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A Branch-and-Bound Algorithm for Representative Integer Efficient 

Solutions in Multiple Objective Network Programming Problems 

Abstract 

In many applications of multiple objective network programming problems, only integer solutions are 

acceptable as the final optimal solution. Representative efficient solutions are usually obtained by sampling the 

efficient set through the solution of augmented weighted Tchebycheff network programs. Because such efficient 

solutions are usually not integer solutions, a branch-and-bound algorithm is developed to find integer efficient 

solutions. The purpose of the branch-and-bound algorithm is to support interactive procedures by generating 

representative integer efficient solutions. To be computationally efficient, the algorithm takes advantage of the 

network structure as much as possible. An algorithm, used in the branch-and-bound algorithm and performed on the 

spanning tree, is developed to construct feasible solutions from infeasible solutions and basic solutions from non-

basic solutions when bounds on branching variables change. The branch-and-bound algorithm finds either supported 

or unsupported integer efficient solutions as long as they are optimal. Details of the algorithm are presented, an 

example is provided and computational results are reported. Computational results show that the algorithm is very 

powerful. 
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A Branch-and-Bound Algorithm for Representative  Integer Efficient 

Solutions in Multiple Objective Network Programming Problems 

1. Introduction 

Single objective network programming (NP) models have been studied extensively and have been applied 

to many real life problems [Ahuja, Magnanti and Orlin, 1993; Glover, Klingman and Phillips, 1992; Kennington and 

Helgason, 1980; Murty, 1992]. Computationally very efficient algorithms have been developed for single objective 

NP models. Multiple objective network programming (MONP) problems also attracted the attention of researchers 

and practitioners because many applications have multiple objectives in nature [Hamacher, Pedersen and Ruzika, 

2007]. Current and Min [1986], Current and Marsh [1993], Ehrgott and Gandibleux [2000] and Hamacher, Pedersen 

and Ruzika [2007] provided comprehensive reviews of MONP studies. In many applications, only integer solutions 

are acceptable. With the integrality requirement, MONP problems become multiple objective integer network 

programming (MOINP) problems. MOINP problems are much more difficult to solve than single objective NP 

problems [Steuer and Piercy, 2000; Hamacher, Pedersen and Ruzika, 2007]. 

Interactive procedures are usually used to solve multiple objective programming (MOP) problems. Many 

interactive procedures have been developed in the last 40 years [Steuer, 1986]. Based on these earlier pioneering 

works, many more interactive procedures have been developed more recently. The ideas in some of these interactive 

procedures can be borrowed to solve MOINP problems if computationally efficient algorithms are available to 

generate representative integer efficient solutions. Usually representative efficient solutions are sampled and 

presented to the decision maker (DM) for evaluation in an interactive procedure [Steuer and Choo, 1983; Steuer, 

Silverman and Whisman, 1993; Sun, Stam and Steuer, 1996, 2000]. The preference information elicited from the 

DM through the evaluation of representative efficient solutions is then incorporated into the solution process in 

order to search for better solutions. More representative efficient solutions are then sampled and presented to the 

DM for evaluation. This process continues until some preset criteria are met or until the DM is satisfied with a 

solution. In an interactive procedure, most of the computational effort is used to generate representative efficient 

solutions. 

For MOINP problems, representative integer efficient solutions can be generated by solving augmented 

weighted Tchebycheff integer network programs (AWTINPs), subproblems derived from the MOINP problem 

[Drinka, Sun and Murry 1996; Steuer, 1986; Sun, 2003, 2005a, 2009]. Dropping the integrality requirement, an 

AWTINP is relaxed to an augmented weighted Tchebycheff network program (AWTNP). In this study, a branch-

and-bound (BB) algorithm is developed to solve AWTINPs so as to generate representative integer efficient 

solutions for MOINP problems. In the BB algorithm, an AWTINP is solved by solving a series of AWTNPs. Integer 

efficient solutions in MOINP problems may be basic and non-basic or may be supported or unsupported. The BB 

algorithm is capable of finding both basic and non-basic as well as supported and unsupported integer efficient 

solutions. However, the purpose of the BB algorithm is not to completely enumerate all integer efficient solutions in 

an MOINP problem but is to generate representative integer efficient solutions to support interactive procedures.  
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The BB algorithm is a general solution approach for various optimization problems and is the standard 

solution approach for integer programming problems. While the concept of the BB algorithm is not complicated, the 

major contribution of this study is to make the BB algorithm computationally efficient by using the network 

structure of the MOINP problem and by developing algorithms to restore feasibility and to transform non-basic 

solutions to basic solutions when subproblems are constructed and after subproblems are solved. Computational 

results show that the BB algorithm can solve pretty large MOINP problems. 

The generation of integer efficient solutions for MOINP problems has attracted the attention of researchers. 

Hamacher, Pedersen and Ruzika [2007] provided a review of the studies in this area. Most of the studies focused on 

biobjective MOINP problems [e.g., Pulat, Huarng, and Lee, 1992; Lee and Pulat, 1993; Sedeño-Noda and González-

Martín, 2000, 2001, 2003; Przybylski, Gandibleux and Ehrgott, 2006; Eusébio and Figueira, 2009b; and Raith and 

Ehrgott, 2009]. The purpose of these studies is to find all integer efficient solutions for such problems although 

some earlier studies can only find basic and some others can only find supported integer efficient solutions. Later 

studies [Przybylski, Gandibleux and Ehrgott, 2006; Eusébio and Figueira, 2009b; and Raith and Ehrgott, 2009] also 

provided reviews and examined the flaws of other earlier studies. Özlen and Azizoğlu [2009] developed a general 

approach to generate all integer efficient solutions for integer linear MOP problems. This general approach is 

applicable to MOINP problems. Eusébio and Figueira [2009a] developed a method to enumerate all supported 

integer efficient solutions of MOINP problems. 

These methods make the enumeration of all integer efficient solutions theoretically possible although they 

may not be practically feasible [Eusébio and Figueira, 2009a]. Biobjective MOINP problems may have an 

exponential number of basic efficient solutions [Ruhe, 1998; Hamacher, Pedersen and Ruzika, 2007]. A general 

MOINP problem with more objective functions may be much more complicated. Because of the huge number of 

integer efficient solutions in any reasonable application, finding all integer efficient solutions is an unmanageable 

task. Even though all the integer efficient solutions are found, managing them is another unmanageable task. After 

the whole set of integer efficient solutions has been found, sophisticated methods, possibly interactive, may be 

needed to find a single final solution. In practical applications, complete enumeration of all integer efficient 

solutions may be unnecessary because only one optimal solution is needed for an MOINP problem.  

Methods for the generation of efficient basic solutions for linear MOP problems, such as ADBASE [Steuer, 

2003], EFFACET [Isermann, 1997, 1984] and the approach recently developed by Przybylski, Gandibleux and 

Ehrgott [2009], may be used to generate basic integer efficient solutions for MOINP problems. However, basic 

integer efficient solutions are only a small portion of the whole set of integer efficient solutions. Although basic 

solutions of NP problems are integer solutions, the optimal solution of an MOINP problem is not necessarily a basic 

solution. Searching only basic solutions may miss the optimal solution of an MOINP problem. 

