Wosley (1988), Integer and Combinatorial Optimization, Wiley, New York.

Stummer, C and M. Sun (2005), “New Multiobjective Metaheuristic Solution Procedures for Capital Investment

Planning,” Journal of Heuristics, 11(3), 183-199.

18

Sun, M. (2005), “A Tabu Search Heuristic Procedure for the Uncapacitated Facility Location Problem,” in C. Rego

and B. Alidaee (eds.), Metaheuristic Optimization via Memory and Evolution: Tabu Search and Scatter Search,

Kluwer Academic Publishers, Boston, MA, pp. 191-211.

Sun, M. (2006a), “Solving Uncapacitated Facility Location Problems Using Tabu Search,” Computers and

Operations Research, 33(9), 2563-2589.

Sun, M. (2006b), “A Primogenitary Linked Quad Tree Data Structure and Its Application to Discrete Multiple

Criteria Optimization,” Annals of Operations Research, 147(1), 87-107.

Sun, M. and R. E. Steuer (1996a), “Quad Trees and Linear List for Identifying Nondominated Criterion Vectors,”

INFORM Journal on Computing, 8(4), 367-375.

Sun, M. and R. E. Steuer (1996b), “InterQuad: An Interactive Quad Tree Based Procedure for Solving the Discrete

Alternative Multiple Criteria Problem,” European Journal of Operational Research, 89(3), 462-472.

Woodruff, D.L. and E. Zemel (1993), “Hashing Vector for Tabu Search,” Annals of Operations Research, 41, 123

137.

Wosley, L. A. (1998), Integer Programming, Wiley, New York.

19

Table 1. Computational Results of the PLQT Approach

m
r

5000 10000 20000 40000 80000
pc pt pc pt pc pt pc pt pc pt

3K =
0.0 28424 0.0237 61464 0.0503 132169 0.1120 282830 0.2570 602615 0.5943
0.2 27905 0.0213 60404 0.0480 129966 0.1067 278058 0.2437 590427 0.5613
0.4 26321 0.0200 57157 0.0460 123327 0.0973 264339 0.2237 560455 0.5103
0.6 23441 0.0173 51157 0.0380 110891 0.0867 238473 0.1913 504945 0.4363
0.8 17599 0.0127 38639 0.0290 84274 0.0620 182265 0.1387 386249 0.3080

5K =
0.0 18634 0.0253 40054 0.0557 85651 0.1297 182384 0.3013 386971 0.7167
0.2 18734 0.0233 40217 0.0567 85922 0.1257 182744 0.2900 386206 0.6790
0.4 18179 0.0237 39063 0.0517 83538 0.1170 177681 0.2663 374456 0.6197
0.6 16865 0.0210 36363 0.0473 77921 0.1050 165850 0.2347 348809 0.5373
0.8 13360 0.0153 28889 0.0343 62062 0.0777 132466 0.1757 278231 0.3900

7K =
0.0 14291 0.0337 30557 0.0800 65087 0.1887 138076 0.4630 288573 1.1743
0.2 14555 0.0330 31080 0.0763 66106 0.1800 140023 0.4353 294839 1.0923
0.4 14548 0.0310 31056 0.0733 65996 0.1717 139542 0.4007 292762 0.9853
0.6 13842 0.0277 29558 0.0633 62855 0.1543 132965 0.3570 278096 0.8473
0.8 11525 0.0207 24638 0.0477 52403 0.1120 110960 0.2603 231667 0.6030

Table 2. Computational Results of the Linear List Approach

m
r

5000 10000 20000 40000 80000
c l t l c l t l c l t l c l t l c l t l

3K =
0.0 12496858 1.587 49993215 6.430 199980036 25.783 799937352 103.234 3199785257 414.213
0.2 8879556 1.118 35467261 4.533 141379282 18.191 563330492 72.655 2192434852 283.706
0.4 5608330 0.693 22336170 2.836 88765623 11.383 352124469 45.327 1332403868 172.168
0.6 2873861 0.340 11359885 1.412 44851864 5.709 176338038 22.611 647377099 83.455
0.8 847069 0.102 3331913 0.395 13029665 1.614 50748882 6.427 180148163 23.061

5K =
0.0 12497234 1.654 49992805 6.638 199979979 26.595 799943768 106.752 3199802667 427.956
0.2 8867034 1.165 35399221 4.687 141388758 18.776 563229350 75.005 2192990373 293.282
0.4 5577161 0.723 22234677 2.935 88517096 11.727 351148881 46.654 1330281139 177.178
0.6 2866275 0.362 11347746 1.479 44707230 5.901 175964365 23.313 646740757 85.882
0.8 846247 0.102 3332865 0.421 13020010 1.691 50731183 6.667 180010235 23.775

7K =
0.0 12496822 1.663 49991684 6.645 199978553 26.671 799940294 106.880 3199795269 434.051
0.2 8879991 1.176 35433359 4.712 141310223 18.810 563189584 75.112 2189843834 295.678
0.4 5597304 0.735 22303949 2.955 88529166 11.766 351168453 46.821 1330322650 178.794
0.6 2837710 0.367 11278113 1.485 44632921 5.922 175973574 23.386 646913404 86.457
0.8 839395 0.105 3315650 0.430 13030667 1.714 50739120 6.721 180017606 23.906

20

Table 3. CPU Time Ratios of the Linear List Approach to the PLQT Approach

m
r

5000 10000 20000 40000 80000
min avg max min avg max min avg max min avg max min avg max

