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Abstract

The paper deals with the best unbiased estimators of the blocked compound symmetric co-
variance structure for m−variate observations over u sites under the assumption of multivariate
normality. The free-coordinate approach is used to prove that the quadratic estimation of co-
variance parameters is equivalent to linear estimation with a properly defined inner product
in the space of symmetric matrices. Complete statistics are then derived to prove that the
estimators are best unbiased. Finally, strong consistency is proven. The proposed method is
implemented with a real data set.
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1 Introduction

Blocked compound symmetric (BCS) covariance structure (defined in Section 2) for doubly mul-

tivariate observations (m dimensional observation vector repeatedly measured over u locations or

time points), which is a multivariate generalization of compound symmetry covariance structure
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for multivariate observations, was introduced by Rao (1945, 1953) while classifying genetically

different groups, and then Arnold (1979) studied this BCS covariance structure while developing

general linear model with exchangeable and jointly normally distributed error vectors. Afterwards

BCS covariance structure did not attract much attention in the literature for some time until Leiva

(2007) developed classification rules for doubly multivariate observations and generalized Fishers

linear discrimination method when the covariance matrix of the data is assumed to have a BCS

structure. Leiva (2007) derived maximum likelihood estimates (MLEs) of the BCS covariance

structure and developed classification rules using these MLEs. Lately, this covariance structure is

starting to gain a lot of attention in the literature, especially in the area of high-dimensional esti-

mation (see Roy and Leiva, 2011). Recently, Roy et al. (2015) obtained a natural extension of the

Hotellings T2 statistic, the Block T2 statistic, a convolution of two T2’s, using unbiased estimates

of the component matrices of the orthogonally transformed BCS covariance matrix while testing

the equality of mean vectors for paired doubly multivariate observations. To the best knowledge

of the authors, none of the previous studies have considered the estimation properties of the BCS

covariance matrix. A natural question then is whether or not these estimators are “good” in some

sense.

One measure of “good” is “unbiasedness.” This article derives the unbiased estimators for

parameters of mean vector and the BCS covariance structure following the same way as Roy et al.

(2015), and addresses the issue of optimal properties of these unbiased estimators that is motivated

by real-world applications. A characterization of BLUE given by Zmyślony (1978) and completeness

in Zmýslony (1980) are used to derive the optimal properties of unbiased estimators. The derivation

and computation of these estimators are developed using the coordinate free approach
(
see Kruskal

(1968) and Drygas (1970)
)
.

An important advantage of using BCS structure for doubly multivariate data is that the number

of unknown parameters is only m(m+ 1), which does not even depend on the number of repeated

measures u, whereas the number of unknown parameters in the unstructured covariance matrix Ω

is um(um+ 1)/2, which can increase very rapidly with the increase of either m or u. Hence, BCS

covariance structure allows the number of repeated measurements u to grow unrestrictedly, and
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thereby provides more information, while the number of unknown parameters remains the same.

Doubly multivariate data are very common in biological, biomedical, medical, environmental,

engineering and many other fields. They require extraction of relevant information that is hidden in

the data in order to model the data appropriately and accurately. In clinical trial study researchers

often collect measurements on more than one response variable at different sites or over time. For

example, suppose an investigator measures the mineral content of three bones, radius, humerus and

ulna (m = 3) by photon absorptiometry to examine whether a particular dietary supplement would

slow the bone loss in older women. All three measurements are also recorded on the dominant and

non-dominant sides (u = 2) for each woman.

In this article we show that the unbiased estimates of the matrix parameters of the blocked

compound symmetric (BCS) covariance structure are optimal. Unbiased estimates of the matrix

parameters are needed for many statistical analysis, e.g., for testing the equality of mean vectors

for doubly multivariate observation (Roy et al., 2015); thus it is important to get optimal unbiased

estimates matrix parameters of blocked compound symmetric covariance structure. Another prop-

erty of fixed effects estimators is that they do not depend directly on the normal distribution of

the sample vector, like it is described in Zmyślony (1978), but solely on the covariance structure of

the data. Strong consistency is also a property that arises from these estimators.

The rest of the article is organized as follows. Section 2 defines the BCS covariance structure.

Unbiased estimate of this BCS structure is derived in Section 3. Optimal properties of estimates are

derived in Section 4. Finally Sections 5 and 6 contain a real data example and a short conclusions.

