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Abstract

This work proposes a hedonic random field model to describe house selling prices over the period 2000–

2005 in Cedar Falls, Iowa. This real estate market presents two distinctive features that are not described by

commonly used stationary Gaussian random field models: (a) the city encompasses within its limits a hog lot

which acts as an externality, negatively affecting the selling price of nearby houses, and (b) the distribution of

house selling prices displays heavy tails. A non-stationary and non-Gaussian random field model is constructed

by multiplying two independent Gaussian random fields, where the factors are tailored so the resulting model

describes the aforementioned distinctive features. We also propose an empirical diagnostic to assess the fit of

the proposed model to a given dataset.

Key words: Geostatistics; hedonic models; hog lot; localized externality; spatial correlation.

JEL Classifications: C16, C21

1This project was funded by the University of Texas at San Antonio, Office of the Vice President for Research.

1



1 Introduction

Models that describe house selling prices over a period of time in a certain region or market are

generically called hedonic models. Due to the inherent heterogeneity of house characteristics and

market uncertainty, this type of data is often described using statistical models, such as regression

models, hierarchical models and random field models (Basu and Thibodeau, 1998; Pace, Barry, Gilley

and Sirmans, 2000; Malpezzi, 2003). There are numerous factors that affect the price of a house,

the most prominent ones being house–specific characteristics, such as living area, number of rooms

and age of the dwelling, and neighborhood characteristics, such as quality of schools, quality of the

public services and travel time to main job centers. Empirical studies have found that these house and

neighborhood characteristics used in hedonic regression models explain a large fraction of the selling

price variability, but often there is still substantial unexplained variability. This unexplained variability

is partly attributable to the exclusion of some relevant house and/or neighborhood characteristics from

the model (due to lack of such information), and partly due to the methods used to appraise houses

value that use nearby ‘comparables’. As a result of these, housing selling prices are also influenced by

spatial effects, so two houses with the same characteristics tend to appraise more similarly when they

are located near each other than when they are located far apart. Models that account for spatial

effects include geostatistical random fields, which have been applied to describe spatial variation of

house selling prices by Basu and Thibodeau (1998), Dubin (1998) and Ecker and De Oliveira (2008),

among many others.

For traditional geostatistical models the spatial association between the prices of two houses is

modeled as a function of the separation vector of the houses’ locations (called stationary association),

or more often as a function of the distance between their locations (called isotropic association); see

Cressie (1993) and Diggle and Ribeiro (2007). A situation in which this type of stationary models is

not adequate is when the region of interest contains a localized externality, such as a hog lot, nuclear

power plant or a highly desirable school, which exert an impact on the value of nearby houses. As an

example, people in general will be willing to pay a premium to be close to a highly desirable school,

while those homes close to a nuclear power plant or a hog lot will suffer some depreciation in value. In

this cases the spatial association between selling prices of two houses depends not only on the distance

separating them, but also on the distances between the houses and the externality. For such cases,

there is a need to construct models that incorporate the latter information as an factor to explain the
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spatial variation of houses’ selling prices.

Nearly all statistical models assume that these spatial factors affect only the average selling price,

in the mean structure of the hedonic model. As an example, Isakson and Ecker (2008) demonstrate

this hedonic modeling approach in their study of the impact of hog lots on the selling prices of nearby

houses. A statistically significant and positive coefficient associated with an explanatory variable

measuring proximity to the externality source is consistent with the presence of a point source, negative

externality. Furthermore, one might reasonably expect to see also an increase in variability for houses

closer to a hog lot. For example, buyers and sellers of homes closer to the hog lot may be more/less

aware of, or bothered/not bothered by its presence, producing as a result a wider range in selling

prices for homes close to the hog lot. This extra variability motivates the need for the variance

and/or correlation structure of house prices, in addition to the mean structure, to depend upon the

distance to the externality. Therefore, the hedonic model may be improved by modeling proximity to

the externality in the disturbance term, not only through the mean structure of the model, but also

through a non–stationary covariance structure that includes a point source effect.

