THE UNIVERSITY OF TEXAS AT SAN ANTONIO, COLLEGE OF BUSINESS

# Working Paper SERIES

Date March 20, 2012

WP # 0009MSS-061-2012

Mathematical formulation and exact solution for landing location problem in tropical forest selective logging, a case study in Southeast Cameroon

#### **Julien Philippart**

University of Liege (ULg), Gembloux Agro-BioTech Laboratory of Tropical and Sub-tropical Forestry Passage des Déportés, 2, 5030 Gembloux (Belgium)

Minghe Sun

Department of Management Science and Statistics, College of Business The University of Texas at San Antonio San Antonio, TX 78249-0632, USA

> Jean-Louis Doucet University of Liege (ULg), Gembloux Agro-BioTech

Laboratory of Tropical and Sub-tropical Forestry Passage des Déportés, 2, 5030 Gembloux (Belgium)

Philippe Lejeune University of Liege (ULg), Gembloux Agro-BioTech Unit of Forest and Nature Management Passage des Déportés, 2, 5030 Gembloux (Belgium)

Copyright © 2012, by the author(s). Please do not quote, cite, or reproduce without permission from the author(s).



ONE UTSA CIRCLE SAN ANTONIO, TEXAS 78249-0631 210 458-4317 | BUSINESS.UTSA.EDU

## Mathematical formulation and exact solution for landing location problem in tropical forest selective logging, a case study in Southeast Cameroon

Julien Philippart<sup>1</sup>, Minghe Sun<sup>3</sup>, Jean-Louis Doucet<sup>1</sup>, Philippe Lejeune<sup>2</sup>

 <sup>1</sup> University of Liege (ULg), Gembloux Agro-BioTech Laboratory of Tropical and Sub-tropical Forestry Passage des Déportés, 2, 5030 Gembloux (Belgium)
e-mail : julienphilippart@hotmail.com

<sup>2</sup> University of Liege (ULg), Gembloux Agro-BioTech Unit of Forest and Nature Management Passage des Déportés, 2, 5030 Gembloux (Belgium) e-mail: p.lejeune@ulg.ac.be

<sup>3</sup> Department of Management Science and Statistics, College of Business The University of Texas at San Antonio San Antonio, TX 78249-0632, USA e-mail: <u>minghe.sun@utsa.edu</u>

# Mathematical formulation and exact solution for landing location problem in tropical forest selective logging, a case study in Southeast Cameroon Abstract

In Central Africa, creating forest roads and skid trails is one of the most costly and environmentally damaging operations for the forest's ecosystem. An optimized road network is essential for reducing construction costs and improving the sustainable management of timber resources. The location of landings is vital in the development of a future forest road network. In this study, a binary integer programming model similar to the uncapacitated facility location problem is formulated to optimize the locations of the landings. The model is applied to selective logging in Central Africa and tested on an annual logging zone in Southeast Cameroon. The results are compared to that of manual road planning, the currently used method.

Keywords: landing location, uncapacitated facility location, Central Africa, road planning

JEL classification: C61, C02

### Mathematical formulation and exact solution for landing location problem in tropical forest selective logging, a case study in Southeast Cameroon

#### 1. Introduction

Selective logging is the main harvest system in the Congo Basin's forests, where logging intensity varies from 0.5 to 2 trees per hectare under planned logging schemes. For approximately a decade, forest loggers have had to plan logging phases to advance sustainable management of the forest resources (Pinard, 1995; Johns et al., 1996; Bertault and Sist, 1997; Durrieu de Madron and Forni, 1998; Sist, 1998). The road planning process which includes the construction of roads, landings and skid trails is one of the phases that have major economical and ecological impacts (Sist, 2000). Forest road planning aims to develop an optimal road network that minimizes road density while providing access to the whole logging area in the harvest zone. Every tree felled in a logging area is skidded to a landing. The landings represent both assembly points for skid trails as well as targets for roads that will be opened. A pertinent location of landings can minimize both skidding network and road building cost while reducing forest damages. Because the location of the landings is vital in sustainable selective logging plan, the problem studied in this paper is called the landing location problem (LLP) for easy reference.

