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Abstract 

We study the problem of assessing the agreement between two methods with any 
number of replicated observations using linear mixed effects (LME) model in a doubly 
multivariate set-up. This method can also be used in the case of unbalanced designs 
when number of replications for each patient is unequal, as well as when the number 
of replications for each patient by respective methods is unequal. This method can 
easily incorporate any covariate, especially categorical to substantiate its effect on the 
method assessment. The model is implemented using MIXED procedure of SAS. We 
demonstrate our method with three real data sets. 

Keywords: Assessment of Agreement, Kronecker Product, Maximum Likelihood Esti­
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1 Introduction 

It is often required to compare a new measurement technique with an established one of 
measuring some quantity such as carbon dioxide production, blood pressure, body fat or 
even child’s weight. The simple and relatively inexpensive methods for gathering quan­

titative data in comparison to the expensive gold standard one are always appraised. It 
is often needed to see whether they agree so that both of them can be used interchange­

ably. The question to be answered in this paper is, “Do the two methods of measurement 
agree statistically?” so that one can switch them, if needed. The problem has been dis­

cussed by many authors (Bland and Altman (1983, 1986, 1990, 1999); Lee, Koh and Ong, 
1989; Lin 1989; St. Laurent, 1998, Bartko, 1994; Argall et.al. 2003; Choudhary and 
Nagaraja, 2005). A common feature of all these approaches is that they used various 
factors, such as a systematic bias, a difference in variabilities and a low correlation that 
cause disagreement. Choudhary and Nagaraja (2005) combined all the above factors into 
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a single measure using the intersection-union principle. However, all these authors except 
Bland and Altman (1986, 1999) used only a single measurement on each subject for each 
method. Bland and Altman pointed out correctly that a single measurement on each sub­

ject is not be able to judge which method is more precise; lack of preciseness can certainly 
interfere with the comparison of two methods. They also mentioned in their paper that 
for more than two replicated measurements the calculations become very complicated; 
but, strongly recommended the simultaneous estimation of repeatability and agreement 
by collecting replicated data. Repeatability is very important to the study of method 
comparison because repeatabilities of the methods of measurements limit the amount of 
agreement and the best way to check repeatability is to take replicated measurements 
on a series of subjects. As mentioned in Bland and Altman (1986) repeatability plays a 
significant role in method comparison study. If one method has poor repeatability in the 
sense of considerable variation, the agreement between the two methods is bound to be 
poor. Even if the old method is the more variable one, a new method which is perfect will 
not agree with it. By replicates Bland and Altman meant two or more measurements on 
the same individual taken in identical conditions. In general these mean that the measure­

ments are taken in quick succession. We can assume that these replicated measurements 
are equicorrelated and we must take this equicorrelated structure of the replicates into ac­

count while assessing the agreement between the two methods. Bland and Altman (1999) 
calculated the repeatability coefficient for each method, regrettably they did not test the 
agreement between them formally. They also calculated the bias, again unfortunately they 
did not test its statistical significance. These two authors explored the agreement between 
two measurement methods by asking the question “Do the two methods of measurement 
agree sufficiently closely?”. And, they answered this question by estimating two limits 
of agreement. But, this idea of limits of agreement is too limiting. We try to solve this 
problem by fitting linear mixed effects (LME) model, instead of straightforward graphical 
techniques and tedious statistical calculations, the computations of which becomes very 
complicated for more than two replicated measurements (Bland and Altman, 1999). 

It is worth noting that specifically in this article we propose a method to appraise 
the agreement between the established method and a new method, with any number of 
replicated observations using LME model in a doubly multivariate set-up, by properly 
testing the bias as well as the agreement between the repeatability coefficients of the two 
methods. We deem that the proposed LME model, which can handle any number of 
replicated measurements very easily, can serve as a surrogate, or as a substitute, to Bland 
and Altman’s (1999) technique of method comparison studies. By doubly multivariate 
set-up we mean the information in each patient is multivariate in two ways, one in the 
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number of methods and the other one in the number of replicated measurements. We 
approached the problem by using the maximum likelihood estimation where the replicate 
observations are linked over time. We can easily extend the method to situation where 
the replicate measurements are not linked. To the best of the author’s knowledge this 
is the first time that the hypotheses testing on the bias and the repeatability coefficient 
between two methods are accomplished in a formal way, with any number of replicated 
measurements. The model is very easy to implement using PROC MIXED of SAS and 
the results are straightforward too. Thus, obviates the tedious and complex statistical 
calculations. Since PROC MIXED can handle missing values, our method can be applied 
when number of replications for each patient is unequal, as well as when the number of 
replications for each patient by respective methods is unequal. Moreover our method can 
handle any number of replicated observations very easily. 

