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ABSTRACT 

In reliability and survival analysis, comparison of two or more populations is an 

important problem. For example, while comparing a treatment group with a control 

group, one may be interested in determining whether the observations in the treatment 

group have a longer lifetime than those from the control group, that is, whether the 

treatment is effective or not. In such a study, it would be extremely valuable to make 

a decision based on early failures. In this paper, we consider independent progressively 

TypeII censored random samples from two populations with cumulative distribution 

function’s (cdf) F (·) and G(·) respectively, and discuss a precedence test for testing 

the equality of the two distributions based on placements. For this purpose, we derive 

the joint distribution of the first l placement statistics from the progressively censored 

sample from F (·). We then derive the exact null distribution of the precedence test 

statistic which is simply the sum of the placements. We provide the rejection regions for 

fixed levels of significance and various sample sizes and different progressive censoring 

schemes. 
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1 Introduction 

Comparison of two or more populations is a common and important problem in reliability 

and survival analysis. For example, while comparing a new treatment protocol with the 

control, one may be interested in assessing whether the observations corresponding to 

the treatment population have a longer lifetime than those from the control population 

meaning that the treatment is indeed effective. In reliability, one may also be interested 

in comparing two production lines to determine which of the two processes produces 

units with longer lifetimes. There are several parametric and nonparametric methods 

for comparing two populations based on independent random samples. The standard 

nonparametric procedures are based on ranks including Wilcoxon’s rank sumtest, Mann

Whitney test, Van der Wearden test, and Mood’s test. However, these tests are based 

on complete samples. In the presence of censoring, variations of these tests have been 

discussed in the literature and among these are the CoxMantel test and the logrank 

test, for example. 

In drug studies, it is often desirable to make a quick decision on the efficacy of a 

new drug based on early data on lifetimes. For example, if the first 5 deaths observed 

all belong to the control group, it might be reasonable to question at that point of time 

whether the treatment is effective. Such early decisions result in savings, both in terms 

of time and costs associated with testing. 

Nelson (1963, 1993) discussed a procedure based on the number of failures from 

one sample that occur before a specified failure from the second sample. These counts 

are referred to as precedence statistics. Epstein (1954) had earlier considered similar 

test for comparing two distributions based on exceedances, where exceedances are the 

numbers of failures from the first sample that exceed failures from the second sample. 

Orban and Wolfe (1982) proposed a twosample test for complete samples based on 

precedences (which they call placements) that generalizes MannWhitney’s test. They 

proposed a linear placement statistic (similar to the general linear rank statistic) and 

showed that the two are equivalent for the MannWhitneyWilcoxon scoring functions. 

The ideas of precedence and exceedance statistics have been extended by several other 

authors including Bairamov and Eryilmaz (2006) who discussed the exact distribution 
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of the precedence statistic in the case when one of the samples is progressively Type

II censored. If the samples are complete, as expected, the distribution reduces to the 

classical negative hypergeometric distribution. Ng and Balakrishnan (2005) suggested 

several tests based on placement statistics when one of the samples is progressively 

censored. In particular, they proposed weighted precedence and maximal precedence 

tests and demonstrated that these procedures are more powerful than those based just 

on the precedence statistic. An excellent discussion of precedence tests and their variants 

can be found in the recent book by Balakrishnan and Ng (2006). 

In this paper, we develop a procedure based on placements and precedence statistics 

when both samples are progressively TypeII censored. We derive the exact null distri

butions of these statistics and show that the joint distribution of the placement statistics 

reduces to the classical negative hypergeometric distribution in the case of complete sam

ples. We provide the critical values for different sample sizes and progressive censoring 

schemes. 

In Section 2, we describe the notation and present the main result concerning the 

joint distribution of the placement statistics. We show that it reduces to the negative 

hypergeometric distribution in the case when both samples are complete. In Section 

3, we tabulate the joint probability distribution of the placement statistics and the 

distribution of precedence statistic for different sample sizes and progressive censoring 

schemes. We also present some tables of the distribution function of the precedence 

test statistic that can be used to determine rejection regions for testing whether the 

treatment is effective at a specified level of significance α. 

2 Preliminaries and Notation 

In this section, we derive the joint probability mass function of the placement statistics 

based on independent progressively TypeII censored samples from the two populations. 

Let F (·) denote the cdf of the control group and G(·) the cdf of the treatment group, 

with both F (·) and G(·) being continuous. 