In this work we explore a dataset of house selling prices over the period 2000–2005 in Cedar Falls,

Iowa, a small mid–west city with a population of about 40,000. This dataset presents several interesting

challenges for their modeling. First, the city encompasses within its limits several hog lots, two of which

are nearby the the most populous part of the city, so these act as externalities negatively affecting

selling prices. Second, for some years the distributions of (log) selling prices of houses display heavy

tails, due to the heterogeneity of the market that includes some very expensive houses and some very

inexpensive ones. Commonly used models constructed on stationarity and Gaussianity assumptions

do not represent these behaviors, so there is a need for more general models tailored to describe such

data.

This work proposes a non–stationary and non–Gaussian random field model for the (log) selling

prices of houses that aims at representing the Cedar Falls real estate market data features described

above. The model is written as a spatial trend that accounts for house characteristics and the effect

of proximity to the hog lot, plus an error process that accounts for spatial effects. The error process

is modeled as the product of two independent Gaussian random fields, where the two factors are

tailored to produce a model with probabilistic features that mimic those found in the data. Some

of the probabilistic features of such products of Gaussian variables are investigated and it is shown
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that, under some conditions, the resulting variables have zero–mean symmetric distributions with

tails heavier than Gaussian. By judiciously modeling the mean and covariance functions of the two

Gaussian random fields we obtain a model where both the variance and correlation structures may

depend on proximity to the hog lot. We describe in detail three variants of this strategy to build the

error process, which result in models that are non–Gaussian and non–stationary in both mean and

covariance. The proposed model is similar to those proposed in Hughes–Oliver and Gonzalez–Farias

(1999) and Palacios and Steele (2006). It generalizes the former, but unlike the latter, it accounts for

non–stationarity in the covariance function. Finally, we propose an empirical diagnostic, in the spirit

of exploratory data analysis, to assess the adequacy of the proposed model to a given dataset.

2 Literature Review

Models for the analysis of geostatistical data are described in Cressie (1993) and Diggle and Ribeiro

(2007), where most models treated in these and other textbooks are stationary. Reviews on strategies

to construct non–stationary random processes appear in Treviño (1992), Sampson (2010) and Fouedjio

(2016).

Recent spatial models that describe non–stationary random field models aimed at describing pro-

cesses driven by a shock point source include Hughes–Oliver, Gonzalez–Farias, Lu and Chen (1998),

Hughes–Oliver and Gonzalez–Farias (1999), Martin, Di Battista, Ippoliti and Nissi (2006), Ecker and

De Oliveira (2008) and Ecker, De Oliveira and Isakson (2013). The common thread among most of

these works is the modeling of spatial effects by the combination of two independent Gaussian pro-

cesses. One of them a stationary process representing the spatial effect on selling prices in an ideally

‘externality–free’ scenario, and the the other a non–stationary process representing the ‘shock’ on sell-

ing prices due to the presence of the externality. Ecker and De Oliveira (2008) and Ecker, De Oliveira

and Isakson (2013) combined the processes additively, which results in a Gaussian random field, while

Hughes–Oliver and Gonzalez–Farias (1999) combined the processes multiplicatively, which results in

a non–Gaussian random field.

Most works in the literature on this area assume that the (natural log scaled) house selling prices are

normally distributed. In particular, Ecker and De Oliveira (2008) develop a model where the covariance

function is a mixture of an isotropic correlation function, the distance between house sales and the point

source externality, and the discrepancy between two sites’ distances to the externality. Their resulting
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covariance structure has three parameters more than a standard Geostatistical model (see Ecker, 2003),

but assumes the response variable, the log–scaled selling price, to be normally distributed. Lack of

normality of the data, or the residuals, from a statistical model, is often handled by taking a non–linear

transformation of the response variable, the house selling price. Standard regression analyses assume,

then, that the natural log scaled house selling price is normally distributed. However, normality is

often not a reasonable assumption, even for the transformed data. In particular, the dataset used

in both Ecker and De Oliveira (2008) and Ecker, De Oliveira and Isakson (2013), which consists of

house sales in Cedar Falls, Iowa in the early 2000s, appears to have distributions with tails heavier

than those of normal distributions, even after taking a natural log transformation. Furthermore, the

more expensive homes and the more inexpensive homes in the Cedar Falls dataset have selling prices

that are not well explained by their location specific variables and warrant the need for a heavier

tailed distribution than normal distribution to more accurately model these data. Indeed, preliminary

exploratory analysis of the regression residuals (see Section 3) indicates that t-like–distributions might

be anticipated to improve the explanation and prediction of these house prices.