3K =
0.0 52.67 69.66 79.50 91.57 129.87 161.00 214.42 230.62 257.70 368.89 402.19 431.33 660.35 697.61 738.82
0.2 36.67 53.45 57.50 75.33 95.46 115.00 151.00 171.07 183.70 277.88 298.63 329.55 473.62 505.85 534.64
0.4 33.00 34.63 36.00 46.50 62.56 72.75 102.09 117.39 141.75 179.16 203.12 217.48 299.75 337.75 357.77
0.6 16.00 21.55 36.00 34.00 37.64 47.67 57.40 66.16 72.75 106.62 118.45 128.11 173.31 191.51 205.41
0.8 4.50 8.78 11.00 10.25 13.88 19.50 22.43 26.22 33.80 39.94 46.47 50.77 67.15 75.05 83.11

5K =
0.0 54.67 67.98 84.00 95.00 120.43 134.20 176.80 205.89 242.73 322.48 355.17 394.37 541.20 598.46 658.38
0.2 38.00 51.79 60.00 76.17 83.32 95.20 132.79 150.16 172.18 233.22 259.33 280.30 396.24 432.75 478.25
0.4 23.33 31.73 38.50 48.17 57.07 60.00 89.62 100.77 118.10 156.20 175.69 196.88 257.30 286.76 318.79
0.6 12.00 17.49 19.00 28.40 31.54 37.75 49.33 56.50 65.44 89.19 99.63 112.81 144.46 160.29 177.57
0.8 4.50 7.57 12.00 9.75 12.49 15.00 18.56 21.91 25.14 31.67 38.11 41.19 52.38 61.18 68.97

7K =
0.0 41.25 50.36 56.33 66.30 84.68 110.67 120.82 143.13 178.80 197.31 233.17 283.55 310.78 373.15 466.90
0.2 28.75 36.91 58.00 51.56 62.88 93.20 88.67 105.71 133.79 141.45 174.26 215.00 228.47 272.83 312.97
0.4 18.00 24.29 36.00 32.11 40.94 58.20 58.05 69.45 85.00 97.54 118.32 146.28 154.42 183.29 221.23
0.6 11.33 13.67 19.00 18.50 23.86 30.60 31.94 39.05 55.64 54.43 66.51 87.30 86.05 103.42 133.43
0.8 3.67 5.11 6.00 6.67 9.23 15.33 11.86 15.54 20.38 19.85 26.24 34.80 31.88 40.27 53.04

Table 4. Computational Time Taken by Some Capacitated Facility Location Problems

Problem Name m1 m2 Problem Size CPU Time
min avg max

cap111-cap114 4984 24 50 × 50 14.180 15.330 16.290
cap121-cap124 4889 112 50 × 50 14.020 15.023 15.950
cap131-cap134 4842 160 50 × 50 15.120 15.445 15.620
capa1-capa2 4886 121 100 × 1000 2504.277 2768.825 3117.097
capb1-capb2 5004 0 100 × 1000 2655.087 2769.660 2839.397
capc1-capc2 5006 0 100 × 1000 2489.227 2663.425 2914.147

21

1

3
36
27

0
92
76
39

2 4
67 80
30 84
32 26

4 6 7
90 80 47
85 82 59
22 16 12

2 4 3 7
60 52 36 44
45 63 49 57
33 28 19 8

Figure 1. An Example PLQT

6
33

3
15

1
59
81
72

3
16
54
65

7
33
54
29

0
52
33
15

4
61

3
3

1
33
15
12

2
68
39
74

4
59
58
63

6
65
38
56

1
32
59
34

3
34
20
21

0
71
17
10

3
36
27

0
92
76
39

2
67
30
32

4
80
84
26

6
33

3
15

59
81
72

3
16
54
65

7
33
54
29

4
90
85
22

6
80
82
16

5
17
59

7

7
47
59
12

0
52
33
15

4
61

3
3

2
68
39
74

4
59
58
63

6
65
38
56

1
32
59
34

2
60
45
33

4
52
63
28

3
36
49
19

7
44
57

8

3
34
20
21

0
71
17
10

1
33
15
12

Figure 2. The Example PLQT after the Insertion of (17, 59, 7)

22

3
36
27

0 2 4 6

92
 67 80 33

76
 30 84 3

39
 32 26 15

3 7 1
48
34
63

4 6 7 0 4
16 33 90 80 47 52 61
54 54 85 82 59 33 3
65 29 22 16 12 15 3

4 6 1 2 4 3 5 7 3 0
59 65 32 60 52 36 17 44 34 71
58 38 59 45 63 49 59 57 20 17
63 56 34 33 28 19 7 8 21 10

Figure 3. The Example PLQT after the Insertion of (48, 34, 63)

1
59
81
72

2
68
39
74

1
33
15
12

3
36
27

0
92
76
39

2
67
30
32

4
80
84
26

6
33

3
15

1
59
81
72

3
16
54
65

7
33
54
29

1
48
34
63

2
88
38
26

4
52
63
28

4
90
85
22

6
80
82
16

7
47
59
12

0
52
33
15

4
61

3
3

2
68
39
74

4
59
58
63

6
65
38
56

1
32
59
34

2
60
45
33

3
36
49
19

5
17
59

7

7
44
57

8

3
34
20
21

0
71
17
10

1
33
15
12

Figure 4. The Example PLQT after the Insertion of (88, 38, 26)