Correlation coefficient-type approaches are used by many authors to study the agree­

ment between two analytical methods. Correlation coefficient-type approaches based on a 
bivariate normal distribution of the data are also given in (Lin, 1989; St. Laurent, 1998; 
Bartko, 1994). Recently Argall et.al. (2003) used Pearson correlation coefficient to com­

pare the two methods of weight estimation and described that the correlation coefficient 
0.82 is good in comparing the two methods. Bland and Altman (1983) mentioned that 
since correlation cannot cope with replicated data, few studies are there involving repli­

cations. Nevertheless, there are few contemporary studies in the literature that deal with 
correlation coefficient with repeated measurements. Lam, Webb and O’Donnell (1999) 
estimated the correlation coefficient between two variables with repeated observations on 
each variable. Then Hamlett et al. (2003, 2004) and lately Roy (2006) estimated it by 
using LME model. Roy modeled the true overall correlation coefficient between the two 
variables by calculating it in two parts; the partial correlation coefficient (without the 
subject effect) between the two variables, and then added the subject effect to it. In this 
article we use this overall correlation coefficient along with the bias and the repeatability 
coefficients to compare the agreement between two methods. We maintain the value 0.82, 
like Argall et.al. (2003), as the edge of the overall correlation coefficient while comparing 
two methods, but one can always change it according to one’s requirement. We propose 
the following three conditions, using the three factors as mentioned previously, to verify 
whether two methods for measuring a quantitative variable can be considered interchange­

able. 
1. No significant bias, i.e. the difference between the two mean readings is not “statisti­

cally significant”. 
2. High overall correlation coefficient. 
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3. The agreement between the two methods by testing their repeatability coefficients (de­

fined later). 
Testing of means is normal with the mixed effects model. The output of PROC MIXED 

always gives the bias, its t−value, its p−value, and its confidence interval. It also gives the 
overall correlation coefficient between the two methods. Nevertheless, it is not straight­

forward to check the agreement of the repeatability coefficients between the two methods. 
We will accomplish it by the indirect use of PROC MIXED in two steps. We will use 
likelihood ratio test 

Λ = 
maxHo L, 
maxH1 L

to test the null hypothesis: 

Ho : the two methods have the agreement with the repeatability coefficients 

vs. H1 : the two methods lack the agreement with the repeatability coefficients. 

(1) 

It is well known that, L = −2 ln Λ is approximately distributed as χ2 under Ho for large ν 

sample size and under normality assumption. The degrees of freedom ν is equal to the 
number of parameters estimated under H1 minus the number estimated under Ho. 

2 Linear Mixed Effects Model 

Let p be the maximum number of replications for each patient or subject. For two methods 
we have then 2p maximum number of observations for each subject. We arrange these 2p 
observations by a 2p× 1 dimensional vector y by stacking the 2 responses of the 2 methods 
at the first replication, then stacking 2 responses at the second replication and so on. We 
assume that y follows a multivariate normal distribution with mean vector µ and with a 
positive definite variance covariance matrix Ω. The 2 × 2 block diagonal matrix in Ω gives 
the covariance matrix between the 2 methods. Let yi represent the response vector for the 
ith subject, i = 1, 2, . . . , N . As mentioned in the introduction the number of replicated 
measurements for each patient may not be equal. Suppose, for the ith subject each method 
is measured over mi times. So for subject i, yi is ni × 1-dimensional, 1 ≤ ni ≤ 2p, where 
ni = 2mi. 