The multiplicative model proposed by Hughes–Oliver and Gonzalez–Farias (1999) is a non–Gaussian

random field model with no closed–form expression for its likelihood. Because of this, they fitted the

model using a surrogate Gaussian likelihood determined by the true mean and covariance functions

derived from the model. This is inefficient at best and inappropriate at worst, since such fitting does

not take into account the heavy tail nature of the distribution of the data. This is likely to result in

a fitted model that does not predict well extreme selling prices, namely, very expensive or very inex-

pensive houses, since these are viewed as outliers under a Gaussian model. Palacios and Steel (2006)

proposed a model for the error process formed by a scale mixture of Gaussian random fields aimed

at representing data with outliers and non–Gaussian tail behaviors. In this model both the Gaussian

variables and the mixing variables, assumed to be log–Gaussian, are spatially dependent and share the

same stationary correlation structure. It was shown that the resulting Gaussian–log–Gaussian error

process is stationary and has symmetric distributions with tails that resemble those of t distributions

with degrees of freedom as low as about four. The model can also be interpreted as the product of

two independent stationary random fields, one Gaussian and the other log–Gaussian.
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Figure 1: Locations of houses sold in Cedar Falls (◦) during the period 2000-2005, and the locations

of the two closest hog lots (�).

3 The Data

The dataset used in this analysis consists of 2, 297 arms–length single family house sales during the

period 2000-2005 in the small mid–western city of Cedar Falls located in Black Hawk County, Iowa.

The locations of these houses are displayed in Figure 1. The Black Hawk County contains within its

boundaries 19 hog lots, two of which are located near the most populous part if the city; the two hog

lots closest to the city are displayed in Figure 1. The dataset considered here, obtained from the Black

Hawk County Board of Supervisors, consists of the house selling price plus several variables collected

from each house sold: living area, number of rooms, size of the parcel of land on which the house is

built, year the dwelling was built and the location of the house, with spatial coordinates in units of

10, 000 feet. In addition, we also computed the distance from each house sold to the two closest hog

lots. Summary statistics are given in Table 3.

The original sales dataset was parced by selecting homes with a selling price between $32, 000 and

$400, 000, with at least 3 rooms and no more than 12 rooms, with at least 500 square feet of living
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Table 1: Summary Statistics

Variable Mean Standard Deviation

Living Area (square feet) 1369.3 545.1

Number of Rooms 5.96 1.64

Parcel Size (acres) 0.24 0.61

Year Built 1961 28.8

Distance to Hog Lot 5 (miles) 6.2 0.82

Selling Price (U.S. dollars) 152722 85858

area and lot sizes of at least 3, 000 square feet. The typical house was built in 1961, with a mean price

of approximately $153, 000 and a median price of $125, 000. Most homes were sold in the downtown

area, where the mean parcel size and living area were only about a quarter of an acre and 1, 370 square

feet, respectively, but newer and much larger houses have been built in the northwest and southern

portions of the city.

In this section we explore the possible effect of hog lot 5 (see Figure 1) on the selling prices of

houses, and disregard the possible effect of the other hog lot. See Martin et al. (2006) for possible

approaches to deal with multiple point sources, and the difficulties that such modeling may encounter.

An ordinary least squares regression was run using log selling price as the response variable and log

living area, number of rooms, log parcel size and year built as explanatory variables; the distance to

the hog lot was not included. Table 2 summarizes the regression results. All explanatory variables are

strongly significant (at the 0.001 level) and the signs of their corresponding regression coefficients are

Table 2: OLS regression results

Variable Parameter Estimate P-value

Log Living Area 0.481 < 0.0001

Number of Rooms 0.085 < 0.0001

Log Parcel Size 0.142 < 0.0001

Year Built 0.007 < 0.0001
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Figure 2: Plot of squared residuals versus distance to the hog lot 5.

all positive (as expected). An R2 statistic of 0.77 indicates that, overall, these explanatory variables

provide a reasonable explanation for house log selling prices.