Procedures are also developed to construct integer efficient solutions from fractional efficient solutions for 

MOINP problems. Mustafa and Goh [1998] proposed such an approach for MOINP problems with two or three 

objective functions from fractional efficient solutions generated with DINAS [Ogryczak, Studziski and Zorychta, 

1989, 1992]. This approach works for problems with two objective functions, but is problematic for problems with 

three objective functions, and is impossible to generalize to problems with more than three objective functions. Sun 
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[2009] developed an enumerative algorithm to find representative integer efficient solutions that approximately 

solve the AWTINP. After finding the optimal solution of an AWTNP, this algorithm searches the neighborhood to 

find the best supported integer efficient solution. The CPU time taken by this algorithm is hardly noticeable but it 

searches only supported integer efficient solutions. For practical purpose, these supported integer efficient solutions 

are sufficient but theoretically unsupported integer efficient solutions also need to be searched. As shown by 

Sedeño-Noda and González-Martín [2001] and Raith and Ehrgott [2009] through computational experiments for 

biobjective MOINP problems, the number of unsupported integer efficient solutions is usually much larger than that 

of supported integer efficient solutions. In general multiple objective combinatorial problems, supported efficient 

solutions are often only a small portion of the complete set of efficient solutions even for the biobjective case 

[Przybylski, Gandibleux and Ehrgott, 2009]. 

2. The Multiple Objective Integer Network Programming Problem 

A network is a set of nodes N  connected with a set of directed arcs A . The number of nodes is denoted 

by | |n  N  and the number of arcs is denoted by | |a  A . An arc in the network directed from node iN  to node 

jN  is denoted by ( , )i j A . Nodes usually represent locations in physical networks such as factories, 

warehouses, distribution centers and customers in a distribution network, or servers, gateways and terminals in a 

computer network. Arcs usually represent connections such as a road between two locations in a distribution 

network or communication channels in a computer network. 

The flow on ( , )i j  is represented by ijx  and the lower and upper bounds on ijx  are represented by ijl  and 

iju , respectively. The default 0ijl   for all ( , )i j A  is used in the implementation of NP algorithms in this study. 

Each ijx  is required to be an integer in a feasible solution of an MOINP problem. The net requirement for the goods 

to be shipped at node i  is represented by ib . Node i  is a supply node if 0ib  , a demand node if 0ib  , or a 

transshipment node if 0ib  . The ib  for each iN  and the ijl  and the iju  for each ( , )i j A  are all assumed to 

be integers. The number of objective functions in the MOINP model is represented by K . Each objective function 

represents one type of cost and all objective functions are to be minimized. The cost of type k  of shipping one unit 

of goods along ( , )i j  is represented by k
ijc . The vector of unit costs of the K  objective functions for ( , )i j  is 

represented by 1 2( , , , )K
ij ij ij ijc c cc . The ijx s are the variables, called flow variables, and all others are known 

parameters in the MOINP model. An MOINP model can be stated formally as 

 min  
( , )

,k
ij ij

i j

c x



A

 
for 1,...,k K  (1) 

 . .s t  
{ | ( , ) } { | ( , ) }

,ij ji i

j i j j j i

x x b
 

  
A A

 
for iN  (2) 

  ,ij ij ijl x u   for ( , )i j A  (3) 

  ijx   integers, for ( , )i j A  (4) 
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Although all the objective functions (1) are to be minimized simultaneously, not all of them can achieve 

their minima at the same time in a usual MOINP problem. The conservation of flow constraints (2) and the bound 

constraints (3) are the same as those in a single objective NP problem. If fractional solutions are acceptable in an 

application, the integrality constraints (4) are dropped from the model. Without these integrality constraints, the 

model in (1)-(3) is a regular MONP model and is a relaxation of the corresponding MOINP model. 

Using vector and matrix notation, the vector of flow variables is denoted by ax , i.e., 

{ | ( , ) }ijx i j x A}; the lower and upper bound vectors of x  are denoted by al  and au , respectively; the 

cost coefficient matrix is denoted by K aC  ; the node-arc incidence matrix is denoted by n aA  ; and the 

node requirement vector is denoted by nb . The MONP model can be written as { | }min C Xx x  with 

{ |  and }aX A    x x b l x u . A Xx  is a feasible solution and aX   is the feasible region of the 

MONP problem in decision space. Similarly, the MOINP model can be written as { | }Imin C Xx x  with 

{ | ,  and  integers}I aX A    x x b l x u x . A IXx  is a feasible solution and I aX   is the feasible 

region of the MOINP problem in decision space. Apparently, IX  is a subset of X  and X  is the convex hull of 

IX . Any x , such that Xx  but IXx , is a fractional or non-integer solution. 

A Kz , such that Cz x , is a criterion vector. The set of all feasible criterion vectors KZ   

( I KZ  ), such that { and }|KZ C X   z z x x  ( { and }|I K IZ C X   z z x x ), is the feasible 

region and a Zz  ( IZz ) is a feasible solution of the MONP (MOINP) problem in criterion space. In an MOINP 

problem, the components of a IZz  are not necessarily integers although those of a IXx  are. 

A Zz  ( IZz ) is a nondominated criterion vector if there does not exist any Zz  ( IZz ) such that 

z z  and z z  [Steuer, 1986]. A Zz  ( IZz ) is dominated if it is not nondominated. The set of all 

nondominated criterion vectors of the MONP (MOINP) problem is represented by Z  ( IZ ). A Xx  ( IXx ) is 

an efficient solution if its criterion vector Cz x  is nondominated. A Xx  ( IXx ) is inefficient if it is not 

efficient. The set of all efficient solutions of the MONP (MOINP) problem is represented by X  ( IX ). Apparently 

I Z Z  and I X X . A x X  is not in IX  if it does not satisfy the integrality constraints (4) and a Ix X  is not 

in X  if Cz x  is dominated by the criterion vectors of some fractional solutions. 

The set Z   is defined as Z  convex hull of { { | 0}}I K  z zZ  [Steuer, 1986]. If defined on Z , 

Z   is the same. A z Z  ( Iz Z ) is a supported nondominated criterion vector if it is on the boundary of Z   and 

is an unsupported nondominated criterion vector otherwise [Steuer, 1986]. A x X  ( Ix X ) is a supported 

(unsupported) efficient solution if Cz x  is supported (unsupported). All z Z  are supported although some 

Iz Z  are unsupported. A x  ( z ), such that Ix X  ( Iz Z ) but x X  ( z Z ), is an unsupported efficient 

solution (nondominated criterion vector) of the MOINP problem. An unsupported nondominated criterion vector of 

the MOINP problem is dominated by the criterion vectors of some fractional solutions of the MONP problem. All 
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unsupported integer efficient solutions are non-basic or basic but their criterion vectors are dominated by those of 

some fractional solutions. 

The ideal point *
z  is defined by  * |k kz min z Z z . Usually Z*

z , i.e., there is not a feasible solution, 

fractional or integer, that minimizes all objective functions simultaneously [Steuer, 1986; Sun, 2005b]. A utopian 

point **
z , defined on *

z , i.e., ** *
k k kz z    with 0k   and small for all k  [Steuer, 1986], is usually used as a 

reference in the solution process of an MONP problem. A ˆ IXx , such that ˆ x̂Cz  is most preferred among all 

IZz  by the DM, is an optimal solution of the MOINP problem in (1)-(4). Theoretically, an optimal solution 

maximizes the DM’s value function if such a value function exists [Steuer, 1986]. Because an optimal solution must 

be efficient [Steuer, 1986], only those x , such that Ix X , are candidates for an optimal solution. 