Let yit = (eit, nit)� be a 2 × 1 vector of measurements on the ith patient at the tth 
replicate, i = 1, 2, . . . , N ; t = 1, 2, . . . , p. The quantity e represents the established method 
and n the new method. Thus, yi = (yi

�
1, yi

�
2, . . . , yip

� )�. 
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Consider a LME model as described by Laird and Ware (1982) 

yi = Xiβ + Zibi + �i, 

bi ∼ Nm(0,D), 

�i ∼ Nni (0,Ri), 

where b1, b2, . . . , bN , �1, �2, . . . , �N are independent, and y1, y2, . . . ,yN are also all inde­

pendent. Xi and Zi are ni ×l and ni ×m dimensional design matrices of known covariates, 
β is a l-dimensional vector containing the fixed effects, bi is a m-dimensional vector con­

taining the random effects, and �i is a ni-dimensional vector of residual components. 
The variance-covariance matrix D is a general (m × m)-dimensional matrix and Ri is a 
(ni × ni)-dimensional covariance matrix which depends on i only through its dimension ni. 
If a patient has the maximum number of repeated measures i.e., ni = 2p, then the number 
of unknown parameters to be estimated in the unstructured variance covariance matrix 
Ri is 2p(2p + 1)/2, otherwise the number of unknown parameters in Ri is ni(ni + 1)/2. 

The marginal density function of yi ∼ Nni (Xiβ, ZiDZi
� + Ri), where Ri represents 

the partial variance covariance matrix corresponding to the ith individual. The 2 × 2 
block diagonal of this gives the partial variance covariance matrix of the 2 methods. We 
assume Ri = dimni (V ⊗ Σ), where V and Σ respectively are p× p and 2 × 2 dimensional 
positive definite matrices and ⊗ represents the Kronecker product structure. The notation 
dimni (V ⊗ Σ), represents a ni × ni dimensional submatrix obtained from a 2p × 2p di­

mensional matrix (V ⊗ Σ), by appropriately keeping the columns and rows corresponding � 
σe 

2 σen 
�

to the ni dimensional response vector yi. The matrix Σ = 
σen σ2 , represents the 

n 
partial variance covariance matrix of the established method and a new method for any 
replicates; where σ2 and σ2 are the partial variances of the established method and a e n 

new method respectively and σen is the partial covariance between the two methods. It 
is assumed that Σ is same for all replications. The correlation matrix V of the replicated 
measurements on a given method is assumed to be the same for both the methods (p. 279, 
Timm and Mieczkowski, 1997; p. 401, Timm, 2002). Since compound symmetry (CS) cor­

relation structure assumes equal correlation among all the measurements, we assume that 
the correlation matrix V of the replicated measurements has CS correlation structure. We 
further improve the model by incorporating the subject effect. The number of random 
effects and the form of Zi can be chosen to fit the observed (ni × ni) dimensional overall 
variance-covariance matrix for the ith individual as 

� � 
σe 

2 σen 
� � 

Cov(yi) = Ωi = ZiDZ � + dimni V ⊗i σen σ2 . 
n 
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Thus, the covariance matrix have the same structure for each subject, except that of the 
dimension. The 2 × 2 block diagonals in the estimated residual overall variance-covariance 
matrix Ωi gives the overall variance-covariance matrix of the 2 methods. 

3 PROC MIXED of SAS 

We use PROC MIXED of SAS to get the maximum likelihood estimates of β, D, Ri 

and Ωi. RANDOM and REPEATED statements specify the structure of the covariance 
matrices D and Ri. The advantage of PROC MIXED is that it can handle the separable 
covariance structure of the variance covariance matrix Ri = dimni (V ⊗ Σ), and it can 
calculate a ni × ni dimensional submatrix Ri, from a 2p × 2p dimensional matrix V ⊗ Σ, 
and eventually calculates ni ×ni dimensional Ωi. At present, PROC MIXED can only have 
option Σ as unstructured and V as unstructured, AR(1) or CS structure. METHOD=ML 
specifies PROC MIXED to calculate the maximum likelihood estimates of the parameters. 
REML is the default method of SAS; which offers non-biased REML estimates of the 
covariance parameters. CLASS statement specifies the categorical variables. DDFM=KR 
specifies the Kenward-Roger (1997) correction for computing the denominator degrees of 
freedom for the fixed effects. Kenward-Roger correction is suggested whenever one has 
replicated or repeated measures data as well as for missing data. Options V and VCORR 
in the RANDOM statement prints the estimate of Ω variance covariance matrix and the 
corresponding Ω correlation matrix for the first subject. The 2 × 2 block diagonal in 
the Ω correlation matrix gives the overall correlation matrix between the two methods. 
When the correlation matrix V on the repeated measures has CS structure and Σ is 
unstructured, we can either use TYPE= UN @ CS along with SUBJECT=PATIENT 
option or use TYPE= UN along with SUBJECT=REPLICATE(PATIENT) option in 
the REPEATED statement. We will use the second option in this article. The only 
disadvantage with this is that it does not give the whole ni × ni dimensional Ri matrix, 
but only the 2 × 2 block diagonal matrix Σ. We only need this information to calculate the 
repeatability coefficients for the two methods. Options R and RCORR in the REPEATED 
statement prints the estimate of R variance covariance matrix and the corresponding R 
correlation matrix for the first subject. One can get the Ω variance covariance matrix 
and the corresponding Ω correlation matrix for all patients by specifying V = 1 to N, 
and VCORR=1 to N in the RANDOM statement. For detail information one must see 
SAS/STAT User’s Guide (Version 9, 2004). Since PROC MIXED can handle covariates, 
our model can easily see its effect, especially categorical to substantiate its effect on the 
method assessment. 
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4 Repeatability Coefficient and Related Hypothesis Testing 