Now Figure 2 plots the square of the residuals from the above regression versus distance to the hog

lot. The plot suggests a moderate tendency of the residuals variability to increases for houses that

are located closer to the hog lot. To further investigate this apparent pattern, we fitted the simple

linear regression squaredresidual = β0 + β1distancetohoglot + error, resulting in the estimate

β̂1 = −0.036 being highly significant. All of these suggest that the variance of the (log) selling price

is not constant, but rather increases for houses located closer to the hog lot. In addition, Figure 3

displays the histogram of the residuals, showing that these have distributions close to being symmetric,

while Figure 4 displays the qq–plot of these residuals. The type of deviation from the straight line at

the extreme quantiles indicate that these residuals have distributions with tails heavier than Gaussian,

which suggest that the same holds for the distributions of the (log) selling prices. In the next section

we describe a possible strategy to construct a model that represent the aforementioned data features.
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Figure 4: Quantile–quantile plot of the residuals from the regression in Table 2.
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4 Modeling Strategy

Let D ⊂ R
2 represent the region under study, and for a particular (fixed) time period let Y (s) be the

log of the (actual/potential) selling price of a house located at s ∈ D during this period. In addition,

it is assumed that the region D contains an ‘entity’ located at s∗ that exerts an effect over Y (s) for

all s ∈ D; this entity is often called a localized externality or point source. Also, let ||s|| denote the

Euclidean norm of s and ds = ||s− s∗|| the distance between a house and the point source.

The random field Y (·) will be modeled as

Y (s) = µ(s) +W (s), s ∈ D,

where µ(s) := E(Y (s)) is a deterministic spatial trend, and W (s) is a zero–mean random field that

will be called the ‘error process’. The deterministic trend includes the known house characteristics

that influence Y (s) and a possible effect from the localized externality, assumed to have the traditional

linear regression form

µ(s) =

p
∑

j=0

βjfj(s) + h(ds;α),

where f0(s) ≡ 1, f1(s), . . . , fp(s) are house characteristics and h(ds;α) is the contribution to the spatial

trend due to the point source, where the latter is assumed to depend only on ds. Finally, β0, β1, . . . , βp

and α are unknown regression parameters.

The focus in this work is on the modeling of the error process W (·) in order to mimic the data

features revealed in the exploratory data analysis in Section 3. Hughes–Oliver and Gonzalez–Farias

(1999) proposed modeling W (·) by combining two basic independent processes. One of them station-

ary, representing what the process would had been if the point source were absent (interpreted as a

base line), and the other non–stationary, representing a ‘shock’ to the system exerted by the presence

of the point source. They proposed to combine the two processes either multiplicatively or additively.

Hughes–Oliver and Gonzalez–Farias (1999) proposed a specific error model constructed multiplica-

tively, while Ecker and De Oliveira (2008) proposed an alternative error model constructed additively.

Both constructions used Gaussian random fields for the model components and the aforementioned

articles showed ways in which the resulting W (·) mimics several of the data features described in

Section 3. But the additive proposal results in a Gaussian random field, so this error process has

Gaussian tails. On the other hand, as we will show below, the multiplicative proposal results in a
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non–Gaussian random field with tails heavier than Gaussian, so this is the model we generalize and

investigate further.

We now describe some of the probabilistic characteristics of the product of two independent random

fields, and how these depend on the characteristics of the factors.

Result 1. Let W1(·) and W2(·) be independent random fields with mean functions µ1(s) and µ2(s),

and covariance functions C1(s,u) and C2(s,u), respectively. Then, the mean and covariance functions

of W (s) = W1(s)W2(s) are given by

E(W (s)) = µ1(s)µ2(s)

cov(W (s),W (u)) = C1(s,u)C2(s,u) + µ1(s)µ1(u)C2(s,u) + µ2(s)µ2(u)C1(s,u).