2 Blocked compound symmetric covariance structure

The (mu×mu)−dimensional BCS covariance structure is defined as

Γ =


Γ0 Γ1 . . . Γ1
...

. . .
...

...
. . .

...
Γ1 Γ1 . . . Γ0


= Iu ⊗ (Γ0 − Γ1) + Ju ⊗ Γ1, (2.1)
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where Iu is the u× u identity matrix, 1u is a u× 1 vector of ones, Ju = 1u1′u and ⊗ represents the

Kronecker product. We assume Γ0 is a positive definite symmetric m×m matrix, Γ1 is a symmetric

m ×m matrix, and the constraints − 1
u−1Γ0 ≺ Γ1 and Γ1 ≺ Γ0, which mean that Γ0 − Γ1 and

Γ0 + (u−1)Γ1 are positive definite matrices, so that the um×um matrix Γ is positive definite
(
for

a proof, see Lemma 2.1 in Roy and Leiva (2011)
)
. The m ×m block diagonals Γ0 in Γ represent

the variance-covariance matrix of the m response variables at any given site, whereas the m ×m

block off diagonals Γ1 in Γ represent the covariance matrix of the m response variables between

any two sites. We also assume that Γ0 is constant for all sites and Γ1 is constant for all site pairs.

The matrix Γ is also known as equicorrelated partitioned matrix with equicorrelation matrices Γ0

and Γ1 (Roy and Leiva, 2008). Roy and Leiva (2011) also tests the BCS covariance structure on

doubly multivariate data.

Let yr,s be a m-variate vector of measurements on the rth individual at the sth site; r = 1, . . . , n,

s = 1, . . . , u. The n individuals are all independent. Let yr = (y′r,1, . . . ,y
′
r,u)′ be the mu-variate

vector of all measurements corresponding to the rth individual. Finally, let y1,y2, . . . ,yn be a

random sample of size n drawn from the population Num (µ,Γ), where µ ∈ Rum and Γ is assumed

to be a um × um positive definite matrix. The following section derives the unbiased estimate of

Γ.

3 Unbiased Estimate of Γ

In this section, unbiased estimates of Γ0 and Γ1 are obtained. Clearly, y = (y′•1, . . . ,y
′
•u)′ ∼

Num

(
µ;

1

n
Γ

)
with µ = (µ′1, . . . ,µ

′
u)′ and Γ = cov (y) = Iu ⊗ (Γ0 − Γ1) + Ju ⊗ Γ1, where y•s =

1
n

∑n
r=1 yr,s for s = 1, . . . , u. The equicorrelated hypothesis of Γ assures that

E
[(
yr,s − µs

) (
yr,s∗ − µs∗

)′]
=

{
Γ0 if s = s∗

Γ1 if s 6= s∗,

and

E
[
(y•s − µs) (y•s∗ − µs∗)′

]
= Cov (y•s,y•s∗) =

{
1
nΓ0 if s = s∗
1
nΓ1 if s 6= s∗,
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because yr,s and yr∗,s∗ are independent if r 6= r∗. Now,

C0 =

u∑
s=1

n∑
r=1

(
yr,s − y•s

)(
yr,s − y•s

)′
(3.2)

=
u∑

s=1

n∑
r=1

[(
yr,s − µs

)
− (y•s − µs)

] [(
yr,s − µs

)
− (y•s − µs)

]′
=

u∑
s=1

n∑
r=1

(
yr,s − µs

) (
yr,s − µs

)′ − u∑
s=1

n (y•s − µs) (y•s − µs)
′ ,

then

E [C0] =

u∑
s=1

n∑
r=1

E
[(
yr,s − µs

) (
yr,s − µs

)′]− u∑
s=1

nE
[
(y•s − µs) (y•s − µs)

′]
=

u∑
s=1

(nΓ0 − Γ0) = u (n− 1) Γ0.

Therefore,

E

[
1

(n− 1)u
C0

]
= Γ0.