In conventional TypeI and TypeII censoring schemes, we do not allow for removal 

3




of units at points other than the terminal point of the experiment. We discuss here a 

more general censoring scheme called progressive censoring that allows for units to be 

removed at certain times during the experiment in addition to removing some units at the 

terminal point. Such progressive censoring schemes are very appealing in reliability and 

lifetesting experiments since decisions regarding acceptance and rejection of hypotheses 

can be made having observed only a few early failures from the two samples. Ng and 

Balakrishnan (2005) have mentioned that such censoring schemes are especially useful 

when (i) life tests involve expensive experimental units, since the units that have not 

failed can still be used for some other purposes, and (ii) reliable decisions can be made 

early in the experiment thus resulting in saving of time and cost. For an elaborate 

review of various developments on progressive censoring, one may refer to the book by 

Balakrishnan and Aggarwala (2000). 

Consider an experiment in which n1 units from the control group and n2 units from 

the treatment group are placed simultaneously on a lifetest. When the first failure in 

the control group occurs, R1 units are randomly removed from the remaining n1 − 1 

surviving units. At the second failure, R2 units from the remaining n1 −2 −R1 units are 

randomly removed. The test continues until the mth failure. At this time, all remaining 1 

, 
m1 −1 units are removed. The Ris are fixed prior Rm1 = n1 − m1 − R1 − R2 − · · · − R

to the study. If R1 = R2 = = Rm1 = 0, we have n1 = m1 which corresponds · · · 
to the complete sample for the control group. If R1 = R2 = = Rm1−1 = 0, then · · · 
Rm1 = n1 −m1 which corresponds to the conventional TypeII right censoring scheme. 

We similarly observe a progressively TypeII censored sample from the treatment group 

with m2 being the number of complete failures and (S1, · · · , Sm2 ) being the corresponding 

progressive censoring scheme. With R = m1 ) and S = m2 ),(R1, R2, · · · , R (S1, S2, · · · , S
let us denote the m1 failures from the control group by X = (X

(R) 
m1:m1:n1 )1:m1:n1 

, · · · , X(R) 

and the m2 failures from the treatment group by Y = (Y
(S) 

m2:m2:n2 ). We refer 1:m2:n2 
, · · · , Y (S) 

to these as the Xsample and the Y sample, respectively. 

Our aim is to test the hypothesis that the two groups are the same against the 

hypothesis that the treatment group has longer lifetime than the control group, i.e., we 
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wish to test 

H0 : F (x) = G(x) ∀x 

against the alternative 

H1 : F (x) ≥ G(x) 

with strict inequality holding for at least one x. The general alternative hypothesis 

specified here includes the locationshift as well as the Lehmanntype alternatives as 

special cases. 

3 Placement Statistics and Joint Distribution 

We define the placement statistics as follows: the ith placement from the Xsample, 

denoted by Ui, is precisely the number of Xfailures that fall between the (i − 1)th 

and the ith Y failures. Formally, for a fixed i, we have Ui = # of X(R) 
such that j:m1:n1 

Y
(S) 

j:m1:n1 i:m2:n2 
, j = 1, 2, · · · , m1. 

We wish to determine the joint probability mass function (pmf) of U1, U l, 

i−1:m2:n2 
< X

(R) 
< Y

(S) 

2, · · · , U
given by 

P (U1 = u l = ul) = fX (x) dx dxm1 , (1) 1, · · · , U · · · · · · 1 · · ·
Ω 

where the region of integration Ω is 

Ω = (x m1 ) : −∞ < x < xu1 < y1,1, · · · , x 1 < · · · 

y1 < x < xu(2) 
< y2,u1+1 < · · · 

l−1 < x < xu(l) 
< yl,· · · , y u(l−1)+1 < · · · � 

yl < x < xm1 < ∞u(l)+1 < · · · 

with u(0) = 0 and 

u(i) = u + ui . (2) for i = 1, 2, · · · , l1 + · · ·

The joint pdf of X = (X
(R) 

m1:m1:n1 ) is given by 1:m1:n1 
, · · · , X(R) 

fX (x) = n1(n1 −R 1 −R m1−1 −m1 + 1) 1 − 1) · · · (n 1 − · · · −R
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×f(x1)[1 − F (x1)]
R1 f(xm1 )[1 − F (xm1 )]

Rm1 ,· · ·

< xm1 < ∞; (3) −∞ < x1 < · · · 

see Balakrishnan and Aggarwala (2000) for details. To simplify the notation, we denote 