Sustainable selective logging in Central Africa is typically carried out as follows. Marketable trees with data such as quality and dimension are first located during logging inventories. After being felled with saw equipment, they must be hauled to landings along the road to be transported by trucks to destinations such as saw mills for further processing. A tree becomes a log when cut. Therefore the terms tree and log are used interchangeably in the text. In order to provide sustainable management and to reduce the impact of their logging, companies are applying different rules. The following rules are common. Most logs are

3

hauled uphill to reduce the impact on soils and to ensure safety. Hauling operations and landing constructions are avoided at a distance shorter than 30m of streams and sources. Since hauling operations are expensive and destructive, the maximum hauling distance is limited to 1000m to reduce impact of logging. Logs that are located further away and/or in an inaccessible area may remain uncut. Landing surface is limited to an area of 1000 m<sup>2</sup>

Recent decades have seen a great deal of research focused on forest road planning and optimization (Reutebuch, 1988; Liu and Session, 1993; Dean, 1997; Murray, 1998; Epstein et al., 2001; Akay et al., 2004; Anderson and Nelson, 2004). Dean (1997) compared the road planning problem to a multiple target access problem. Freycon and Yandji (1998) developed a computer-aided method to assist forest road planning for selective logging systems in the Congo Basin. Under this method, which describes the steps and spatial analysis tools needed to plan a forest road system, skilled operators have to manually position landing locations based on topography and an inventory of marketable trees. To date, no computerized method for siting landing locations has been tested or applied in the Central African context of selective logging. However, advantageous location of landings is a key factor in minimizing skid trail length and therefore optimizing total forest road network length in order to ensure sustainable management of forest resources.

This paper describes the formulation of a binary integer programming model (BIPM) to optimize landing location for skidding path planning. The model is applied to the LLP in the Central African context of selective logging. The BIPM is solved with CPLEX<sup>®</sup> that uses branch-and-cut algorithms. The results obtained on an experimental area are discussed and compared with those of manual planning, the currently used method. Future prospects are also outlined.

4

#### 2. Formulation of the binary integer programming model

Traditional location problems are separated into two types: problems that attempt to maximize customer satisfaction with a fixed number of facilities and problems that attempt to minimize the number of facilities in order to satisfy all customers (Hammami, 2003). The complexity of the LLP is that the number of facilities (landings) is not known and some customers (trees) may be unsatisfied (uncut or unassigned).

A BIPM is formulated for the LLP to find optimal locations for the landings. A problem with a set of *m* logs and *n* candidate landing sites can be represented by a network with m+n nodes and mn arcs. The index set of the m logs is represented by I and the index set of the n candidate landing sites is represented by J. The cost of opening landing jis represented by  $f_i$  and the cost of hauling log *i* to landing *j* is represented by  $c_{ij}$ . Costs are measured in distances, specifically meters, in this application. It is assumed that  $f_j > 0$ ,  $\forall j \in J$  and that  $c_{ij} \ge 0$ ,  $\forall i \in I$  and  $\forall j \in J$ . Let C represent the  $m \times n$  matrix of the hauling or skidding costs. Let  $\hat{c}$  represent the maximum limit on the hauling distance. In this case,  $\hat{c} = 1000$ . In C, the actual hauling cost  $c_{ij}$  is used if  $c_{ij} \leq \hat{c}$  and a large number  $c_{ij} = \overline{c}$ , with  $\overline{c} \gg \hat{c}$ , is used if  $c_{ij} > \hat{c}$  or if a path between *i* and *j* is prohibited. A binary variable  $y_i$  is used to represent the status of landing j in the model. Landing j will be open only if  $y_i = 1$  and will be closed if  $y_i = 0$  in the solution. A binary variable  $x_{ij}$  is used to represent the status of the skidding path from log i to landing j. Log i will be assigned to landing jonly if  $x_{ij} = 1$  and will not be assigned to landing j if  $x_{ij} = 0$  in the solution. Log i will remain uncut if  $x_{ij} = 0 \ \forall j \in J$  in the solution. The BIPM for the LLP can be formulated as follows:

min 
$$\sum_{i \in I} \sum_{j \in J} c_{ij} x_{ij} + \sum_{j \in J} f_j y_j + \alpha (m - \sum_{i \in I} \sum_{j \in J} x_{ij})$$
 (1)

subject to: 
$$\sum_{j \in J} x_{ij} \le 1$$
  $\forall i \in I$  (2)

$$x_{ij} \le y_j \qquad \qquad \forall i, j \qquad (3)$$

$$x_{ij} = 0 \text{ or } 1 \qquad \qquad \forall i, j \tag{4}$$

$$y_j = 0 \text{ or } 1 \qquad \qquad \forall j \tag{5}$$

A log *i* can't be assigned to more than one landing but may remain uncut. This requirement is modeled by the constraints in (2). A log *i* can be assigned to a landing *j* only if the landing is open, i.e.,  $y_j = 1$ . This requirement is modeled by the constraints in (3). The constraints in (4) define the values that  $x_{ij}$  can take  $\forall i \in I$  and  $\forall j \in J$  and those in (5) define the values that  $y_j$  can take  $\forall j \in J$ . Because each log *i*, if ever assigned, is always assigned to the landing such that the hauling cost is the lowest among all open landings, each constraint in (4) can be relaxed to  $0 \le x_{ij} \le 1$ . In the objective function (1), the first term represents the total hauling cost, the second term represents the total opening cost of the landings and the third term represents penalties of uncut trees where  $\alpha$  is a penalty factor applied to the number of unassigned trees. The solution process for the LLP is to decide the landings to open and to decide the assignments of logs to open landings while minimizing the total cost (1).

The LLP model is similar to but different from the uncapacitated facility location problem (UFLP). It is different from the UFLP model in two ways. In the UFLP model, each customer is assigned to exactly one facility, i.e., the constraint in (2) is of the form  $\sum_{j=1}^{n} x_{ij} = 1, \forall i \in I$  (Cornuéjols, 1990). The standard UFLP model also does not have the

penalty term in the objective function (1).

#### 3. A case study

A case study is described in this section. The case is about the LLP in a tropical forest in Southeast Cameroon. The ArcGis software and the Geodatabase were used to create and manage data about the skidding network, to apply penalty and to visualize results.

#### **3.1. Study area and dataset**

The study area covered 2562 hectares of moist semi-deciduous tropical forest in Southeast Cameroon (3°48'37'' E; 3°08'14'' N) where the altitude varies between 550m and 650m. The logging inventory identified and located 3930 marketable trees, i.e., m = 3930.

The digital elevation model was based on Shuttle Radar Topography Mission data generated for the Congo Basin with a 90m resolution. These data are available from the Global Land Cover Facility (U.S. Geological Survey, 2004). Streams within the area were identified via a digital elevation model using hydrographic spatial analysis tools and field data. A stream layer, derived from the digital elevation model data, was also used to identify streams and riparian areas.

#### 3.2. Skidding network design and candidate landing set

The area to be harvested is partitioned into a  $20m \times 20m$  spaced grid of nodes, called the initial grid, where logs are located, landings can be opened or, otherwise, skidding path intersections can be established. The skidding network is elaborated by creating links between nodes. The digital elevation model was then used to determine the elevations of points and slopes along the skidding network. Undesirable segments were deleted following reducedimpact logging standards in order to avoid stream crossing, riparian proximity or steep zones. A deleted path from log *i* to landing *j* is reflected in the skidding cost matrix *C* by setting  $c_{ii} = \overline{c}.$ 

The initial grid is also used as a basis for the candidate landing grids generation. Candidate landing locations are regularly spaced on the initial grid with a defined grid mesh size where the location of the first candidate landing is randomly selected. For example, a candidate landing\_grid with a grid mesh size of  $100m \times 100m$  is a sub grid of the initial  $20m \times 20m$  grid extracted by regularly selecting one node out of 25. The area partitioning is represented in figure 1.