Following Bland and Altman (1999) we name 1.96
√

2 σe as the repeatability coefficient 
of the established method, where σ2 is the partial variance of the established method e 

as defined earlier. Similarly, the repeatability coefficient of the new method. For 95% of 
subjects two replicated measurements by the same method will be within this repeatability 
coefficient. 

As mentioned in the introduction to test the agreement between the two methods it 
is crucial to test the equality of their repeatability coefficients. We will accomplish this 
simply by testing the following hypothesis: 

Ho : σe 
2 = σ2 vs. H1 : σe 

2 = σ2 .n n

We apply the likelihood ratio test for this hypothesis testing. To compute the test statistic 
−2 ln Λ, where 

−2 ln Λ = −2 ln max L −2 ln max L , 
Ho 

− 
H1 

the likelihood function under both null hypothesis and alternating hypothesis must be 
maximized separately. We do this by setting the option METHOD=ML in PROC MIXED 
statement. The options TYPE=UN and TYPE=CS along with SUBJECT = REPLI-

CATE(PATIENT) in the REPEATED statement are used to calculate the “-2 Log Like­

lihood” for the covariance structure under H1 and Ho respectively. PROC MIXED calcu­

lates this under the heading of goodness of fit statistics. Since Σ is 2 × 2 dimensional, one 
can also use TYPE=AR(1) or TOEP along with SUBJECT=REPLICATE(PATIENT) in 
the REPEATED statement to calculate the “-2 Log Likelihood” for the covariance struc­

ture under Ho. The above test statistic −2 ln Λ under Ho follows a chi-square distribution 
with degrees of freedom ν, where ν is computed as 

ν = LRT df (underH1) − LRT df (underHo). 

5 Some Examples 

We demonstrate the proposed method by considering three real data sets. All the data 
sets are taken from different papers of Bland and Altman (1986, 1999). The first and the 
second data sets are of smaller in sizes, whereas the third one is larger. The first data 
set has unbalanced replications while the second and the third data sets have balanced 
replications. 
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Example 1. (Cardiac Data): This data set is taken from Bland and Altman (1986). 
This data set (Table 1) has measurements of cardiac output by two methods, radionuclide 
ventriculography (RV) and impedance cardiography (IC), on 12 patients. The number of 
repeated observations differs by patient. Such data may occur if patients are measured at 
regular intervals during surgery. 

Table 1 Repeated measurements of Cardiac output by two methods RV and IC 
for 12 patients. 

Patient # RV IC Patient # RV IC Patient # RV IC 
1 7.83 6.57 5 3.13 3.03 9 4.48 3.17 
1 7.42 5.62 5 2.98 2.86 9 4.92 3.12 
1 7.89 6.90 5 2.85 2.77 9 3.97 2.96 
1 7.12 6.57 5 3.17 2.46 10 4.22 4.35 
1 7.88 6.35 5 3.09 2.32 10 4.65 4.62 
2 6.16 4.06 5 3.12 2.43 10 4.74 3.16 
2 7.26 4.29 6 5.92 5.90 10 4.44 3.53 
2 6.71 4.26 6 6.42 5.81 10 4.50 3.53 
2 6.54 4.09 6 5.92 5.70 11 6.78 7.20 
3 4.75 4.71 6 6.27 5.76 11 6.07 6.09 
3 5.24 5.50 7 7.13 5.09 11 6.52 7.00 
3 4.86 5.08 7 6.62 4.63 11 6.42 7.10 
3 4.78 5.02 7 6.58 4.61 11 6.41 7.40 
3 6.05 6.01 7 6.93 5.09 11 5.76 6.80 
3 5.42 5.67 8 4.54 4.72 12 5.06 4.50 
4 4.21 4.14 8 4.81 4.61 12 4.72 4.20 
4 3.61 4.20 8 5.11 4.36 12 4.90 3.80 
4 3.72 4.61 8 5.29 4.20 12 4.80 3.80 
4 3.87 4.68 8 5.39 4.36 12 4.90 4.20 
4 3.92 5.04 8 5.57 4.20 12 5.10 4.50 

Table 2 Regression results for the variables RV and IC with CS correlation 
structure on V . 