The integrality constraints (4) are implicitly implied in single objective NP problems. Because of the total 

unimodularity property of A  [Ahuja, Magnanti and Orlin, 1993; Bazaraa, Jarvis and Sherali, 1990; Nemhauser and 

Wolsey, 1988], all basic solutions of the MONP problem are integer solutions if ib  for all iN  and ijl  and iju  for 

all ( , )i j A  are integers. Therefore, all basic solutions of the MONP problem are feasible solutions of the MOINP 

problem. However, these integrality constraints must be enforced for MOINP problems because not every efficient 

solution of the MONP problem is basic with integer values. If the DM's value function is nonlinear, optimal 

solutions are not necessarily basic and, therefore, non-basic efficient solutions need to be examined. 

3. Generation of Integer Efficient Solutions 

In this section, the AWTINP (AWTNP) is discussed. Subproblems obtained through the separation of an 

AWTNP, also AWTNPs, are described. Finally, basis exchanges used in the BB algorithm are briefly explained.  

3.1. The Augmented Weighted Tchebycheff Integer Network Program 

The weighting vector space   is defined as 
1

{ | 0,  for all 1,..., ,   and 1}
KK

k kk
k K  


      

[Steuer, 1986]. Given a  , an AWTINP formulated from the MOINP model in (1)-(4) is 

 min  
**

1 ( , )

K
k
ij ij k

k i j

c x z 
 

 
  

 
 

 
A

  (5) 

 . .s t  
{ | ( , ) } { | ( , ) }

,ij ji i

j i j j j i

x x b
 

  
A} A}

 
for iN  (6) 

  
**

( , )

1
,k

ij ij k k
ki j

c x s z


  
A

 for 1,...,k K  (7) 

  ,ij ij ijl x u   for ( , )i j A  (8) 

  0ks  , for 1,...,k K  (9) 

  ijx   integers, for ( , )i j A  (10) 

   unrestricted.  (11) 
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Dropping the integrality constraints (10), the AWTINP is relaxed to an AWTNP. In the AWTINP 

(AWTNP), 0   is such a small scalar that the second term in (5) is significant but not dominating, the ks s, for 

1,...,k K , are the slack variables, and   is the  weighted Tchebycheff metric between **
z  and a Zz . 

Because Zz  is not in the model, it can be maintained and updated in the solution process or can be evaluated 

using (1) when needed. The value of   for any given Zz  and any given   can be computed using 

** **|| || { ( ) | 1,..., }k k kmax z z k K     z z . With   and z , the objective function (5), called the augmented 

 weighted Tchebycheff metric, can be evaluated with ** **

1
||| z z ||| ( )

K

k kk
d z z  


     . 

The K  constraints (7) converted from the K  objective functions (1) are not network constraints and the 

1K   variables, i.e., ks  for 1,...,k K  and  , are non-flow variables. Hence, the AWTNP is a network flow 

problem with side constraints. In the implementation, AWTNPs are solved with the special simplex method for 

network problems with side constraints [Chen and Saigal, 1977]. Because the integrality constraints (10) are relaxed, 

an optimal solution of an AWTNP is usually fractional. 

A basic solution of an AWTNP has 1n K   basic variables, including both flow and non-flow variables. 

In the special simplex method for network problems with side constraints, a key tree T  is used to partially represent 

a basic solution of the AWTNP. For easy reference, a node i  in T  is denoted by iT  and an arc ( , )i j  in T  is 

denoted by ( , )i j T . Graphically, T  grows upward. In the solution process, T  is updated iteration after iteration. 

The 1n  arcs in T  are key basic arcs and the 1n  corresponding flow variables are key basic flow variables. The 

other K  basic variables, called non-key basic variables, may include both flow and non-flow variables. Arcs 

corresponding to non-key basic flow variables are non-key basic arcs. All other arcs are non-basic arcs. Key basic 

arcs are further divided into essential and inessential key basic arcs. An essential key basic arc cannot and an 

inessential key basic arc can be replaced by a non-key basic arc to form a different key tree for the same basic 

solution. Because   is always a non-key basic variable, the number of non-key basic arcs in any basic solution is 

no more than 1K  . The special simplex method for network problems with side constraints searches basic 

solutions of the AWTNP. 

A basic optimal solution of the AWTNP for a given   is denoted by 1( , , , ) a k
    x z s , where 

 x X , C  z x Z , i.e., x  is efficient and z  is nondominated, and { | 1,..., }ks k K s . The specific x  

and z  obtained are dependent upon the relative magnitudes of the components of  . By using different  , 

any x X  can be found through an AWTNP. By using a set of widely dispersed   in   (or in a reduced subset of 

 ), widely dispersed representative efficient solutions can be generated from X  (or from a subset of X ) [Steuer, 

1986]. Although ( , , , )  x z s  is basic in the AWTNP, x  is not necessarily basic in the MONP problem. The 

AWTNP is capable of generating basic and non-basic efficient solutions for the MONP problem. However, the non-

basic efficient solutions obtained are not necessarily integer solutions. A Ix X  but x X  cannot be reached by an 

AWTNP formulated with any  . Hence, a BB algorithm is used to find the optimal solution of the AWTINP. 
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3.2. Branching and Subproblems 

Sun [2009] showed that only the non-key basic flow variables need to be integers for a solution to be 

integer. Once all non-key basic flow variables become integers and all other variables are adjusted accordingly to 

preserve feasibility, the resulting solution is an integer solution. As a result, only the integralities of the non-key 

basic flow variables need to be checked and only non-key basic flow variables are candidates for branching 

variables. 

If ( , )p q  is non-key basic with a non-integer flow pq pqx x  in an optimal solution of the current AWTNP 

and pqx  is selected as the branching variable, setting pqx  to the nearest integers separates the current AWTNP into 

two subproblems, one with pq pqx x     and the other with pq pqx x    . Each subproblem is an AWTNP. Adding 

pq pqx x     is equivalent to resetting pqu  to pq pqu x     and adding pq pqx x     is equivalent to resetting pql  to 

pq pql x    . Treating these extra constraints as bounds on variables does not increase the size of the resulting 

AWTNPs. The current AWTNP is the parent problem and the two resulting AWTNPs are the child problems. After 

separation, some unsupported integer efficient solutions of the parent AWTNP become supported integer efficient 

solutions of the child AWTNPs and, therefore, can be identified as the optimal solutions of the child AWTNPs. 

Separation is recursive, i.e., the same flow variable may be selected as the branching variable iteration after iteration 

before a branch is fathomed. 