The proof involves direct calculations. Note in particular that if both random fields W1(·) and

W2(·) have mean 0, then E(W (s)) = 0 and cov(W (s),W (u)) = C1(s,u)C2(s,u).

Result 2. Consider again the notation and conditions of Result 1, and assume C1(s,u) and C2(s,u)

are both continuous along the ‘diagonal’ s = u. Then the random field W (s) = W1(s)W2(s) is mean

square continuous.

The proof follows from a result in Palacios and Steel (2006).

Result 3. Consider again the notation and conditions of Result 1, and assume that W1(s)

and W2(s) have symmetric distributions about µ1(s) and µ2(s). Then, the distribution of W (s) =

W1(s)W2(s) is symmetric about µ1(s)µ2(s) if and only if µ1(s)µ2(s) = 0.

This was shown by Chen and Slud (1984). From this results follows that when W1(·) and W1(·)

are Gaussian random fields, W (s) has a symmetric distribution about 0, provided that either µ1(s) or

µ2(s) is 0.

Result 4. Consider again the notation and conditions of Result 1, where in addition the random

fieldsW1(·) andW2(·) are assumed Gaussian with mean 0 and variance 1. Then, W (s) = W1(s)W2(s) is

a non–Gaussian random field whose distributions have tails heavier than those of normal distributions.

Proof. Let W1,W2 be independent random variables with standard normal distribution, and W =

W1W2. It follows from Result 1 that E(W ) = E(W1) = 0 and var(W ) = var(W1) = 1. Also, from a

result in Rohatgi (1976, p. 141) we have that the pdf of W is given by

fW (w) =

∫

∞

−∞

φ(x)
1

|x|
φ
( w

|x|

)

dx,
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where φ(·) is the pdf of the standard normal distribution, so the distribution of W is clearly non–

Gaussian. Additionally, for any t > 0 we have

P (W > t) =

∫

∞

t

fW (w)dw

=

∫

∞

−∞

(

∫

∞

t

1
√

2π|x|2
e
−

w2

2|x|2 dw

)

φ(x)dx

=

∫

∞

−∞

(

1− Φ
( t

|x|

))

φ(x)dx

= 1− 2

∫

∞

0

Φ
( t

x

)

φ(x)dx,

where Φ(·) is the cdf of the standard normal distribution. The above expression lacks a closed–form, so

we investigate its behaviour numerically. Figure 5 displays plots of P (W > t) and P (W1 > t) = 1−Φ(t)

for t > 0 (solid and broken lines, respectively2). It holds that P (W > t) > P (W1 > t) for t > 1.72, so

large positive values are more likely for W than for W1. A similar result holds for large negative values

because W and W1 are symmetric about 0. To complement the above, Figure 6 displays histograms

from 10, 000 realizations of W1 (left) and W (right), where it is also clear that the tails of W are

heavier than those of W1.

5 A General Model

In this section we describe three variants of the approach described in the previous section to construct

a spatial processes driven by a localized shock point source using two independent Gaussian random

fields. The first generalizes the model proposed by Hughes–Oliver and Gonzalez–Farias (1999), while

the second adapts to the multiplicative error process a technique used in Ecker and De Oliveira (2008)

for the case of an additive error process. The third variant is new and results in a model with some

features that differ from those of the first two variants.

Variant 1. Let X1(s) be a zero–mean Gaussian random field in R
2 with covariance function

cov(X1(s), X1(u)) = min{s1, u1} ·min{s2, u2},

where s = (s1, s2), u = (u1, u2); this is an example of a Wiener process in R
2. For a given strictly

monotone function g : R+ → R
+, define the transformation T1 : R

2 → R
2 as

T1(s) = (g(ds), 1),

2The former computed by numerical quadrature.
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where ds = ||s − s∗|| is the Euclidean distance between s and the location of the point source. Now

define the random field W2(·) by

W2(s) = X1(T1(s)) = X1((g(ds), 1)), s ∈ R
2. (1)

This is a zero–mean Gaussian random field with covariance function

cov(W2(s),W2(u)) = min{g(ds), g(du)}

=







g(min{g(ds), g(du)}) if g is increasing

g(max{g(ds), g(du)}) if g is decreasing
, (2)

with the property that the realizations of this random field take the same value for all locations with

the same distance to the point source s∗.