A = n1(n1 −R1 − 1) · · · (n1 −R1 − . . .−Rm1−1 −m1 + 1). (4) 

Evidently, for obtaining the distribution of the placements U1, · · · , Ul, we need to 

evaluate the multiple integral in (1) which may be evaluated in pieces as follows. Con

sider the first integral 

I1(y1) = f(x1)[1 − F (x1)]
R1 · · · · · · · · · 

<xu1 <y1−∞<x1<···

×f(xu1 )[1 − F (x dxu1 . (5) u1 )]
Ru1 dx1 · · ·

Let us denote the partial sum from the left as 

R(i) + Ri (6) = R1 + · · ·

and the partial sum from the right as 

R[i] = R + Rm. (7) m−i+1 + · · ·

The integral in (5) then simplifies to 

u1 
k1=u1−i1+1

u1

I1(y1) = u1 ) [1 − F (y1)]γi1,u1 (R1, · · · , R
(Rk1 

+1) 

(8) , 
i1=0 

where 

(−1)ij 

γij ,uj (R u(j) 
) = u(j−1) +1, · · · , R ⎧⎨ ij

⎫⎬ ⎭ 

uj −�ij +g 

(Ru(j−1)+k + 1) ⎩ 
g=1 k=uj −ij +1 

1 ⎧⎨ 
⎫⎬ (9) × . 

u�j −ij u�j −ij

(Ru(j−1)+k + 1) 
g=1 k=g 

⎩ ⎭ 
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Similarly, the second integral 

I2 (y1, y2) = f (xu1+1)[1 − F (xu1+1)]
Ru1+1 · · · · · · · · · 

y1<x <xu(2) 
<y2u1+1<···

×f (xu(2) 
)[1 − F (xu(2) 

)]
Ru(2)+1 dxu(2) 

dxu1+1 · · ·

simplifies to 

u2
k2=u2−i2+1

(Ru1+k2
+1) 

u2−i2 (Ru1+k2 
+1)� 

u2 
k2=1 

γi2,u2 (Ru1+1, · · · , Ru(2) 
) [1 − F (y2)] [1 − F (y1)] . 

i2=0 

(10) 

Proceeding in an analogous manner, the last two integrals are obtained as follows: 

I
l (yl−1, yl) = f (xu(l−1)+1)[1 − F (xu(l−1) +1)]

Ru(l−1)+1 · · · · · · 
yl−1<x <xu(l) 

<ylu(l−1)+1<···

dxu(l)
× · · · f (xu(l) 

)[1 − F (xu(l) 
)]

Ru(l)+1 dxu(l−1)+1 · · ·
ul

ul +1)� kl =ul−il+1
(Ru(l−1)+kl 

= γil,ul (Ru(l−1)+1, · · · , Ru(l) 
) [1 − F (yl)]


il=0


+1)
kl=1 
ul−il (Ru(l−1)+kl 

× [1 − F (yl−1)] 

(11) 

and 

I
l+1 (yl) = f (xu(l)+1)[1 − F (xu(l)+1)]

Ru(l)+1 · · · · · · 
yl<xu(l)+1<···<xm1 <∞ 

dxm1× · · · f (xm1 )[1 − F (xm1 )]
Rm1 dxu(l) +1 · · · �ul+1 +1)m1−u(l) 

kl+1=ul+1−il+1+1
(Ru(l)+kl+1 

= γil+1,ul+1 (Ru(l)+1, · · · , Rml ) [1 − F (∞)] 
il+1=0 �ul+1−il+1 

kl+1=1 
(Ru(l)+kl+1 

+1) 

× [1 − F (yl)] �ul+1 +1)
kl+1=1

(Ru(l)+kl+1 

= γ0,ul+1 (Ru(l)+1, · · · , Rml ) [1 − F (yl)] . (12) 

From eqs. (8), (10), (11), and (12), we obtain 
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J(y1, · · · , yl) = Il(yl−1, yl)Il+1(yl)I1(y1)I2(y1, y2) · · ·
u1 ul l+1

= γij ,uj (R u(j) 
)· · · u(j−1)+1, · · · , R

i1=0 il=0 j=1 
u1 u2−i2 (Ru1+k2

+1)
k1=u1−i1+1

(Rk1
+1)+ 

k2=1 

× [1 − F (y1)] 
u2 u3 −i3 (Ru(2)+k3

+1)
k2=u2−i2+1

(Ru1+k2
+1)+ 

k3=1 

× [1 − F (y2)] 

× . . . 