Because default values of 0ijl   are used in the implementation of network algorithms, a variable 

substitution is used to handle the bound pq pqx x    . The variable substituting pqx  is represented by pqx , with 

pq pq pqx x x     . Hence, 0 pq pq pqx u x       when pq pq pqx x u    . This substitution is equivalent to 

reducing pb and increasing qb  by pqx    units while shipping pqx    units along ( , )p q . Substituting pqx  for pqx  

in the child AWTNP shifts all Zz  and **
z  to the left by pq pqx  c . As (12) and (16) in the following show, the 

actual criterion vector is pq pqx     z z c  and the actual utopian point is ** **
pq pqx     z z c  in the resulting 

child AWTNP. After pqx  is replaced by pq pqx x     , the AWTNP in (12)-(20) in the following is obtained 

 min   **

1 ( , ) \( , )

K
k k k
ij ij pq pq k pq pq

k i j p q

c x c x z c x 
 

 
       

 
 

A \

  (12) 

 . .s t  
{ | ( , ) } { | ( , ) }

ij ji i

j i j j j i

x x b
 

  
A} A}

 for \{ , }i p qN  (13) 

  
{ | ( , ) \( , )} { | ( , ) }

pj pq jp p pq

j p j p q j j p

x x x b x
 

       
A } A}

 
 (14) 

  
{ | ( , ) } { | ( , ) \( , )}

qj jq pq q pq

j q j j j q p q

x x x b x
 

       
A} A}

 
 (15) 

  
**

( , ) \( , )

1k k k
ij ij pq pq k k pq pq

ki j p q

c x c x s z c x


       
A

 for 1,...,k K  (16) 
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  ij ij ijl x u   for ( , ) \ ( , )i j p qA  (17) 

  0 pq ij pqx u x        (18) 

  0ks   for 1,...,k K  (19) 

    unrestricted  (20) 

3.3. Basis Exchange 

Although a series of AWTNPs is solved to solve an AWTINP, only one AWTNP is stored in memory and 

is solved at a time. The differences in these AWTNPs are in the bounds on the branching variables. Each AWTNP is 

constructed from the previous one by changing the bounds on the branching variables and is solved from the optimal 

solution of the previous one. After the bound of a branching variable changes, the optimal solution of the previous 

AWTNP is not feasible in the current AWTNP. After restoring the original bounds of a branching variable, the 

resulting solution may be non-basic in the current AWTNP. Basis exchanges are used to increase or decrease the 

flows on branching variables in order to find a feasible solution from an infeasible solution or to find a basic 

solution from a non-basic solution. 

A basis exchange is similar to one iteration in the special simplex method for network problems with side 

constraints. An entering arc is brought into T  to replace an arc already in T . The entering arc may be non-basic or 

non-key basic. If the entering arc is a non-basic arc ( , )p q T , its flow can only increase if pq pqx l  or can only 

decrease if pq pqx u . If the entering arc is a non-key basic arc ( , )p q T , its flow may increase or decrease if  

pq pq pql x u  . For the entering arc ( , )p q T , there is a unique path in T . This unique path and ( , )p q  form a 

fundamental circle. After a leaving arc on the fundamental circle is determined, T  and the non-key basic variables 

are updated in the basis exchange. 

4. Algorithms 

Although conceptually the BB algorithm is pretty simple, the feasibility and basis restorations are 

somewhat complicated when the bounds on branching variables change. In this section, feasibility and basis 

restorations are discussed before the BB algorithm is described.  

4.1. Feasibility and Basis Restorations 

When pqx  is selected as the branching variable, the subproblem with pq pqx x     is solved first. With this 

new upper bound on pqx , the optimal solution of the parent problem with pq pqx x  is infeasible in this 

subproblem. After adjusting the flows by the amount pq pqx x     on all arcs on the fundamental circle formed by 

( , )p q  and adjusting the non-key basic variables accordingly, the solution obtained is feasible but not necessarily 

basic in the AWTNP. Therefore, a basis exchange is used to obtain a basic solution satisfying pq pqx x    . 

Reoptimization then starts from this feasible basic solution. In the basis exchange, ( , )p q  is the entering arc and the 
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flow on ( , )p q  is reduced. If the branch cannot be fathomed after the AWTNP is solved, branching will continue by 

selecting a non-integer non-key basic flow variable as the new branching variable. 

The subproblem with pq pqx x     cannot be constructed and solved from the optimal solution of the parent 

problem. After the branch with pq pqx x     has been fathomed and before the branch with pq pqx x     is 

examined, pqx  may be in any status in the current solution, i.e., at its lower bound with pq pqx l , at its current 

upper bound with pq pqx x    , or key or non-key basic with pq pq pql x x     . In any case, the current solution is 

not feasible in the subproblem with pq pqx x     because it satisfies pq pqx x    . Hence, the flow on ( , )p q  is 

increased to satisfy pq pqx x     in basis exchanges. The original upper bound pqu  is restored first before basis 

exchanges are made and before the AWTNP in (12)-(20) is constructed. If pqx  is non-basic or is non-key basic, 

( , )p q  is the entering arc and pqx  increases in a basis exchange. However, if pqx  is key basic, the basis exchange is 

much more involved. A non-key basic or a non-basic arc has to be selected as the entering arc to increase pqx . 

If ( , )p q T  is removed from T , T  is divided into two subtrees denoted by pT  and qT , respectively. 

An algorithm is developed to find an arc ( , )s t T  with one end in pT  and the other in qT  as the entering arc to 

increase pqx . If psT  and qtT , pqx  increases when ( , )s t  is brought into T  and stx  decreases. However, stx  

can decrease only if 0stx  , i.e., when ( , )s t  is non-key basic or is non-basic with st stx u . If qsT  and ptT , 

pqx  increases when ( , )s t  is brought into T  and stx  increases. However, stx  can increase only if st stx u , i.e., 

when ( , )s t  is non-key basic or is non-basic with st stx l . The algorithm in the following searches for such an 

entering arc. It searches the non-key basic arcs before searching the non-basic arcs. The following is a step-by-step 

description of this algorithm. 

Step 1. If ( , )p q T  points downward, let 1i   for each piT  and 0i   for each piT ; otherwise, let 

1i    for each qiT  and 0i   for each qiT . Let 1k  . 

Step 2. If k K , let 1k   and go to Step 5; otherwise, go to Step 3.  

Step 3. If the k th non-key basic variable is not a flow variable, let 1k k   and go to Step 2; otherwise, go to 

Step 4. 

Step 4. Suppose the k th non-key basic variable is the flow variable stx . If 0s t    and  st stx u  or if 

0s t    and 0stx  , go to Step 8; otherwise, let 1k k   and go to Step 2.  

Step 5. If k m , Stop; otherwise, go to Step 6. 

Step 6. If the k th arc is basic, let 1k k   and go to Step 5; otherwise, go to Step 7. 

Step 7. Suppose the k th arc is the non-basic arc ( , )s t . If 0s t    and st stx l  or if 0s t    and  

st stx u , go to Step 8; otherwise, let 1k k   and go to Step 5. 
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Step 8. Make a basis exchange. Let ( , )s t  be the entering arc, and let the flow on ( , )s t  increase if 0s t    or 

decrease if 0s t    in the basis exchange. Stop. 

One basis exchange is necessary but more basis exchanges are needed if pq pqx x     is not satisfied after 

the first basis exchange. The algorithm above is used repeatedly until pq pqx x     is satisfied. If the branch with 

pq pqx x     cannot be fathomed after the AWTNP is solved, branching will continue by selecting a non-integer 

non-key basic flow variable as the new branching variable. 

4.2. The Branch-and-Bound Algorithm 

The best supported integer efficient solution found with the enumerative algorithm of Sun [2009] is used as 

the initial incumbent solution. Without this initial incumbent solution, the behavior of the BB algorithm is not 

predictable. It may branch on several flow variables until reaching their original lower or upper bounds before 

finding the first integer solution. The optimal solution obtained by the BB algorithm for the AWTINP in (5)-(11) is 

at least as good as this initial incumbent solution. 