Figure 1: Study area partitioning



#### **3.3.** Landing opening costs and log skidding cost matrix

For each candidate landing j, an initial opening cost of 2500m is used. In order to promote uphill hauling and higher landing locations, a penalty is assigned to landings located on altitude lower than those of its neighbors. Each candidate landing is associated with a

competition zone consisting of a set of competitive candidate landings which are within a distance of 1000m using the skidding path network. The elevation of each landing is compared to those of the competitive landings and a penalty factor  $\gamma$  is computed. This penalty factor is used in computing the fixed opening cost for the landings. The penalty factor  $\gamma$  varies between 1 and 11. The opening cost  $f_j$  of a candidate landing j is obtained by multiplying the initial cost of 2500m by the penalty factor  $\gamma$ , i.e.,  $f_j = 2500\gamma$ ,  $\forall j \in J$ . Consequently, the opening cost  $f_j$  for a candidate landing j may vary between 2500m (best or cheapest location) and 27500m (worst or most expensive location).

The penalty factor  $\gamma$  is computed using (6) in the following

$$\gamma = 1 + \frac{N_h}{N} * 10 \tag{6}$$

where  $N_h$  is the number of competitive landings located on higher elevations in the competition zone and N is the total number of competitive landings in this competition zone. If there is no competitive landings, the penalty factor is fixed to  $\gamma = 1$ .

As mentioned before, the skidding cost matrix *C* is used to represent the cost for hauling logs to landings. Unlike in Contreras (2007), because the differences in elevations of the candidate landings have been factored into the ratio  $\gamma$ , no difference is made between the uphill and downhill skidding costs to avoid double counting. In this study, the cost corresponds to the distance (meters) to reach landings from logs using the skidding path network. The distance  $c_{ij}$  from a log *i* to a landing *j* is calculated using Dijkstra's shortest path algorithm (Dijkstra, 1959). The large cost  $c_{ij} = \overline{c}$  is assigned to a path that is prohibited by the reduced-impact logging standards and stream crossings. In this case study,  $\overline{c} = 5000$  is used. As the skidding path network is elaborated considering reduced-impact logging standards and stream crossings by hauling paths, the entire skidding path network is realistic.

#### **3.4.** Penalty of unassigned trees

Some trees may remain unassigned when they are located in a far away area or when the extra cost needed to extract the log is higher than the potential benefits. They may also be unassigned if the reach zone of a potential landing grid does not cover the entire logging zone (particulary for low density grids or for logging zones with concave boundaries). In this case study, the penalty cost for each unassigned tree is fixed at 5000m, i.e.,  $\alpha = 5000$  in the objective function (1).

#### 4. Results

A computational experiment is conducted using the data in the case study. The BIPM formulated with the data in the case study was solved using the linear, integer and quadratic programming package CPLEX<sup>®</sup> optimizer via the CPLEX<sup>®</sup> Optimization Studio 12.2. on a personal workstation with a 3.2Ghz Pentium processor. By varying the grid mesh sizes for the study area and by selecting different first landing location, different test problems are constructed for the case study. The computational experiment consists of two parts with a total of 58 test problems. The first part with 10 test problems was to study the effects of the potential landing grid mesh sizes and the second part with 48 test problems was aimed to assess the sensitivity of the solution on the first potential landing location.