× [1 − F (yl−1)] 
kl−1 

+1)+ 
ul−il (Ru(l−1)+kl 

+1) 
�ul−1

=ul−1−il−1+1
(Ru(l−2)+kl−1 kl=1 � ul 

�ul+1+1)+ 
kl=1

(Ru(l)+kl 
+1)

kl =ul−il+1
(Ru(l−1)+kl 

× [1 − F (yl)] , 

−∞ < y1 < · · · < yl < ∞, (13) 

where ul+1 = m1 −u(l). Hence, the conditional joint pmf of (U1, · · · , Ul), given (Y1:m2:n2 = 

= ym2 ), is simply m2:m2:n2y1, · · · , Y

= ul m2 ) = A J(y1, · · · , yl),P (U1 = u1, · · · , Ul |y1, · · · , y
l

ui = 0, 1, . . . ; ui ≤ m1. (14) 
i=1 

Next, the joint pdf of Y = (Y (S) 
m2:m2:n2 

) is given by 1:m2:n2 
, · · · , Y (S) 

fY (y) = n2(n2 − S1 − 1) · · · (n2 − S1 − · · · − Sm2−1 −m2 + 1) 

×f(y1)[1 − F (y1)]
S1 f(ym2 )[1 − F (ym2 )]

Sm2 ,· · ·

−∞ < y1 < · · · < ym2 < ∞. (15) 

Let us denote B = n2(n2 −S1 − 1) · · · (n2 −S1 − . . .−Sm2 −1 −m2 + 1). Then, from eqs. 

(14) and (15), we have the unconditional joint pmf of U = (U1, U2, · · · , Ul) as 

u1 ul l+1

P (U1 = ul) = AB γij ,uj (R u(j) 
)= u1, · · · , Ul · · · u(j−1)+1, · · · , R

i1=0 il=0 j=1 � � � m2

× . . . · · · f(yi)[1 − F (yi)]
Ti dyi, (16) 

<∞ i=1−∞<y1<···<ym2 
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where

u(k+1)−ik+1 

Tk = Sk + Rjk + (ik + uk+1 − ik+1), k = 1, · · · , l 
jk =u(k)−ik +1 

Tl+1	 m2 = Sm2 .= Sl+1, · · · , T

We first note that the integrand in (16) corresponds to that of the joint density 

function of a progressively TypeII censored sample of size 

u�1−i1m2

N = m2 + Ti = n1 + n2 − (Rj + 1), 
i=1 j=1 

where R1+R2+· · ·+R = n1−m1, and the progressive censoring scheme (T1, T2, · · · , Tm2 ).m1 

Therefore, the value of the integral in (16) is simply 

�	

1 
. 

m2 −1 −m2 + 1) N(N − T1 − 1) · · · (N − T1 − · · · − T

As a result, we readily obtain from (16) the unconditional joint pmf of U = (U1, · · · , Ul) 

as 
u1	 ul γij ,uj (R

�l+1 
u(j−1) +1, . . . , Ru(j) 

)j=1
P (U1 = ul) = AB= u1, · · · , Ul (17) . . . ,m2−1(N − T(j) − j)j=0i1=0 il=0 

where T(0) = 0 and T(j) + Tj	 for j = 1, 2, · · · .= T1 + T2 + · · ·

4	 Special Case of Complete Samples and Precedence 

Statistic 

In this section, we first show that in the special case of complete samples, the joint prob

ability mass function of (U1, · · · , Ul) reduces to the negative hypergeometric distribution. 

For this purpose, we need the following lemma. 

Lemma 1 For l > 0, we have ⎞⎛ 
n

i=0 

1 
= B(l, n + 1),

l + i 

n
⎜⎝ 
⎟⎠(−1)i 

i
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where B(a, b) denotes the complete beta function. 

Proof: The result follows immediately by noticing that the beta integral 

⎞⎛ � 1 � 1 n
l−1(1 − t)ndt = (−1)i 

0 

n
⎜⎝ 
⎟⎠ t
i+l−1dtB(l, n + 1) = t

0 ii=0 ⎞⎛ 
n

= (−1)i 1

. 

l + i 

n
⎜⎝ 
⎟⎠ 

i
i=0 

We shall use this lemma now to establish that the joint pmf of U = (U1, · · · , Ul) 

reduces to the negative hypergeometric distribution in the case of complete samples. 