In other types of integer programming problems, a branch can be fathomed in three ways, i.e., the 

subproblem does not have a feasible solution, the optimal solution of the subproblem is integer, or the value of the 

objective function of the optimal solution is worse than that of the incumbent solution [Nemhauser and Wolsey, 

1988]. In an AWTINP, a subproblem formed by branching on a non-integer non-key basic flow variable always has 

feasible solutions. Hence, a branch can be fathomed in only two ways. If a branch is fathomed because the optimal 

solution of the subproblem is integer, the optimal solution of the branch has been found. If a branch is fathomed 

because the value of the objective function of the optimal solution is worse than that of the incumbent solution, the 

branch does not contain the optimal solution of the original AWTINP. In any way, the optimal solution of the 

original AWTINP is not missed. 

A BB tree is used to keep track of the branching variables and their bounds. One level is added to the BB 

tree each time the current subproblem is divided into two and one level is deleted from the BB tree each time when 

both branches have been fathomed. Two arrays Φ  and C  are used to represent the BB tree. The branching 

variables are stored in Φ  and their bounds are stored in C . An integer h  is used to represent the level (or height or 

depth) of the BB tree and also to index the elements of Φ  and C . For description purpose, each h  is an ordered 

pair ( , )p q  or ( , )p q  indicating that the branching variable is pqx  at level h . The sign of q  indicates which 

subproblem is currently examined. When the subproblem with pq pqx x     is examined at level h , h  stores 

( , )p q  and hC  stores pqu . When the BB tree is tracked back, q  indicates that the branch with pq pqx x     has 

not been examined. Because the upper bound on pqx  has been set to pqx   , pqu  is used to restore its original upper 

bound. When the subproblem with  pq pqx x     is examined, h  stores ( , )p q  and hC  stores pqx   . When the 

BB tree is tracked back, q  indicates that both branches on the branching variable pqx  have been fathomed. Because 
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the upper bound on pqx  has been set to pq pqu x     for the branch with pq pqx x    , pqx    stored in hC  is used 

to restore the original upper bound on pqx . In the actual implementation, the arcs are numbered from 1 to a  and 

only the arc number or its negative, instead of the pair ( , )p q  or ( , )p q , is stored in h . 

After an AWTNP is solved, the BB algorithm compares its optimal objective function value d  with that of 

the incumbent solution bestd . If bestd d , the current branch is fathomed. Otherwise, the algorithm searches for a 

non-integer non-key basic flow variable. Such a variable, if found, becomes the next branching variable and one 

level is added to the BB tree. If such a variable cannot be found, the current solution is an integer solution and the 

branch is fathomed. In this case, the current solution becomes the new incumbent solution. 

If a branch is fathomed, the BB algorithm checks if both branches at the same level have been fathomed. If 

not, the subproblem with pq pqx x     becomes the new subproblem to examine; otherwise, it tracks back one level 

and checks if both branches at this upper level have been examined. If not, the subproblem with pq pqx x     at this 

upper level becomes the new subproblem to examine; otherwise, it tracks back one more level. After tracking back 

to the first level, the BB algorithm terminates. The following is a step by step description of the BB algorithm. 

Step 1. Solve the initial AWTNP to obtain ( x , z , s ,  ). Use the enumerative algorithm in Sun [2009] to find 

a supported integer efficient solution x  with C z x  and an objective value d . Let best
 x x , 

best
 z z , and bestd d . Let 0h  . Let 1k   and go to Step 2. 

Step 2. If k K , go to Step 3. If k K , the current solution is an integer solution. Let best
 x x , best

 z z , and 

bestd d . If 0h  , go to Step 9; otherwise, go to Step 6. 

Step 3. If the k th non-key basic variable is a non-flow variable or is a flow variable but is integer, let 1k k   

and go to Step 2. Otherwise if the k th non-key basic variable is the flow variable pqx  with a fractional 

value pqx , go to Step 4. 

Step 4. Let 1h h  , ( , )h p q   , h pqC u  and pq pqu x    . Reduce pqx  to satisfy pq pqx x     by making a 

basis exchange, and then go to Step 5. 

Step 5. Solve the resulting AWTNP to obtain the optimal solution  ( x , z , s ,  ) with an objective value d . If 

bestd d , go to Step 6; otherwise, let 1k   and go to Step 2. 

Step 6. If ( , )h p q   , go to Step 7; otherwise, go to Step 8. 

Step 7. Let ( , )h p q  , ht C , 1h pqC u  , and pqu t . Increase pqx by making a basis exchange. Let 

pq pq hu u C  , p p hb b C  ,  q q hb b C  , and 
** ** *h pqC z z c . If pqx  is basic, let pq pq hx x C  . If 

the resulting solution is infeasible, i.e., if 0pqx  , restore feasibility by making basis exchanges to let pqx  

increase. Go to Step 5. 
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Step 8. Let pq pq hu u C  , p p hb b C  , q q hb b C  , and ** ** *h pqC z z c . If  pqx  is basic, let 

pq pq hx x C  . If pqx  is at its current lower bound, let pq hx C  and make a basis exchange to make the 

resulting solution basic. Let 1h h  . If 0h  , go to Step 9; otherwise, go to Step 6. 

Step 9. Output best
x  and best

z , and Stop. 

In Step 1, the initial AWTNP is solved and an initial incumbent solution is found. Step 2 checks if the 

current solution is an integer solution. If so, it is saved as the new incumbent solution. In Step 3, a non-integer non-

key basic flow variable, if found, becomes the new branching variable. The subproblem with pq pqx x     is formed 

and one level is added to the BB tree in Step 4. When a basis exchange is made, ( , )p q  is the entering arc and pqx  is 

reduced. In Step 5, an AWTNP is solved and the branch is fathomed if bestd d . Step 6 checks if both subproblems 

at the same level of the BB tree have been examined. 

In Step 7, the AWTNP with pq pqx x     in (12)-(20) is constructed after a basis exchange is made to 

increase pqx . In this step, pqu , pb , qb  and **
z  are reset. If ( , )p q  is currently basic, whether key or non-key, pqx  

is reset by subtracting h pqC x     from it. Otherwise, the change in pqx  is reflected in the changes of its bounds. 

More basis exchanges are made if needed to satisfy pq pqx x    . 

The algorithm tracks one level back on the BB tree in Step 8. The originals of pqu , pb , qb  and **
z  are 

restored. If ( , )p q  is currently basic, pqx  is reset by adding h pqC x     to it. If pqx  is at its upper bound, this 

change is reflected in the change of its upper bound. If pqx  is at its lower bound, then h pqC x     is added to it to 

reflect its actual value. However, this change makes the current solution non-basic. Hence, a basis exchange is made 

to find a basic solution. In this basis exchange, ( , )p q  is the entering arc and pqx  is reduced. 

In an interactive procedure, many integer efficient solutions need to be sampled and, therefore, many 

AWTINPs with different   need to be formed and solved one after another. For each  , the warm start 

routine [Sun, 2005a] is used to find an initial basic solution and the procedures in Sun [2003] are then used to find 

the best basic solution of the MONP problem. The special simplex method for network problems with side 

constraints is then used to find an optimal efficient solution of the initial AWTNP. The enumerative algorithm [Sun, 

2009] is used to find a supported integer efficient solution as the initial incumbent solution. The BB algorithm is 

then used to find the optimal solution of the AWTINP. After the BB algorithm starts, all subsequent AWTNPs are 

solved with the special simplex method for network problem with side constraints. 