#### 4.1. Effects of the potential landing grid mesh sizes

Results for the first part are shown in table 1. Decreasing the grid mesh size increases the number of potential landing locations and allows the model to find better solutions. The 640m grid mesh size leads to a potential reach zone containing only 3927 trees. The penalty of 3 unassigned trees (15000) in table 1 is mainly due to potential landing grid locations rather than to landing selection. A grid mesh size of 280m was the lower limit allowing CPLEX<sup>®</sup> to run on the workstation without an 'out of memory' running time error. Decreasing the grid

mesh size also increases the processing time needed because the BIPM becomes larger. When the grid mesh size decreased from 700m to 280m, the processing time taken increased from 5 seconds to 42 seconds.

| Grid mesh<br>size (m) | No. of potential landings | No. of<br>landings<br>selected | Total opening cost (m) | Total hauling cost (m) | Total<br>penalty<br>(m) | Total cost<br>(m) | Processing<br>time (sec.) |
|-----------------------|---------------------------|--------------------------------|------------------------|------------------------|-------------------------|-------------------|---------------------------|
| 700                   | 45                        | 33                             | 443333                 | 1441801                | 0                       | 1885134           | 5                         |
| 640                   | 51                        | 38                             | 397946                 | 1273715                | 15000                   | 1686661           | 6                         |
| 580                   | 67                        | 34                             | 326220                 | 1353848                | 0                       | 1680068           | 8                         |
| 520                   | 80                        | 38                             | 370714                 | 1256353                | 0                       | 1627067           | 9                         |
| 460                   | 103                       | 45                             | 390297                 | 1178994                | 0                       | 1569291           | 11                        |
| 400                   | 131                       | 46                             | 336699                 | 1188344                | 0                       | 1525043           | 15                        |
| 340                   | 183                       | 52                             | 397798                 | 1086852                | 0                       | 1474650           | 26                        |
| 280                   | 294                       | 56                             | 360755                 | 1080217                | 0                       | 1440972           | 42                        |
| 220                   | 830                       |                                |                        | OUT OF MEM             | ORY                     |                   |                           |
| 160                   | 2134                      |                                |                        | OUT OF MEM             | ORY                     |                   |                           |

Table 1: Results for different grid mesh sizes

#### 4.2 Effects of the first potential landing location

The 48 test problems in this part of the computational experiment are derived from the problem with the initial 280m grid mesh size by moving the first potential landing location in a  $280m \times 280m$  square window. Results for these test problems are presented in Table 2.

Table 2: Results for the 48 problems with different first potential landing locations and a 280m grid mesh size

|          |                  |               | Total    |               | Total   |            |             |
|----------|------------------|---------------|----------|---------------|---------|------------|-------------|
| Solution | No. of potential | N of landings | opening  | Total hauling | penalty | Total cost | Processing  |
| ID       | landings         | selected      | cost (m) | cost (m)      | (m)     | (m)        | time (sec.) |
| 1        | 294              | 56            | 360755   | 1080217       | 0       | 1440972    | 42          |
| 2        | 298              | 55            | 363336   | 1061823       | 0       | 1425159    | 43          |