Let us set R1 = R2 = = Rm1 = 0 and S1 = S2 = = Sm2 = 0 so that m1 = · · · · · · 
n1, m2 = n2, A = n1!, B = n2!, and from (9) 

(−1)i (−1)i 

γi,l(0, 0, . . . , 0) = . �i 
j=1(l − i + 1) i!(l − i)! 

j=1 j 
�l−i 

Consequently, we have Tj = ij + uj+1 − ij+1 for j = 1, 2, · · · , l − 1,


Tl = il + ul+1, Tj = 0 for j = l + 1, · · · , m2, and N = n1 + n2 − u1 + i1.


So, the joint pmf of (U1, · · · , Ul) in (17) reduces to


P (U1 = u1, U2 = u2, · · · , Ul = ul) �l (−1)ij 1 
ij !(uj −ij )! 

u1 ul

= n1!n2! · · · 1j=1 ul+1! 

⎞⎛ 

�l 
k=1(n1 + n2 − u(k) + ik − k + 1) (n2 − l)! 

l uk

i1=0 il=0 

n1!n2! 1uk⎜⎝ 
⎟⎠(−1)ik= �l+1 

k=1 uk !)(n2 − l)! n1 + n2 − u(k) + ik( ikk=1 ik =0 

l uk !(n1 + n2 − u(k) − k)!n1!n2! 
= �l+1 

k=1 uk !)(n2 − l)! 
, 

k=1 (n1 + n2 − u(l−1) − l − 1)! (


where u(0) = 0, with the last equality following by the use of Lemma 1. After noting 

that u(l) = n1 − ul+1 and canceling some terms in the product, the above expression of 

the joint pmf reduces to 
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⎞⎛ ⎜⎝ 
n1!n2!(n1 + n2 − u(l) − l)!

P (U1 = ul) = == u1, · · · , Ul 

n2 + ul+1 − l 

ul+1 

⎟⎠ 

⎞⎛ . 
(n1 + n2)!(n2 − l)!ul+1! ⎜⎝ 

n1 + n2 

n1 

⎟⎠ 

In particular, if we take l = n2, the above joint pmf simply becomes the wellknown 

result 

1 
P (U1 n2 = un2 ) = = u1, · · · , U ⎞⎛ .
⎜⎝ 

n1 + n2 

n1 

⎟⎠ 

Now, for the primary goal of testing the hypothesis that the two groups are the same 

against the hypothesis that the treatment group has larger lifetime than the control 

group, we propose the precedence test statistic P(l) which is simply the number of failures 

from the Xsample that precede the lth failure from the Y sample, i.e. 

l

P(l) = Ui. 
i=1 

The null pmf of P(l) can be obtained easily from the joint pmf of the placements 

(U1, · · · , Ul) presented in (17). Clearly, we will reject the null hypothesis H0 : F (x) = 

G(x) and accept the alternative hypothesis H1 : F (x) ≥ G(x) for larger values of the 

precedence statistic P(l). 

5 Numerical Results 

In this section, we present the joint pmf of the placement statistics and the null distri

bution of the precedence statistic for several progressive TypeII censoring schemes and 

sample sizes from the two populations. From these tables, one can determine the critical 

values for a specified level of significance. 

Table 1 provides the joint pmf of the placement statistics for l = 3 for the case 

when n1 = 15, n2 = 15, m1 = 5, m2 = 5, (R1, R2, R3, R4, R5) = (10, 0, 0, 0, 0) and 
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(S1, S2, S3, S4, S5) = (10, 0, 0, 0, 0). Table 2 provides the corresponding null pmf of the 

precedence statistic P(3). For a specified level of significance α, one can obtain the 

appropriate critical region by looking at the righttail probabilities. In the interest of 

brevity, we will only provide the null pmf of P(3) for various progressive censoring schemes 

and sample sizes. Table 3 provides a list of combinations of n1, n2 with m1 = m2 = 5 

and censoring schemes R and S. In Table 4, we present the null distribution of the 

precedence statistic P(3) for all the cases listed in Table 3. Table 5 provides a list of 

combinations of unequal n1, n2 with m1 = m2 = 5 and censoring schemes R and S. In 

Table 6, the null distribution of the precedence statistic is presented for all the cases 

listed in Table 5. Table 7 provides a list of censoring schemes R and S for the case 

n1 = n2 = 20 and m1 = m2 = 10. In Table 8, the null distribution of the precedence 

statistic P(3) is presented for all the cases listed in Table 7. 