5. An Example 

A simple network with 4n  , 5a   and 2K   is shown in Figure 1. The jb s are shown by the nodes and 

the 
k
ijc  for 1k   and 2k   are shown on the arcs. Although X  and IX  cannot be shown graphically because of 
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their dimensionality, Z  and IZ  are shown in Figure 2 where Z  is shown as the shaded polygon and each IZz  is 

shown as a dot.  

In the MONP problem, solutions A, B, C and D are basic nondominated and the nondominated set Z  is the 

union of the three line segments from solution A to solution B, from solution B to solution C and from solution C to 

solution D. All other feasible solutions are dominated by some others. In the MOINP problem, IZ  consists of the 11 

feasible solutions as shown in Figure 2. All these feasible solutions are nondominated, i.e., I IZZ  and I IXX . 

All IXx  ( Ix X ) and IZz  ( Iz Z ) are presented in Table 1.  

The set Z   is shown in Figure 3. All z Z  are supported. Solutions A, B, C and D in IZ  are basic 

supported. Solutions H and K in IZ  are non-basic supported. Although solution E in IZ  is basic in the MONP 

problem and solutions E, G and J are supported in set theory, they are unsupported in the MOINP problem because 

they are not on the boundary of Z  . These solutions cannot be reached by an AWTNP formed with the original 

MONP problem with any   because they are supported by a facet that is dominated in the MONP problem. 

Hence, based on the definition of supportedness [Steuer, 1986], solutions E, F, G, I, and J are unsupported in the 

MOINP problem. 

Figures 1-3 and Table 1 approximately here 

For this MONP problem, * (0, 4) z . With ** ( 1, 5)  z  and 0.001  , solution G is the integer 

optimal solution of the AWTINP for the weighting vector (0.45, 0.55)  . Because solution G is unsupported, it 

cannot be reached with the AWTNP formed with (0.45, 0.55)  . The optimal solution of the AWTNP is 

12 13 14 23 24( , , , , ) (0.71028,1.28972,2.00000,1.71028,0.00000)x x x x x  x  with 1 2( , ) (8.9720,3.1589)z z  z . In 

this solution, (1, 4) is an essential key basic arc, (1, 2) and (1, 3) are inessential key basic arcs, (2, 3) is a non-key 

basic arc and (2, 4) is a non-basic arc. This solution is shown in the key tree in Figure 4. In the figure, the flows are 

shown on the arcs. Adjusting the flows to integers, the enumerative algorithm of Sun [2009] found solution H, rather 

than solution G, as the best supported integer efficient solution. 

Because x  is not an integer solution, the BB algorithm is used to find an optimal solution for the 

AWTINP. Solution H found with the enumerative algorithm of Sun [2009] is the initial incumbent solution with an 

objective function value 5.419d  . 

After setting the new bound 23 1x   in one subproblem, the reduced feasible region in criterion space is 

shown in Figure 5. Solution G becomes a nondominated basic solution of the new MONP problem and is the 

optimal solution of the new AWTNP. Because the optimal solution is integer, the branch with 23 1x   is fathomed. 

Solution G becomes the new incumbent solution with an objective function value 4.970d  . 

By setting 23 2x   in the other subproblem, the reduced feasible region in criterion space along with **
z  is 

shown in Figure 6. By shifting both Z  and **
z  to the left by 23 23 (4,0)2 (8,0)x    c ,  the reduced feasible region 

along with **z  of the actual subproblem solved is shown in Figure 7. Solution H becomes a nondominated basic 

solution of the new MONP problem and is the optimal solution of the new AWTNP with an objective value 
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5.419d  . Hence, the branch with 23 2x   is fathomed because its objective value is larger than that of the current 

incumbent solution. Even if its objective function value were not larger than that of the current incumbent solution, 

this branch could also be fathomed because it is an integer solution. Although solution H is an integer solution, it 

cannot become the new incumbent solution because it is not better than the current incumbent solution. Because 

both branches are fathomed, the problem is solved with the current incumbent solution G as the optimal solution. 

Figures 4-7 approximately here 

Larger MONP problems cannot be solved so easily. Usually each subproblem is further divided into two 

more subproblems. This division may go very deep before a branch is fathomed. 

6. Computational Experience 

The BB algorithm is coded in FORTRAN. The FORTRAN code is run on a Sun Enterprise 450 computer 

with two 400 MHz processors (only one is used) and 1.5 GB RAM. Other related algorithms used in the BB 

algorithm, such as the network simplex algorithm, the special simplex method for network problems with side 

constraints, and the warm start routines, are all coded in FORTRAN. All the computational results reported in this 

section represent the performance of the BB algorithm on this computer. 

Test problems are measured by their sizes and the total supplies or demands. The size of each problem is 

measured by K  and n a . Three sets of problems with 20 100n a   , 30 150n a    and 40 200n a   , 

respectively, are used. Among the n  nodes in a test problem, / 2n  are supply nodes and the other / 2n  are demand 

nodes. The computational results of these three sets of problems are reported in Tables 2, 3 and 4, respectively. For 

each set of problems, 3K  , 5K   and 7K  , respectively, are used. The total supply equals the total demand for 

each test problem. This total supply or total demand is denoted by B  with 
{ | 0} { | 0}i i

i ii b i b
B b b

 
    . For each 

given K  and given n a , three different values of B  are used. Each combination of n a , K  and B  defines a 

problem type. Within each problem type, 10 test problems are used. These test problems are generated with the NP 

problem generator NETGEN [Klingman, Napier and Stutz, 1974]. NETGEN generates NP problems with a single 

objective function. Additional objective functions generated in the same fashion are added. For all these test 

problems, 1 10k
ijc   for all 1, ,k K  and ( , )i j A  is used. For each test problem, 100 weighting vectors are 

used to form 100 AWTINPs to generate integer efficient solutions. The generation of 100 sample solutions may 

represent the computational effort needed to solve a typical MOP problem with an interactive procedure.  

Because the BB algorithm is designed to find representative integer efficient solutions to support 

interactive procedures, it does not systematically enumerate the complete set of all integer efficient solutions for a 

MOINP problem. Criteria, such as the numbers of supported and unsupported integer efficient solutions in a MOINP 

problem used by Sedeño-Noda and González-Martín [2001] or the supported integer efficient solutions as a 

proportion of all integer efficient solutions used by Raith and Ehrgott [2009], can not be used in this study to 

measure the property of the test problems or the performance of the BB algorithm.  

In Tables 2, 3 and 4, the total CPU time needed for all 100 AWTINPs, i.e., for the generation of 100 integer 

efficient solutions, for each test problem is reported in column t . The level of the tallest BB tree among the 100 
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AWTINPs is reported in column ĥ . The number of subproblems solved for each AWTINP is recorded. The average 

and the maximum number of subproblems solved among the 100 AWTINPs for each test problem are reported in 

columns s  and ŝ , respectively. The average of t  and s  of the 10 test problems in each problem type are also 

reported in these tables. 