| 3  | 288 | 56 | 372032 | 1054164 | 0 | 1426196 | 42 |
|----|-----|----|--------|---------|---|---------|----|
| 4  | 291 | 54 | 325017 | 1096238 | 0 | 1421256 | 43 |
| 5  | 289 | 55 | 345120 | 1079777 | 0 | 1424897 | 50 |
| 6  | 286 | 55 | 381379 | 1048379 | 0 | 1429759 | 42 |
| 7  | 300 | 58 | 410162 | 1034619 | 0 | 1444782 | 44 |
| 8  | 297 | 54 | 376244 | 1072882 | 0 | 1449126 | 53 |
| 9  | 311 | 56 | 364233 | 1055204 | 0 | 1419437 | 45 |
| 10 | 299 | 58 | 368624 | 1056434 | 0 | 1425058 | 43 |
| 11 | 299 | 54 | 343019 | 1083762 | 0 | 1426781 | 56 |
| 12 | 301 | 58 | 382695 | 1043694 | 0 | 1426388 | 51 |
| 13 | 297 | 58 | 397428 | 1044907 | 0 | 1442335 | 52 |
| 14 | 306 | 57 | 388765 | 1038980 | 0 | 1427745 | 44 |
| 15 | 306 | 57 | 388765 | 1038980 | 0 | 1427745 | 45 |
| 16 | 308 | 53 | 356561 | 1066722 | 0 | 1423283 | 44 |
| 17 | 302 | 57 | 370523 | 1054105 | 0 | 1424628 | 44 |
| 18 | 296 | 57 | 369621 | 1054398 | 0 | 1424019 | 52 |
| 19 | 303 | 56 | 373551 | 1048404 | 0 | 1421955 | 52 |
| 20 | 296 | 56 | 370251 | 1063347 | 0 | 1433598 | 51 |
| 21 | 291 | 56 | 396388 | 1038717 | 0 | 1435105 | 43 |
| 22 | 289 | 58 | 418345 | 1025620 | 0 | 1443965 | 43 |
| 23 | 298 | 57 | 360436 | 1056402 | 0 | 1416838 | 44 |
| 24 | 298 | 56 | 374547 | 1045787 | 0 | 1420334 | 44 |
| 25 | 292 | 54 | 336103 | 1081120 | 0 | 1417222 | 43 |
| 26 | 296 | 58 | 360375 | 1061071 | 0 | 1421446 | 51 |
| 27 | 294 | 56 | 376242 | 1051038 | 0 | 1427279 | 55 |
| 28 | 305 | 55 | 352623 | 1073614 | 0 | 1426237 | 52 |
| 29 | 303 | 56 | 364897 | 1064761 | 0 | 1429658 | 44 |
| 30 | 307 | 55 | 337124 | 1093958 | 0 | 1431083 | 45 |
| 31 | 300 | 58 | 377039 | 1050775 | 0 | 1427814 | 44 |

| Average | 297 | 56 | 369584 | 1059539 | 0 | 1429123 | 47 |
|---------|-----|----|--------|---------|---|---------|----|
| 48      | 287 | 54 | 372966 | 1057200 | 0 | 1430166 | 43 |
| 47      | 294 | 54 | 357316 | 1070795 | 0 | 1428111 | 52 |
| 46      | 290 | 56 | 361383 | 1077458 | 0 | 1438841 | 43 |
| 45      | 293 | 56 | 369248 | 1061751 | 0 | 1430998 | 48 |
| 44      | 295 | 57 | 361996 | 1062975 | 0 | 1424971 | 50 |
| 43      | 288 | 55 | 381031 | 1067640 | 0 | 1448671 | 50 |
| 42      | 291 | 55 | 368728 | 1068903 | 0 | 1437630 | 52 |
| 41      | 297 | 54 | 346719 | 1067816 | 0 | 1414535 | 43 |
| 40      | 303 | 56 | 384765 | 1029755 | 0 | 1414519 | 44 |
| 39      | 298 | 58 | 376361 | 1060162 | 0 | 1436523 | 44 |
| 38      | 292 | 59 | 368429 | 1071128 | 0 | 1439557 | 43 |
| 37      | 299 | 60 | 390479 | 1041919 | 0 | 1432398 | 53 |
| 36      | 298 | 55 | 340919 | 1102188 | 0 | 1443108 | 44 |
| 35      | 298 | 57 | 378013 | 1052984 | 0 | 1430997 | 44 |
| 34      | 299 | 55 | 373314 | 1044944 | 0 | 1418258 | 44 |
| 33      | 304 | 57 | 385567 | 1033284 | 0 | 1418851 | 46 |
| 32      | 299 | 57 | 360610 | 1067058 | 0 | 1427668 | 44 |

There is a 2.4% difference in the total costs between the worst (No. 8 with a total cost of 1449126) and the best (No. 40 with a total cost of 1414519) solutions. Analysing some potential landing grid with the same grid mesh size and selecting the best solution may slightly decrease the total cost and forest damages. CPLEX<sup>®</sup> takes from 42 seconds to 56 seconds to solve a BIPM in this part of the computational experiment. Although there is a pretty large difference in the processing time taken, there does not appear to be any relationship between the solution quality and the processing time.