Effect Estimate SE DF t-value Pr > t Lower Upper | |
Intercept 4.6836 0.3510 12 13.34 <0.0001 3.9189 5.4484 
RV 0.7040 0.2634 11.9 2.67 0.0204 0.1298 1.2782 
IC 0 . . . . . . 

The regression results from the output of PROC MIXED is given in Table 2. Since the data 
set has an imbalanced number of observations per patient, the overall variance-covariance 
matrix Ωi for each patient will have different dimensions. Like, the patient 1 will have 
10 × 10 dimensional variance-covariance matrix, as there are 5 repetitions for patient 1. 
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For patient 2, it will be 8 × 8 dimensional, as patient 2 has 4 repetitions. The 2 × 2 
block diagonals Block Ω̂ in the estimated residual variance-covariance matrix Ωi gives the 
overall variance-covariance matrix between the two methods RV and IC. 

We see that the bias between the two methods RV and IC is statistically significant 
with p−value =0.0204. The estimate of the partial residual variance-covariance matrix Σ 
at a single time point is as follows 

Σ̂ = 

⎡
⎢⎢⎢⎣ 

0.1072 0.0372 
(<0.0001) (0.0429) 

0.0372 0.1379 
(0.0429) (<0.0001) 

⎤
⎥⎥⎥⎦ 

. 

The second row in italics gives the p−values to the corresponding entities. The estimates 
of the variances are exactly the same as obtained by Bland and Altman (1999). How­

ever, Bland and Altman did not calculate the covariance between the two methods. The 
estimate of the corresponding partial correlation matrix is 

1.000 0.3056 
Corr Σ̂ = 

0.3056 1.0000 . 

Simple calculation depicts that the partial correlation between the two methods at a single 
time point is 0.3056, a poor one. The repeatability coefficient for RV method is 0.9075 
and the repeatability coefficient for IC method is 1.0293. Thus, the repeatability of the 
method IC is little more than (13%) that of the RV method. The test statistic −2 ln Λ = 
(173.9) − (173.1) = 0.8, where 173.9 and 173.1 are the values of “-2 Log Likelihood” 
reported by SAS for the two models under Ho and H1 respectively. This test statistic 
under Ho follows a chi-square distribution with degrees of freedom ν, where ν is computed 
as ν = 5 − 4 = 1. The corresponding p−value = 0.3711. Therefore, the repeatabilities 
of RV and IC are not statistically significant. The 2 × 2 block diagonals Block Ω̂ in the 
estimated overall residual variance-covariance matrix Ωi, i = 1, . . . 12, gives the residual 
overall variance-covariance matrix between the RV and the IC methods 

� 
1.7396 1.1799

Block Ω̂ = 
1.1799 1.5877 . 

The overall correlation coefficient between the two methods is 0.7100; implying that the 
two methods are not highly correlated. 

We see that there exists statistically significant bias between the two methods. Also 
the methods do not have a high correlation coefficient even though the repeatability co­

efficients of RV and IC are statistically insignificant; So the methods do not have total 
agreement. Therefore, on the basis of three conditions stated in the introduction we as a 
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statistician do not recommend to switch the two methods. 

Example 2. (Peak Expiratory Flow Rate Data): This data set (Bland and Altman, 
1986) compares the two methods of measuring peak expiratory flow rate (PEFR). The 
sample was collected from a wide range of PEFR, but was not from any defined population. 
Two measurements (Table 3) were made with a Wright peak flow meter (X) and two with 
a mini Wright peak flow meter (Y), in random order. All measurements were taken using 
the same two instruments. The regression results from the output of PROC MIXED is 
given in Table 4. 