Table 2-4 approximately here 

For any given n a  and given B , the test problems become more time consuming to solve as K  

increases. For the same network problem, the size of the nondominated set increases as K  increases [Steuer, 1986; 

Sun, 2005b]. For the MOINP problem, the number of integer efficient solutions increases as K  increases. Because 

there are more integer efficient solutions to check, the problem becomes more difficult to solve. When K  increases, 

the number of side constraints (7) also increases. Therefore, the effort needed to solve each subproblem also 

increases. With one exception, the average of t  all increased as K  increased. For the 40 200n a    problems 

with B  800, the average of t  decreased from 63110 seconds to 28950 seconds when K  increased from 5 to 7 

because one problem with 5K   took excessive amount of CPU time. 

For any given n a  and given K , the problems become more difficult to solve as the values of B  

increase. When the values of B  increase, the flows on the arcs also increase. As a result, there are more values to 

check for each integer variable and, therefore, more CPU time is needed. For all combinations of n a  and K , the 

average of t  increased as B  increased. 

The computational effort is also affected by n a . When n  increases, the size of T  increases and, 

therefore, more time is needed to update T  at each iteration of the network algorithm and of the special simplex 

method for network problems with side constraints. When a  increases, the number of integer variables increases 

and more integer variables become candidates for the branching variables. Furthermore, the number of non-basic 

arcs increases and more computational effort is needed to find an optimal solution for each subproblem. 

As with other integer programming problems, there is a big variation in the effort needed to solve the same 

type of MOINP problems. Within each problem type, there are big differences in both the CPU times taken and the 

numbers of subproblems solved. As expected, the CPU time taken is positively correlated to the number of 

subproblems solved. The level of the tallest BB tree does not vary much within each problem type. 

As a well known fact, integer programming problems are very difficult to solve. Multiple objective integer 

programming problems are more difficult than single objective integer programming problems. Fortunately, MOINP 

problems are easier than other types of multiple objective integer programming problems because AWTNPs are 

easier to solve than many other types of mathematical programming problems. The BB algorithm is able to solve 

40 400n a    problems within a reasonable amount of CPU time without using a powerful computer. Flow 

variables in MOINP problems are general integer variables, i.e., they may take on any nonnegative integer values. 

Therefore, a  also represents the number of general integer variables in a problem. Integer programming problems 

with general integer variables are more difficult than those with only binary variables because each general integer 

variable has more integer values to check. Therefore, this BB algorithm for the MOINP problems is considered to be 

very powerful. 
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7. Conclusions 

A BB algorithm is developed, implemented and tested to generate representative integer efficient solutions 

for MOINP problems by solving AWTINPs. An AWTINP is solved by solving a sequence of AWTNPs in the BB 

algorithm. The BB algorithm is not expected to generate the whole set of integer efficient solutions but is to support 

interactive procedures by generating representative integer efficient solutions. Although computationally efficient 

network algorithms cannot be directly applied to the AWTNP, the BB algorithm takes advantage of the network 

structure as much as possible. The algorithm can generate basic and non-basic, as well as supported and 

unsupported, integer efficient solutions. Computational results show that the algorithm can solve pretty large 

problems within a reasonable amount of CPU time on a not very powerful computer. The number of arcs in a test 

problem represents the number of general integer variables. Hence, these test problems are considered pretty large in 

the integer programming context. Therefore, the BB algorithm is considered to be very powerful. 

The supported integer efficient solutions found with the enumerative algorithm of Sun [2009] are sufficient 

to support interactive procedures for most applications. For some applications, especially when the flow variables 

have relatively small values, the BB algorithm is needed to generate both supported and unsupported integer 

efficient solutions. 
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Table 1. Integer Efficient Solutions of the Example Network Problem 

 

Solution 12x  13x  14x  23x  24x  1z  2z  

A 0 3 1 0 1 0 9 

B 0 2 2 1 0 4 6 

C 2 0 2 3 0 18 –2 

D 4 0 0 3 2 24 –4 

E 1 3 0 0 2 3 8 

F 1 2 1 1 1 7 5 

G 2 2 0 1 2 10 4 

H 1 1 2 2 0 11 2 

I 2 1 1 2 1 14 1 

J 3 1 0 2 3 17 0 

K 3 0 1 3 1 21 –3 
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Table 2. Computational Results of 20 100n a    problems 

 

K  prob 
  B  50    B  100    B  200  

t  ĥ  s  ŝ  t  ĥ  s  ŝ  t  ĥ  s  ŝ  

 1 2.37 52 163 1162 4.20 51 276 1810 6.29 50 405 3360 

 2 2.76 54 191 1312 6.49 49 471 7810 10.23 49 729 9584 

 3 2.80 46 195 964 4.07 55 284 1618 5.00 52 333 2024 

 4 4.51 48 293 2554 8.68 48 604 5454 11.53 52 777 9820 

3 5 1.35 40 101 462 3.17 52 231 1488 7.62 48 545 8428 

 6 3.38 50 213 1544 4.86 59 329 1956 11.41 65 733 5378 

 7 3.88 53 242 1530 8.17 55 481 4854 12.31 60 702 3740 

 8 1.71 41 130 922 3.48 50 255 2226 7.81 46 543 4400 

 9 0.45 24 36 210 0.69 38 57 362 1.02 37 88 642 

 10 3.68 50 234 2502 4.79 56 310 1554 10.89 58 651 9492 

  2.69  180  4.86  330  8.41  550  

 1 5.26 50 244 1688 8.40 55 397 3324 11.29 56 488 9756 

 2 6.70 55 287 1718 13.63 59 559 3714 17.39 64 741 3704 

 3 9.33 58 366 3762 13.93 60 555 5954 25.28 62 996 11246 

 4 2.18 50 105 1170 3.73 60 186 1768 5.61 66 267 2204 

5 5 6.69 50 279 3160 16.07 55 658 7640 27.82 62 1105 21728 

 6 11.65 56 421 12980 15.19 55 593 4478 25.21 58 1012 13816 

 7 3.19 57 141 1372 8.78 68 363 5190 16.99 67 661 8066 

 8 3.08 40 146 772 5.14 52 233 3268 8.76 57 404 2344 

 9 10.89 67 453 5668 13.18 57 553 3772 25.55 60 1051 12280 

 10 6.28 52 280 1428 14.57 60 611 6446 22.83 58 894 11368 

  6.53  272  11.26  471  18.67  762  

 1 9.77 57 295 4372 20.94 60 623 5446 31.70 61 954 7986 

 2 6.80 51 234 1322 11.40 55 398 3832 20.28 49 636 4004 

 3 7.01 53 236 1920 11.15 49 359 5546 30.76 57 900 17596 

 4 8.50 50 256 3268 17.12 55 516 12258 26.34 55 813 13104 

7 5 4.83 45 164 1480 7.84 45 266 1754 12.28 49 428 3952 

 6 7.27 52 252 1956 13.40 55 438 6348 20.21 52 708 6300 

 7 9.08 51 288 2570 12.12 51 405 3392 24.33 63 765 10006 

 8 3.36 48 125 1180 5.89 49 217 3374 6.56 43 256 2098 

 9 9.78 51 302 2350 17.98 49 538 4954 27.38 51 834 14902 

 10 10.55 50 331 7568 42.15 53 1176 69094 48.88 66 1412 64182 

  7.69  248  16.00  494  24.87  771  

 

 



22 

 

Table 3. Computational Results of 30 150n a    Problems 

 