Figure 2 illustrates the landing locations of the best solution found for the 280m grid mesh size. The figure shows that the landings are located far from the streams and on locations with relatively high elevations in a coherent and realistic configuration.

#### 4.3. Comparison with the manual planning method

The mean solution of the 48 test problems found using the BIPM is compared to that of the manual planning method executed by an experienced operator. The operator did not use any distance calculation or hauling cost in his landing site selection. His work was based on the locations of the trees, field mapped rivers and a 1/200.000 topographic map, as used in current practice.

Compared to manual planning landing locations, the BIPM reduces the total cost by about 26%. The distributions of the total cost divided into landing opening cost, hauling cost and uncut tree penalties for both methods are shown in the stacked bar chart in figure 3. Figure 2 : Landing locations for the best solution among the 48 test problems



| Method | No. of<br>landings<br>selected | Total<br>opening<br>cost (m) | Total<br>hauling | Total<br>penalty<br>(m) | Total cost | No. of<br>trees | Average<br>hauling | Average<br>Number of log |
|--------|--------------------------------|------------------------------|------------------|-------------------------|------------|-----------------|--------------------|--------------------------|
| Manual | 48                             | 505 521                      | 1 287 930        | 150 000                 | 1 943 452  | 3 900           | 330.2              | 81                       |
| BIPM   | 56                             | 369 584                      | 1 059 539        | 0                       | 1 429 123  | 3 930           | 269.6              | 70                       |

Table 3 : Results for manual planning and BIPM

Compared to the manual planning solution, the mean skidding distance is shorter and each landing receives a larger number of logs in the BIPM solution. Although the BIPM solution increased the number of opened landings, the average and global landing opening costs are still lower and consequently the BIPM solution reduces damages to the forest.

#### 5. Discussion

#### **5.1. Field constraints**

In other countries, like in Gabon, the field may be hilly. In such cases, the parameters in the model may need to be modified to adapt constraints such as decreasing the maximum hauling distance to 800m or increasing candidate landing density to increase the likelihood of finding landings on ridge tops. The final landing locations are always dependent on local field constraints and may be slightly different from those proposed by any model whatever the potential landing grid mesh sizes are. Figure 3: Distribution of total cost of manual planning and BIPM solutions



#### 5.2. Method limitations

Working with a potential landing grid mesh size under 280m in this case study excludes the use of CPLEX<sup>®</sup> on most personal computers. When the number of potential landing locations increases and/or when the model is applied to a wider area, like in Congo where annual logging zones often exceed 5000 hectares, the BIPM may become very large. Trying different landing grid mesh sizes for different parts of the covered area with different tree densities may keep the BIPM within manageable size. When a BIPM becomes too large, an exact solution method, such as branch-and-cut used in CPLEX<sup>®</sup>, may not be able to solve it. In these cases, a heuristic method, such as tabu search (Sun, 2006), would be more useful than an exact method.

#### 6. Conclusions

In this paper, a BIPM was proposed for the LLP. This model takes into account lowimpact logging standards and legal constraints through a specific study layout elaboration. The CPLEX<sup>®</sup> software was used to solve the BIPM. The BIPM finds the best number and locations of landings for the selective logging in order to minimize the total cost of the landing opening and log hauling operations. Testing this model on a study area in Cameroon led to a better solution than that of manual planning while respecting low-impact logging standards and field applicability/constraints. This model is a first step in the optimization of selective logging applied to the Central African context which slowly progresses to near sustainable management and responsible logging.