Similarly,

C1 =
u∑

s=1

u∑
s∗=1

s6=s∗

n∑
r=1

(
yr,s − y•s

)(
yr,s∗ − y•s∗

)′
(3.3)

=
u∑

s=1

u∑
s∗=1

s6=s∗

n∑
r=1

[(
yr,s − µs

)
− (y•s − µs)

] [(
yr,s∗ − µs∗

)
− (y•s∗ − µs∗)

]′

=
u∑

s=1

u∑
s∗=1

s6=s∗

n∑
r=1

(
yr,s − µs

) (
yr,s∗ − µs∗

)′ − u∑
s=1

u∑
s∗=1

s6=s∗

n (y•s − µs) (y•s∗ − µs∗)′ ,

and then

E [C1] =

u∑
s=1

u∑
s∗=1

s6=s∗

n∑
r=1

E
[(
yr,s − µs

) (
yr,s∗ − µs∗

)′]− u∑
s=1

u∑
s∗=1

s6=s∗

nE
[
(y•s − µs) (y•s∗ − µs∗)′

]
= u(u− 1)nΓ1 − u(u− 1)Γ1 = u(u− 1) (n− 1) Γ1.

Hence,

E

[
1

(n− 1)u(u− 1)
C1

]
= Γ1.

Consequently, unbiased estimators of Γ0 and Γ1 are

Γ̃0 =
1

(n− 1)u
C0, (3.4)
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and

Γ̃1 =
1

(n− 1)u (u− 1)
C1, (3.5)

respectively. Therefore, an unbiased estimate of Γ is

Γ̃ = Iu ⊗ Γ̃0 + (Ju − Iu)⊗ Γ̃1,

4 Optimal properties of estimates

In this section, optimal properties of unbiased estimators for parameters of mean vector and the

covariance matrix of the following column vector

y
num×1

= vec( Y
n×um

) ∼ N
(
(1n ⊗ Ium)µ, In ⊗ Γum

)
.

are presented. This means that n independent random column vectors are identically distributed

with (um× 1)−dimensional unknown mean vector µ and (um×um)−dimensional variance covari-

ance matrix Γ defined in (2.1). Define the projection matrix P as follows:

P =
1

n
1n1′n ⊗ Ium, (4.6)

where 1n is a vector with its n components equal to 1 and the data matrix Y
n×um

= (y′1,y
′
2, . . . ,y

′
n).

It is clear that P is an orthogonal projector on the subspace of the mean vector of y. If In⊗Ium ∈ ϑ,

from (Gnot et al., 1977) it follows that Py is the best linear unbiased estimator (BLUE) if and

only if P commutes with all covariance matrices V . Therefore, we have the following results.

Result 1. The projection matrix P commutes with the covariance matrix V , i.e., PV = V P ,

where V = In ⊗ Γ.

Proof. PV = ( 1
n1n1′n ⊗ I)(In ⊗ Γ) = 1

n1n1′n ⊗ Γ, and V P = (In ⊗ Γ)( 1
n1n1′n ⊗ I) = 1

n1n1′n ⊗ Γ.

Thus, P and V commute.

Lemma 1. Let ϑ denote the subspace spanned by V , i.e., ϑ = sp{V }. Then, ϑ is a quadratic

subspace; meaning that ϑ is a linear space and if V ∈ ϑ then V 2 ∈ ϑ
(
like it is defined in Seely

(1971)
)
.
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Proof. From the structure of the covariance matrix V it is clear the that sp{V } is a quadratic

subspace if and only if sp{Γ} is a quadratic subspace. After simple calculations one can find that

Γ2 = Iu ⊗ (Γ0 − Γ1)
2 + Ju ⊗ [Γ1Γ0 + Γ0Γ1 + (u− 2)Γ2

1]. (4.7)

Defining Γ∗0 = Γ2
0 + (u− 1)Γ2

1 and Γ∗1 = Γ1Γ0 + Γ0Γ1 + (u− 2)Γ2
1, Γ2 in (4.7) can be rewritten as

Γ2 = Iu ⊗ (Γ∗0 − Γ∗1) + Ju ⊗ Γ∗1. (4.8)

It means that sp{Γ} = sp{Γ2}, and this implies that sp{V } is a quadratic subspace.

Let M = I − P . So, M is idempotent. Now, since PV = V P , and ϑ is a quadratic space,

MϑM = Mϑ is also a quadratic space. We now construct a base for the quadratic subspace ϑ.