K  prob 
  B  100    B  200    B  400  

t  ĥ  s  ŝ  t  ĥ  s  ŝ  t  ĥ  s  ŝ  

 1 15.40 74 560 8084 17.34 82 692 4302 48.81 79 2014 40270 

 2 29.59 70 938 25930 47.82 77 1640 27940 93.93 79 3090 100926 

 3 5.03 71 211 1592 10.13 68 430 3946 26.31 86 1016 11088 

 4 16.79 80 572 4492 25.74 79 903 6808 43.58 75 1565 13420 

3 5 13.62 68 527 2970 27.46 71 1161 22610 29.49 77 1166 10654 

 6 24.06 80 864 8046 40.66 71 1491 10076 169.66 94 7414 101624 

 7 6.05 69 278 1468 9.31 64 474 3272 12.46 64 627 11794 

 8 13.61 73 525 4110 19.24 85 765 6350 35.79 89 1484 20592 

 9 12.53 74 499 2672 24.01 78 992 6920 45.92 81 1867 11590 

 10 7.09 69 281 1780 16.20 75 692 3982 27.95 70 1324 10880 

  14.38   525   23.79   924   53.39   2157   

 1 77.26 86 1718 27220 125.13 83 2921 39764 329.96 94 6626 106468 

 2 30.56 75 738 9642 48.46 80 1247 12674 75.05 80 1802 16470 

 3 21.90 69 578 4628 49.06 72 1313 11684 78.96 89 2018 24992 

 4 12.71 60 346 2296 20.07 67 597 3112 29.56 66 820 5174 

5 5 19.76 69 511 3616 34.27 74 872 8724 55.52 99 1385 13562 

 6 38.60 77 964 8272 123.18 81 2754 30284 248.57 86 4667 101116 

 7 32.51 93 788 6086 89.16 90 2119 17316 198.12 102 4378 53048 

 8 38.20 75 920 10392 72.22 82 1691 18364 141.09 86 3421 32706 

 9 40.02 88 980 7162 52.97 80 1412 11828 163.16 95 3987 29204 

 10 56.53 86 1271 11694 87.96 87 2170 16638 164.49 91 3873 40174 

  36.80   881   70.25   1710   148.45   3298   

 1 66.09 73 1189 18154 128.54 83 2164 50728 219.22 98 3837 41768 

 2 60.68 89 1159 7690 122.11 90 2197 19452 198.87 88 3585 35394 

 3 42.77 82 779 15202 94.02 87 1606 23740 149.82 85 2560 29698 

 4 73.43 80 1282 25420 126.32 90 2548 15662 937.04 90 23871 1358170 

7 5 51.63 69 1013 9572 181.26 79 2671 109068 253.18 88 4197 95168 

 6 25.98 73 528 5622 71.66 75 1402 17572 133.76 83 2538 31114 

 7 37.02 71 727 6342 76.58 76 1559 15412 147.52 87 2645 37358 

 8 27.99 70 567 5432 67.06 85 1379 16088 94.62 80 1915 13650 

 9 32.47 80 646 7806 94.85 91 1734 24482 227.17 91 3827 38510 

 10 31.42 72 649 6632 57.80 72 1049 21086 106.04 91 1981 31348 

  44.95   854   102.02   1831   246.73   5096   
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Table 4. Computational Results of 40 400n a    Problems 

 

K  prob 
  B  200    B  400    B  800  

t  ĥ  s  ŝ  t  ĥ  s  ŝ  t  ĥ  s  ŝ  

 1 394.77 185 6959 190942 614.95 205 11839 120032 1363.94 201 26490 484886 

 2 1094.16 240 15714 266798 3756.15 243 54975 851372 8796.35 246 140209 2623836 

 3 1128.71 214 18838 240480 1686.14 218 29088 316280 42354.23 220 915990 47226968 

 4 865.46 227 14306 208112 14156.58 224 280929 9723024 8847.93 250 128086 7494238 

3 5 274.66 209 4320 40430 898.13 214 15941 312884 2811.18 226 49452 1004072 

 6 490.36 230 7622 71170 1662.50 263 29760 1428798 3444.54 250 57409 1615852 

 7 665.55 221 11850 88906 1067.12 234 20315 341074 3799.15 227 70550 2039880 

 8 336.27 199 5730 36242 834.22 232 13222 110532 2894.54 226 47414 875562 

 9 422.19 233 6875 123802 1239.51 235 20525 257462 13387.11 253 199218 17493962 

 10 466.14 231 6809 48870 1548.30 249 21416 388524 10541.35 255 170657 2899046 

  613.83  9902  2746.36  49801  9824.03  180547  

 1 1335.98 225 13902 136202 7166.15 243 97396 6362276 31231.40 233 470470 29378042 

 2 800.89 235 8235 174388 2683.52 244 28058 368430 7279.40 237 64641 2565176 

 3 1571.40 262 15770 157048 2500.44 295 24697 220110 8390.20 255 74422 2025720 

 4 2517.64 270 25346 327288 3120.17 233 29980 425142 98885.68 253 1618440 154657844 

5 5 3908.76 263 36189 799442 6161.57 235 66336 1104848 432597.63 268 6465340 623178056 

 6 867.52 240 9155 105720 2357.85 222 29766 760208 13584.18 236 197323 14826070 

 7 2028.86 241 18430 403678 3183.82 261 30122 887408 4757.11 254 51411 564982 

 8 2447.97 245 22346 589074 4748.46 224 42544 462294 6901.99 253 72337 810746 

 9 2894.67 226 25149 1050972 5449.91 231 45958 2064114 12418.61 240 116760 3337962 

 10 950.83 242 10049 90956 2539.20 241 26568 245746 15054.36 243 220576 13597054 

  1932.45  18457  3991.11  42142  63110.06  877385  

 1 2024.55 244 15492 205530 4299.90 287 31155 741846 10711.10 234 76658 1921120 

 2 3161.18 240 23861 362288 47055.44 237 573433 46163362 12919.55 243 110302 2612912 

 3 748.80 219 6459 63110 2897.35 242 19937 472780 5442.28 250 40270 634354 

 4 2509.27 233 18885 243830 10159.68 235 80049 1960620 11087.77 266 80660 1495602 

7 5 1828.61 248 13558 191778 4690.36 237 42806 1001890 22649.81 252 241745 14525142 

 6 2901.93 246 22289 350284 8148.64 256 57332 736318 14080.63 260 104524 980652 

 7 2700.52 231 20418 356464 6387.17 252 47401 1641964 186109.48 267 2661868 259072094 

 8 3292.61 232 23724 472814 10399.10 239 70995 2177720 15817.57 242 110406 1329994 

 9 1115.98 200 9178 228528 1540.09 215 14447 130998 4225.35 220 35676 351958 

 10 1054.65 207 8514 95308 2638.73 239 21158 203934 6459.98 274 61288 2333234 

  2133.81  16238  9821.64  95871  28950.35  352340  
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Figure 1. A Simple Network Problem 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. The Feasible Region in Criterion Space of the Simple Network Problem 
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Figure 3. The Set Z   of the Simple MOINP Problem 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. The Optimal Solution of the AWTNP 
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Figure 5. The Reduced Feasible Region in Criterion Space after Adding 23 1x    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. The Reduced Feasible Region in Criterion Space after Adding 23 2x   
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Figure 7. The Reduced Feasible Region in Criterion Space after Adding 23 2x   
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