#### Acknowledgement

We would like to thank the logging society Pallisco that gave us the field data and accepted our field working missions. The second author is partially supported by a faculty summer research grant from the College of Business at University of Texas at San Antonio.

#### References

- Akay, A.E., Karas, I.R., Sessions, J., Yuksel, A., Bozali, N., Gundogan, R., 2004. Using highresolution digital elevation model for computer-aided forest road design. In Proceedings of the 20th ISPRS congress, Istanbul, Turkey, 12-13 July 2004.
- Anderson, A. E., Nelson, J., 2004. Projecting vector-based road networks with a shortest path algorithm. Can J. For. Res. 34, 1444-1457.
- Bertault, J-G., Sist, P., 1997. An experimental comparison of different harvesting intensities with reduced-impact and conventional logging in East Kalimantan, Indonesia. Forest Ecol. Manag. 94, 209-218.

- Contreras, M., Woodam, C., 2007. A computer approach to finding an optimal log landing location and analyzing ground influencing factors for ground-based timber harvesting. Can. J. For. Res. 37, 276-292.
- Cornujélos, G., Nemhauser, G. L., Wolsey, L. A., 1990. The Uncapacitated Facility Location Problem. In : Mirchandani, P. B., Francis, R. L. (eds), Discrete Location Theory, Wiley, New York, pp. 119-171.
- Dean, D., 1997. Finding optimal routes for networks of harvest site access roads using GISbased techniques. Can. J. For. Res. 27, 11-22.
- Dijkstra, E.W., 1959.A note on two problems in connection with graphs. Num. Math. 1, 269-271.
- Durrieu De Madron, L., Forni, E., 1998. Les techniques d'exploitation à impact réduit en forêt dense humide africaine. Rapport technique CIRAD-Forêt, Montpellier, France.
- Epstein, R., Sessions, J., Sapunar, P., Bustamante, F., Musante, H., 2001. PLANEX: A system to identify landing location and access. In: Proceedings of the International Mountain Logging and 11th Pacific Northwest Skyline Symposium. Seattle, Wash., 10-12 December 2001. College of Forestry, University of Washington, Seattle, Wash. pp. 190-193.
- Freycon, V., Yandji, E., 1998. Le SIG, une aide pour tracer un réseau de pistes forestières : méthode et résultats. Rapport technique CIRAD-Forêt, Montpellier, France..
- Hammami, A., 2003. Modélisation technico-économique d'une chaine logistique dans une enterprise réseau. Ph.D. Thesis, Univ. Laval, Québec, Canada. 395 pp.
- Johns, J. S., Barreto, P., Uhl, C., 1996. Logging damage during planned and unplanned logging operations in the eastern Amazon. Forest Ecol. Manag. 89, 59-77.
- Liu, K., Sessions, J., 1993. Preliminary planning of road systems using digital terrain models.J. For. Engineer. 4, 27-32.

Murray, A. T., 1998. Route planning for harvest site access. Can. J. For. Res. 28,1084-1087.

- Pinard, M. A., Putz, F.E., Tay, J., Sullivan, T.E 1995. Creating timber harvesting guidelines for a reduced-impact logging project in Malaysia. J. Forest. 93, 41-45.
- Reutebuch, S. E., 1988. Routes: A computer program for preliminary route location. USDA For. Serv. Gen. Tech. PNW-GTR-216.
- Sist, P., 1998. Directives pour l'application des techniques d'exploitation à faible impact (EFI) au Gabon : Objectifs, principes et enjeux. In Séminaire FORAFRI, 12-16 October 1998, Libreville, Gabon.
- Sist, P., 2000. Les techniques d'exploitation à faible impact. Bois et Forêts des Tropiques 265, 31-40.
- Sun, M., 2006. Solving the uncapacitated facility location problem using tabu search. Computers & Operations Research. 33, 2563–2589.