From these tables, we observe that when m1 and m2 are small, the support of the 

distribution of P(l) is small and its pmf is therefore concentrated over a small number of 

points extending from 0 to m1. Consequently, there is a limited choice for the nominal 

level of significance and the corresponding critical region. On the other hand, when m1 

and m2 are large, the support of the precedence statistic becomes wider and hence its 

pmf is distributed over a larger set of values. This means there are more choices for 

selecting nominal values of α. Furthermore, it is also clear from Tables 4, 6 and 8 that if 

more units are censored early in the experiment, the size of the critical region is usually 

larger as compared to the schemes when more units are censored later in the experiment, 

in which case the critical regions are of smaller size and are located farther into the right 

tail. The critical regions are also located farther into the right tail when the number of 

units censored are more evenly distributed over the number of observed failures. 
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Table 1: Joint PMF of the Placement Statistics for l = 3


U3 = 0 
U1/U2 0 1 2 3 4 5 

0 0.018 0.085 0.056 0.034 0.017 0.006 
1 0.085 0.056 0.034 0.017 0.006 0.000 
2 0.025 0.015 0.008 0.002 0.000 0.000 
3 0.006 0.003 0.001 0.000 0.000 0.000 
4 0.001 0.000 0.000 0.000 0.000 0.000 
5 0.000 0.000 0.000 0.000 0.000 0.000 

U3 = 1 

0 0.038 0.056 0.034 0.017 0.006 0.000 
1 0.056 0.034 0.017 0.006 0.000 0.000 
2 0.015 0.008 0.002 0.000 0.000 0.000 
3 0.003 0.001 0.000 0.000 0.000 0.000 
4 0.000 0.000 0.000 0.000 0.000 0.000 
5 0.000 0.000 0.000 0.000 0.000 0.000 

U3 = 2 

0 0.025 0.034 0.017 0.006 0.000 0.000 
1 0.034 0.017 0.006 0.000 0.000 0.000 
2 0.008 0.002 0.000 0.000 0.000 0.000 
3 0.001 0.000 0.000 0.000 0.000 0.000 
4 0.000 0.000 0.000 0.000 0.000 0.000 
5 0.000 0.000 0.000 0.000 0.000 0.000 

U3 = 3 

0 0.015 0.017 0.006 0.000 0.000 0.00 
1 0.017 0.006 0.000 0.000 0.000 0.000 
2 0.003 0.000 0.000 0.000 0.000 0.000 
3 0.000 0.000 0.000 0.000 0.000 0.000 
4 0.000 0.000 0.000 0.000 0.000 0.000 
5 0.000 0.000 0.000 0.000 0.000 0.000 

U3 = 4 

0 0.008 0.006 0.000 0.000 0.000 0.000 
1 0.006 0.0000 0.000 0.000 0.000 0.000 
2 0.000 0.000 0.000 0.000 0.000 0.000 
3 0.000 0.000 0.000 0.000 0.000 0.000 
4 0.000 0.000 0.000 0.000 0.000 0.000 
5 0.000 0.000 0.000 0.000 0.000 0.000 

U3 = 5 

0 0.003 0.000 0.000 0.000 0.000 0.000 
1 0.000 0.000 0.000 0.000 0.000 0.000 
2 0.000 0.000 0.000 0.000 0.000 0.000 
3 0.000 0.000 0.000 0.000 0.000 0.000 
4 0.000 0.000 0.000 0.000 0.000 0.000 
5 0.000 0.000 0.000 0.000 0.000 0.000 
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Table 2: Null Distribution of the Precedence Statistic P(3) 

P(3) Pmf Survival Fn. 
0 0.018 1.000 
1 0.207 0.982 
2 0.276 0.776 
3 0.254 0.500 
4 0.173 0.246 
5 0.073 0.073 