We now generalize the model proposed by Hughes–Oliver and Gonzalez–Farias (1999). Let W1(·)

and W2(·) be two independent Gaussian random fields, where W1(·) is stationary with mean 0 and

covariance function σ2
1K1

(

||s−u||
)

, with K1(·) a stationary and continuous correlation function in R
2,

and W2(·) is the random field defined in (1). Then, the error spatial processes driven by a localized

shock point source is defined as

W (s) = W1(·)W2(·). (3)

By Results 1 and 4, this is a non-Gaussian random field with mean zero and covariance function

cov(W (s),W (u)) = σ2
1K1

(

||s− u||
)

·min{g(ds), g(du)}, s,u ∈ R
2. (4)

In particular, we have that var(W (s)) = σ2
1g(ds), so the function g(·) controls how the variance of the

process varies with distance to the point source. Possible variance function include exp((γ1 + t)γ2),

γ1 + exp(−γ2t) and γ1(1 + exp(−γ2t)), with γ1, γ2 unknown parameters; these were used, respectively,

in the data analyses by Hughes–Oliver and Gonzalez–Farias (1999), Ecker and De Oliveira (2008) and

Ecker, De Oliveira and Isakson (2013). Also, these previous works have used members of the power

exponential family to model K1(·). In addition,

corr(W (s),W (u)) = K1

(

||s− u||
)

·
(min{g(ds), g(du)}

max{g(ds), g(du)}

)1/2

,

so the correlation function of W (·) is the correlation function of W1(·) modulated by the ratio
(

g(ds)/g(du)
)1/2

. A possible drawback of this variant is that a single function, g(·) in this case,
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controls both the process variance and the correlation modulation. The next approach seeks to avoid

this potential limitation.

Variant 2. Let W1(·) be a Gaussian random field with mean zero and covariance function given

by (g(ds)g(du))
1/2K1

(

||s − u||
)

, where g : R
+ → R

+ is a strictly monotone function, and K1(·)

is a stationary and continuous correlation function in R
2. Also, let now X2(·) be a Gaussian pro-

cess on the real line that is independent of W1(·), with mean 0, variance 1 and correlation function

corr(X2(t1), X2(t2)) = K2(|t1 − t2|), where K2(·) is a stationary and continuous correlation function

on R
1. Similarly as in variant 1, consider the transformation T2 : R

2 → R
+ defined by T2(s) = ds, and

the random field in the plane defined as

W2(s) = X2(T2(s)) = X2(ds), s ∈ R
2,

which in this case is a zero–mean Gaussian process with covariance function K2(|ds − du|). Possible

forms for g(·) and K1(·) are the same as those for variant 1. Then, the product error process (3) is a

non-Gaussian random field with mean zero and covariance function

cov(W (s),W (u)) = (g(ds)g(du))
1/2K1(||s− u||) ·K2(|ds − du|).

Like variant 1, it holds in this case that g(·) controls how the variance of W (·) varies with distance

to the point source, but unlike variant 1, the correlation modulation is now controlled by a separate

term, K2(|ds − du|) in this case.

Variant 3. Let W1(·) be a Gaussian random field with mean zero and covariance function given

by σ2K1

(

||s − u||
)

, with K1(·) a stationary and continuous correlation function in R
2, and W2(·) a

Gaussian random field independent of W1(·) with mean (g(ds))
1/2 and covariance function τ2

σ21{s = u},

where g : R+ → R
+ is a strictly monotone function and 1{A} is the indicator function of the event A.

Possible forms for g(·) and K1(·) are the same as those in variant 1. Again from Results 1 and 4 follow

that the product error process (3) is a non-Gaussian random field with mean zero and covariance

function given by

cov(W (s),W (u)) = σ2
(

g(ds)g(du)
)1/2

K1

(

||s− u||
)

+ τ 21{s = u}.