Table 3 PEFR measured with Wright peak flow and mini Wright peak flow meter 

Wright peak flow meter Mini Wright peak flow meter 
Subject First PEFR Second PEFR First PEFR Second PEFR 

(1/min) (1/min) (1/min) (1/min) 
1 494 490 512 525 
2 395 397 430 415 
3 516 512 520 508 
4 434 401 428 444 
5 476 470 500 500 
6 557 611 600 625 
7 413 415 364 460 
8 442 431 380 390 
9 650 638 658 642 
10 433 429 445 432 
11 417 420 432 420 
12 656 633 626 605 
13 267 275 260 227 
14 478 492 477 467 
15 178 165 259 268 
16 423 372 350 370 
17 427 421 451 443 

Table 4 Regression results for the PEFR Measurements with Wright peak flow meter 
and Mini Wright peak flow meter 

Effect 
Intercept 

Estimate 
453.91 

SE 
26.1862 

DF 
17 

t-value 
17.33 

Pr > |t|
<0.0001 

Lower 
398.66 

Upper 
509.16 

Wright peak -6.0294 7.8127 17 -0.77 0.4509 -22.5128 10.4540 
flow meter 
Mini Wright peak 0 . . . . . . 
flow meter 
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We see that there is a non-significant (p −values = 0.4509) bias −6.0294 min−1 between 
the two methods. The estimate of the residual partial variance-covariance matrix Σ for 
any single replication is given by 

Σ̂ = 

⎡
⎢⎢⎢⎣ 

234.29 2.0000 
(0.0018) (0.9784) 

2.0000 396.44 
(0.9784) (0.0018) 

⎤
⎥⎥⎥⎦ 

. 

Therefore the partial correlation coefficient between the two meters is 0.0066. As before 
the quantities in the parentheses gives the p −values of the corresponding entries. The 
coefficient of repeatability for the larger Wright peak flow meter is 42.4275 min−1 , and the 
coefficient of repeatability for the mini Wright peak flow meter is 55.1899 min−1 . Therefore 
repeatability of the Mini Wright peak flow meter is 30% more than the repeatability of 
the larger Wright peak flow meter. 

To test the hypothesis of the equality of repeatabilities of these peak flow meters, we 
calculate the value of the test statistic −2 ln Λ = (689.4) − (688.2) = 1.2, where 689.4 and 
688.2 are the values of “-2 Log Likelihood” reported by SAS for the two models under Ho 

and H1 respectively. The above test statistic under Ho, follows a chi-square distribution 
with degrees of freedom ν, where ν is computed as ν = 5 − 4 = 1. The corresponding 
p −value = 0.2733. Therefore, the repeatabilities of the two flow meters are statistically 
insignificant. 

The 2 × 2 block diagonals Block Ω̂ in the estimated residual overall variance-covariance 
matrix Ω is as follows � 

13105 11805
Block Ω̂ = 

11805 11855 . 

The overall correlation coefficient between the two methods is 0.9471. Therefore the 
two flow meters do not have significant bias, and they have high correlation and the 
repeatabilities of the two flow meters are statistically insignificant. 

Therefore on the basis of three conditions stated in the introduction our statistical 
recommendation is that one can use the two meters interchangeably. 

Example 3. (Systolic Blood Pressure Data): This data set is also taken from Bland 
and Altman (1999). Simultaneous measurements of systolic blood pressure were made by 
each of the two experienced observers (denoted J and R) using a sphygmomanometer and 
by a semi-automatic blood pressure monitor (denoted by S). Three sets of readings were 
made in quick succession on 85 subjects. We want to examine whether either of the two 
observer can be replaced by the semi-automatic blood pressure monitor. To see this we 
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first analyze the data by taking the observer J and the machine S, and then by taking the 
observer R and the machine S. The regression results from the output of PROC MIXED 
are given in Tables 5 and 6 respectively. 

Table 5 Regression results for the observer J and an automatic blood pressure 
machine S 

Effect Estimate SE DF t-value Pr > t Lower Upper| |
Intercept 143.03 3.4283 85 41.72 <0.0001 136.21 149.84 
J -15.6196 2.0416 85 -7.65 <0.0001 -19.6788 -11.5605 
S 0 . . . . . . 

Table 6 Regression results for the observer R and an automatic blood pressure 
machine S 

Effect Estimate SE DF t-value Pr > t Lower Upper| |
Intercept 143.03 3.4283 85 41.72 <0.0001 136.21 149.84 
R -15.7059 2.0263 85 -7.75 <0.0001 -19.7348 -11.6770 
S 0 . . . . . . 

We see that the mean difference −15.6196 mmHg between the observer J and the automatic 
blood pressure machine S is statistically significant with p−value <0.0001. 