Table 3: Progressive Censoring Schemes: Equal Sample Size Case when m1 = m2 = 5 

Scheme n1 n2 R S 
1 10 10 5 0 0 0 0 5 0 0 0 0 
2 10 10 0 5 0 0 0 0 5 0 0 0 
3 10 10 0 0 5 0 0 0 0 5 0 0 
4 10 10 0 0 0 5 0 0 0 0 5 0 
5 10 10 0 0 0 0 5 0 0 0 0 5 
6 10 10 3 2 0 0 0 3 2 0 0 0 
7 10 10 2 3 0 0 0 2 3 0 0 0 
8 10 10 3 1 1 0 0 3 1 1 0 0 
9 10 10 2 2 1 0 0 2 2 1 0 0 
10 10 10 1 2 2 0 0 2 1 2 0 0 
11 10 10 3 1 1 0 0 3 2 0 0 0 
12 10 10 0 3 2 0 0 2 1 1 0 0 
13 15 15 10 0 0 0 0 10 0 0 0 0 
14 15 15 0 10 0 0 0 0 10 0 0 0 
15 15 15 0 0 10 0 0 0 0 10 0 0 
16 15 15 0 0 0 10 0 0 0 0 10 0 
17 15 15 0 0 0 0 10 0 0 0 0 10 
18 15 15 5 5 0 0 0 5 5 0 0 0 
19 15 15 0 5 5 0 0 0 5 5 0 0 
20 15 15 0 0 5 5 0 0 0 5 5 0 
21 15 15 0 0 0 5 5 0 0 0 5 5 
22 15 15 9 1 0 0 0 9 1 0 0 0 
23 15 15 0 0 0 2 8 0 0 0 2 8 
24 15 15 2 2 2 2 2 2 2 2 2 2 
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1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

Table 4: Null Right Tail Probabilities of the Precedence Statistic P(3): Equal Sample 
Size Case 

Scheme 0 1 2 3 4 5 
1.000 0.967 0.767 0.500 0.249 0.075 
1.000 0.945 0.834 0.500 0.223 0.059 
1.000 0.895 0.709 0.500 0.154 0.024 
1.000 0.895 0.709 0.500 0.314 0.052 
1.000 0.895 0.709 0.500 0.314 0.175 
1.000 0.957 0.804 0.500 0.233 0.064 
1.000 0.952 0.817 0.500 0.228 0.062 
1.000 0.946 0.768 0.500 0.210 0.050 
1.000 0.941 0.781 0.500 0.204 0.047 
1.000 0.931 0.776 0.519 0.197 0.041 
1.000 0.957 0.804 0.559 0.263 0.073 
1.000 0.931 0.795 0.535 0.204 0.042 
1.000 0.982 0.776 0.500 0.246 0.073 
1.000 0.960 0.879 0.500 0.212 0.054 
1.000 0.888 0.701 0.500 0.109 0.012 
1.000 0.888 0.701 0.500 0.326 0.036 
1.000 0.888 0.701 0.500 0.326 0.195 
1.000 0.969 0.852 0.500 0.218 0.057 
1.000 0.916 0.765 0.500 0.130 0.017 
1.000 0.888 0.701 0.500 0.255 0.028 
1.000 0.888 0.701 0.500 0.326 0.143 
1.000 0.979 0.799 0.500 0.235 0.066 
1.000 0.888 0.701 0.500 0.326 0.178 
1.000 0.917 0.738 0.500 0.262 0.083 
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Table 5: Progressive Censoring Schemes: Unequal Sample Size Case when m1 = m2 = 5 

Scheme n1 n2 R S 
1 15 10 10 0 0 0 0 5 0 0 0 0 
2 15 10 0 10 0 0 0 0 5 0 0 0 
3 15 10 0 0 10 0 0 0 0 5 0 0 
4 15 10 0 0 0 10 0 0 0 0 5 0 
5 15 10 0 0 0 0 10 0 0 0 0 5 
6 15 10 2 8 0 0 0 5 0 0 0 0 
7 15 10 0 2 8 0 0 0 5 0 0 0 
8 15 10 0 0 2 8 0 0 0 5 0 0 
9 15 10 0 0 0 2 8 0 0 0 5 0 
10 15 10 0 0 0 1 9 0 0 0 1 4 
11 15 10 5 5 0 0 0 2 3 0 0 0 
12 15 10 4 4 2 0 0 0 0 2 3 0 
13 15 10 0 2 4 4 0 0 0 0 2 3 
14 15 10 0 0 2 4 4 0 0 0 2 3 
15 15 10 2 2 2 2 2 1 1 1 1 1 

Table 6: Null Right Tail Probabilities of the Precedence Statistic P(3): Unequal Sample 
Size Case when m1 = m2 = 5 

Scheme 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

0 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 

1 
0.989 
0.975 
0.948 
0.948 
0.948 
0.986 
0.975 
0.948 
0.948 
0.948 
0.979 
0.948 
0.948 
0.948 
0.960 