Like variants 1 and 2, it holds in this case that g(·) controls how the variance of W (·) varies with

distance to the point source. And like variant 1, g(·) affects the correlation modulation, but now the
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magnitude of this modulation depends also on τ 2/σ2. In addition, note that unlike variants 1 and 2,

it holds that the above covariance function is discontinuous along the ‘diagonal’ s = u, so it displays

the so–called nugget effect.

6 Exploratory Diagnostic

The usual diagnostics for stationary/isotropic covariance functions are not applicable to assess ade-

quacy of the zero–mean error processes described in the previous section, given their non–stationary

nature. In this section we adapt one of the traditional diagnostics to make it applicable to identify

the very particular form of non–stationarity in the error process (3) described in variant 1. Slight

modifications of the proposed diagnostic would make them applicable to assess the adequacy of the

error processes constructed using variants 2 and 3.

The variogram of the error process (3) is given by

var(W (s)−W (u)) = var(W (s)) + var(W (u))− 2 cov(W (s),W (u))

= σ2
1

(

g(ds) + g(du)− 2K1

(

||s− u||
)

·min{g(ds), g(du)}
)

,

so for any two locations with the same distance to the point source (so ds = du) it holds that

var(W (s)−W (u)) = 2σ2
1g(ds)(1−K1(||s− u||)).

Now define the scaled process W̃ (s) := W (s)/(var(W (s)))1/2, s ∈ D. Its semivariogram function is

given by

1

2
E
(

(W̃ (s)− W̃ (u))2
)

=
1
2
E
(

(W (s)−W (u))2
)

var(W (s))

= 1−K1(||s− u||), when ds = du,

where the latter is an isotropic and continuous semivariogram with ‘sill’ equal to 1. Based on this

observation, we suggest the following diagnostic for the adequacy of the a covariance function (4):
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• Estimate the variance function g(ds) by parametric or non-parametric regression, say by ĝ(ds).

• Assuming ĝ(ds) known, compute Ŵ (si) = W (si)/(ĝ(dsi))
1/2 for each of the sampling locations

s1, s2, . . . , sn, where W (si) = Y (si) − µ̂(si) are the residuals obtained after fitting the mean

function.

• Partition the interval (0,max{||si− sj||}) into distance bins 0 < l1 < l2 < . . . < lR, and partition

the study region as D = D1 ∪D2 ∪ . . . ∪DK , where the Djs are all annulus centered at s∗ with

increasing radii.

• For each distance lr estimate the semivariogram of Ẑ(·) for two locations lr units apart by

γ̂(lr) =
1

2|Nr|

∑

(si,sj)∈Nr

(Ẑ(si)− Ẑ(sj))
2,

where

Nr = {(si, sj) : ||si − sj|| ≈ lr and si, sj ∈ Dj for some j},

and |Nr| is the number of pairs in Nr.

The diagnostic consists of plotting γ̂(lr) versus lr. If the covariance model (4) with model compo-

nents g(·) and K1(·) is adequate for a given data set, then the semivariogram estimates γ̂(lr) should

have the typical behavior of rising with increasing distance, and then leveling off to a value close to 1.

7 Conclusions

This work proposed a strategy to construct random fields with non–constant variance functions and

distributions with tails heavier than Gaussian, with the motivation of mimicking the data features of

house sale prices revealed in Section 3. The strategy generalizes the multiplicative model proposed

by Hughes–Oliver and Gonzalez–Farias (1999) which is a non–stationary and non-Gaussian random

field. It holds that the likelihood of the parameters of such models lack a closed–form expression, so

likelihood–based inference is challenging. Because of this, Hughes–Oliver and Gonzalez–Farias (1999)

fitted the model using a surrogate Gaussian likelihood determined by the true mean and covariance

functions derived from the model. This is inefficient at best and inappropriate at worst, since such

fitting does not take into account the heavy tail nature of the distribution of the data. This is likely
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to result in a fitted model that does not predict well extreme selling prices, namely, very expensive or

very inexpensive houses, since these are viewed as ‘outliers’ under a Gaussian model.