The estimate of the residual partial variance-covariance matrix Σ for any single repli­

cation is given by 

Σ̂ = 

⎡
⎢⎢⎢⎣ 

37.4078 16.0627 
(<0.0001) (0.0003) 

16.0627 83.1412 
(0.0003) (<0.0001) 

⎤
⎥⎥⎥⎦ 

. 

The estimates of the variances are exactly the same as obtained by Bland and Altman 
(1999). All the entries in this matrix are statistically significant. The corresponding 
p−values are given in the parentheses. The coefficient of repeatabilities for the observers 
J and S are 16.9532 mmHg and 25.2743 mmHg respectively. Therefore repeatability of the 
machine S is 49% more than the repeatability of the observer J. To test the equality of 
these two repeatabilities we calculate the test statistic −2 ln Λ = (4090.1)−(4061.5) = 28.6, 
where 4090.1 and 4061.5 are the values of “-2 Log Likelihood” reported by SAS for the two 
models under Ho and H1 respectively. As before the test statistic under Ho follows a chi-

square distribution with 1 degree of freedom. The corresponding p−value = 8.8982E − 8, a 
negligible quantity. Therefore, the repeatabilities of the observer J and the machine S are 
statistically significant. Simple calculation depicts that the partial correlation coefficient 
between the observer J and the machine S is 0.2880. The 2 × 2 block diagonals Block Ω̂ 
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in the estimated residual overall variance-covariance matrix Ω gives the overall variance-

covariance matrix between the two observers and the automatic machine. 
� 

961.39 801.31
Block Ω̂ = 

801.31 1054.44 . 

Therefore, the overall correlation coefficient between the observer J and the machine S is 
0.7959. 

From Table 6 we see that the bias −15.7059 mmHg between the observer R and the 
machine S is statistically significant with p −value < 0.0001. The residual Σ variance-

covariance matrix is as follows 

Σ̂ = 

⎡
⎢⎢⎢⎣ 

37.9804 17.3333 
(<0.0001) (0.0001) 

17.1412 83.1412 
(0.0003) (<0.0001) 

⎤
⎥⎥⎥⎦ 

. 

Here also the estimates of the variances are exactly the same as obtained by Bland and 
Altman (1999). But as before they did not calculate the covariance between the observer 
R and the machine S. The partial correlation coefficient between the observer R and 
the machine S is 0.3085. The coefficient of repeatabilities for the observer R and the 
machine S are 17.0825 mmHg and 25.2743 mmHg respectively. Therefore the repeatability 
of the machine S is 48% more than the repeatability of the observer R. As before to 
test the equality of these two repeatabilities we calculate the test statistic −2 ln Λ = 
(4087.5) − (4059.6) = 27.9, where 4087.5 and 4059.6 are the values of “-2 Log Likelihood” 
reported by SAS for the two models under Ho and H1 respectively. This test statistic 
under Ho follows a chi-square distribution with 1 degree of freedom. The corresponding 
p−value = 1.2775E − 7, a negligible quantity. Therefore, the repeatabilities of the observer 
R and the machine S are statistically significant. The 2 × 2 block diagonals Block Ω̂ in 
the estimated residual overall variance-covariance matrix Ω gives the overall variance-

covariance matrix between the observer R and the automatic machine. 
� 

944.11 795.95
Block Ω̂ = 

795.95 1054.44 . 

Therefore the overall correlation coefficient between the observer J and the machine S is 
0.7977. 

So the biases between each of the two observers J and R, and the machine S are 
statistically significant. Also, they do not exhibit high correlation coefficient (≥ 0.82). 
Furthermore, the repeatabilities of each of the observer and the machine S are statistically 
significant. Therefore, on the basis of three conditions stated in the introduction we do 
not recommend to substitute any of the observer with the machine. 
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6	 Conclusions 

In this article we present a new method using the LME model to assess the agreement 
between a new method and an established method with any number of replicated obser­

vations. The topic is of practical relevance in many practical fields, especially in medical 
and biomedical sciences. The method is easily understandable by either a statistician or 
a non-statistician, and is very easy to implement using PROC MIXED of SAS. The inter­

pretation of the results is also straightforward. A few lines of computer program can be 
used by any person with little bit of programming expertise. The power of the likelihood 
ratio test mentioned in this paper may depend on specific sample size and specific number 
of replicated observations. One needs to do some simulation study for this. We will report 
it in a future correspondence. 
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