2 
0.796 
0.918 
0.841 
0.841 
0.841 
0.943 
0.918 
0.841 
0.841 
0.841 
0.888 
0.789 
0.841 
0.841 
0.856 

3 
0.526 
0.571 
0.699 
0.699 
0.699 
0.658 
0.816 
0.699 
0.699 
0.699 
0.559 
0.472 
0.673 
0.699 
0.680 

4 
0.264 
0.260 
0.229 
0.545 
0.545 
0.343 
0.390 
0.518 
0.545 
0.545 
0.260 
0.145 
0.413 
0.518 
0.446 

5 
0.080 
0.070 
0.038 
0.096 
0.399 
0.106 
0.107 
0.091 
0.374 
0.387 
0.071 
0.023 
0.070 
0.277 
0.193 
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Table 7: Progressive Censoring Schemes: Equal Sample Size Case when m1 = m2 = 10 

Scheme n1 n2 R S 
1 20 20 10 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 
2 20 20 0 10 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 
3 20 20 0 0 10 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 
4 20 20 0 0 0 10 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 
5 20 20 0 0 0 0 10 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 
6 20 20 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 10 0 0 0 0 
7 20 20 0 0 0 0 0 0 0 0 1 9 0 0 0 0 0 0 0 0 1 9 
8 20 20 5 5 0 0 0 0 0 0 0 0 5 5 0 0 0 0 0 0 0 0 
9 20 20 0 0 0 0 0 0 0 0 5 5 0 0 0 0 0 0 0 0 5 5 
10 20 20 2 2 3 3 0 0 0 0 0 0 2 2 3 3 0 0 0 0 0 0 
11 20 20 0 0 0 0 0 0 2 2 3 3 0 0 0 0 0 0 2 2 3 3 
12 20 20 0 0 0 0 0 0 3 3 2 2 0 0 0 0 0 0 3 3 2 2 
13 20 20 2 2 2 2 2 0 0 0 0 0 2 2 2 2 2 0 0 0 0 0 
14 20 20 0 0 0 0 0 2 2 2 2 2 0 0 0 0 0 2 2 2 2 2 
15 20 20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

Table 8: Null Right Tail Probabilities of the Precedence Statistic P(3): Equal Sample 
Size Case when m1 = m2 = 10 

Scheme 0 1 
1 1.000 0.956 
2 1.000 0.930 
3 1.000 0.885 
4 1.000 0.885 
5 1.000 0.885 
6 1.000 0.885 
7 1.000 0.885 
8 1.000 0.941 
9 1.000 0.885 
10 1.000 0.905 
11 1.000 0.885 
12 1.000 0.885 
13 1.000 0.905 
14 1.000 0.885 
15 1.000 0.895 

2 
0.741 
0.803 
0.698 
0.698 
0.698 
0.698 
0.698 
0.781 
0.698 
0.722 
0.698 
0.698 
0.722 
0.698 
0.709 

3 
0.500 
0.500 
0.500 
0.500 
0.500 
0.500 
0.500 
0.500 
0.500 
0.500 
0.500 
0.500 
0.500 
0.500 
0.500 

4 
0.297 
0.269 
0.214 
0.331 
0.331 
0.331 
0.331 
0.278 
0.331 
0.280 
0.331 
0.331 
0.293 
0.331 
0.314 

5 
0.156 
0.126 
0.076 
0.120 
0.204 
0.204 
0.204 
0.135 
0.204 
0.110 
0.204 
0.204 
0.137 
0.204 
0.175 

6 
0.071 
0.051 
0.022 
0.036 
0.062 
0.118 
0.118 
0.057 
0.118 
0.036 
0.118 
0.118 
0.045 
0.118 
0.085 

7 
0.027 
0.018 
0.005 
0.009 
0.015 
0.029 
0.064 
0.020 
0.064 
0.010 
0.064 
0.064 
0.012 
0.059 
0.035 

8 9 10 
0.008 0.002 0.000 
0.005 0.001 0.000 
0.001 0.000 0.000 
0.002 0.000 0.000 
0.003 0.000 0.000 
0.005 0.001 0.000 
0.032 0.015 0.007 
0.006 0.001 0.000 
0.032 0.015 0.005 
0.002 0.000 0.000 
0.030 0.011 0.002 
0.028 0.009 0.002 
0.002 0.000 0.000 
0.025 0.008 0.001 
0.012 0.003 0.000 
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