In the future we plan to investigate the use of the EM algorithm and/or Bayesian data augmentation

to fit the model using the true likelihood under the proposed model. More specifically, we plan to

investigate a possible adaptation of the Markov chain Monte Carlo algorithm proposed by Palacios

and Steel (2006) to fit the so–called Gaussian–log–Gaussian random field obtained by scale–mixing of

a Gaussian random filed, where the scaling process is a log–Gaussian random field.

Finally, we also proposed a graphical diagnostic to assess the adequacy of the proposed model to a

given dataset for one of the model variants that we proposed. We plan to derive similar graphical diag-

nostics for the other two model variants, as well as to investigate the effectiveness of these diagnostics

using simulated and real data

8 References

Basu, S. and Thibodeau, T.G. (1998). Analysis of Spatial Autocorrelation in House Prices. The

Journal of Real Estate Finance and Economics, 17, 61-85.

Chen, R.W. and Slud, E.V. (1984). On the Product of Symmetric Random Variables. Communica-

tions in Statistics–Theory and Methods, 13, 611-615.

Cressie, N. (1993). Statistics for Spatial Data. Wiley.

Diggle, P.J. and Ribeiro, P.J. (2007). Model-based Geostatistics. Springer.

Dubin, R.A. (1998). Predicting House Prices Using Multiple Listings Data. The Journal of Real

Estate Finance and Economics, 17, 35-59.

Ecker, M.D. (2003). Geostatistics: Past, Present and Future. Encyclopedia of Life Support Sys-

tems (EOLSS). Developed under the Auspices of the UNESCO, Eolss Publishers, Oxford, UK.

(www.eolss.net)

Ecker, M.D., De Oliveira, V. and Isakson, H. (2013). A Note on Non-Stationary Point Source Spatial

Model. Environmental and Ecological Statistics, 20, 59-67.

18



Ecker, M.D. and De Oliveira, V. (2008). Bayesian Spatial Modeling of Housing Prices Subject to a

Localized Externality. Communications in Statistics–Theory and Methods, 37, 2066-2078.

Fouedjio, F. (2016). Second-Order Non-Stationary Modeling Approached for Univariate Geostatisti-

cal Data. Stochastic Environmental Research and Risk Assessment, to appear.

Hughes-Oliver, J.M., Gonzalez-Farias, G., Lu, J-C., and Chen, D. (1998). Parametric Nonstationary

Correlation Models. Statistics and Probability Letters, 40, 267-278.

Hughes-Oliver, J.M. and Gonzalez-Farias, G. (1999). Parametric Covariance Models for Shock-

induced Stochastic Processes. Journal of Statistical Planning and Inference, 77, 51-72.

Isakson, H. and Ecker, M.D. (2008). An Analysis of the Impact of Swine CAFOs on the Value of

Nearby Houses. Agricultural Economics. 39, 1-8.

Malpezzi, S. (2003). Hedonic Pricing Models: A Selective and Applied Review. In: Housing Eco-

nomics and Public Policy, T. O’Sullivan and K. Gibb (eds.), Wiley-Blackwell, pp 67-89.

Martin, R.J., Di Battista, T., Ippoliti, L. and Nissi, E. (2006). A Model for Estimating Point Sources

in Spatial Data. Statistical Methodology, 3, 431-443.

Pace, R.K., Barry, R., Gilley, O.W. and Sirmans, C.F. (2000). A Method for Spatio-temporal Fore-

casting with an Application to Real Estates Prices. International Journal of Forecasting, 16,

229-246.

Palacios, M.B. and Steel, M.J.S. (2006). Non-Gaussian Bayesian Geostatistical Modeling. Journal

of the American Statistical Association, 101, 604-618.

Rohatgi, V.K. (1976). An Introduction to Probability Theory and Mathematical Statistics. Wiley.

Sampson, P.D. (2010). Constructions for Nonstationary Spatial Processes. In: Handbook of Spatial

Statistics, A.E. Gelfand, P.J. Diggle, M. Fuentes and P. Guttorp (eds.), CRC/Press, pp 119-130.

Treviño, G. (1992). An Heuristic Overview of Non-Stationarity. In: Non-Stationary Stochastic

Processes and Their Applications, A.G. Miamee (ed.), World Scientific Publishers, pp 48-61.

19