We define

Aii = Eii and Aij = Eij +Eji, for i < j; and j = 1, . . . ,m,

as a base for symmetric matrices Γ. The (m×m)−dimensional matrices Eij has 1 only at the ijth

element, and 0 at all other elements. Then, it is clear that the base for diagonal matrices of the

form In ⊗ Iu ⊗ Γ0 is constituted by matrices

K
(0)
ij = In ⊗ Iu ⊗Aij , for i ≤ j, j = 1, . . . ,m, (4.9)

and the base for matrices of the form In ⊗ (Ju − Iu)⊗ Γ1 is constituted by matrices

K
(1)
ij = In ⊗ (Ju − Iu)⊗Aij , for i ≤ j, j = 1, . . . ,m. (4.10)

Result 2. The complete and minimal sufficient statistics for the mean vector and the variance-

covariance matrix are

1n ⊗ Iumy (4.11)

and y′MK
(l)
ij My, for l = 0, 1 (4.12)

where M = I − P and P is given in (4.6), see Fonseca et al. (2010), Seely (1977) and Zmyślony

(1980).
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Now, we give the following theorem to constitute the best unbiased estimators of µ and Γ under

the assumption of multivariate normality.

Theorem 1. Assume that ynum×1 ∼ N
(
(1n ⊗ Ium)µ, In ⊗ Γ

)
with BCS covariance structure on

Γ, i.e.,

Γ = Iu ⊗ (Γ0 − Γ1) + Ju ⊗ Γ1

= Iu ⊗ Γ0 + (Ju − Iu)⊗ Γ1,

where Γ0 and Γ1 are m × m unknown symmetric matrices with Γ0 positive definite (defined in

Section 2) such that Γ is positive definite. Then

µ̃ =
1

n

n∑
i=1

yi, (4.13)

where y
nmu×1

= (y′1,y
′
2, . . . ,y

′
n)′ with yi = (y′i,1, . . . ,y

′
i,u)′ and yi,j = (yi,j,1, . . . ,yi,j,m)′ and

Γ̃ = Iu ⊗ Γ̃0 + (Ju − Iu)⊗ Γ̃1, (4.14)

where Γ̃0 = 1
(n−1)uC0 and Γ̃1 = 1

(n−1)u(u−1)C1, are the best unbiased estimators (BUE) for µ and

Γ respectively. Here C0 and C1 are defined in (3.2) and (3.3) respectively.

Proof. First we prove that µ̃ is BLUE for µ. Note that putting Γ0 = I and Γ1 = 0 we see that the

identity element belongs to the space generated by covariance matrices. This implies, according to

well known theorem in linear mixed models
(
see Zmyślony, (1976, 1978, 1980)

)
that there exists

BLUE for each estimable function of mean if and only if the orthogonal projector on the space

generated by the mean vector commutes with all covariances matrices. Moreover, BLUE are least

squares estimators (LSE), in our case P = 1
n1n1′n ⊗ Ium.

Now

P = (1n ⊗ Ium)(1n ⊗ Ium)+

= (1n ⊗ Ium)(1+
n ⊗ Ium)

= (1n ⊗ Ium)(
1

n
1′n ⊗ Ium)

=
1

n
1n1′n ⊗ Ium.
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Note that ( 1
n1n1′n ⊗ Ium)(In ⊗ Γ) = 1

n1n1′n ⊗ Γ is symmetric. It implies that the matrix P

commutes with the covariance matrix of y, and BLUE for µ is LSE. Thus, µ̃ is the unique solution

of the following normal equation

(1n ⊗ Ium)′(1n ⊗ Ium)µ = (1n ⊗ Ium)′y, or

nIumµ = [Ium, Ium, . . . , Ium]y,

which means that

µ̃ =
1

n

n∑
i=1

yi.

Now we prove that Γ̃um is the best quadratic unbiased estimator (BQUE) for Γ. Since P commutes

with the covariance matrix of y, for each parameter of quadratic covariance there exists BQUE if

and only if

sp{MVM}, where M = I − P ,

is a quadratic subspace
(
see Zmyślony (1976, 1980) and Gnot et al. (1976, 1977a,c); or Jordan

algebra, Jordan et al. (1934)
)
, where V stands for the covariance matrix of y. It is clear that if

sp{V } is a quadratic subspace and if for each Σ ∈ sp{V } commutativity PΣ = ΣP holds, then

sp{MVM} = sp{MV } is also a quadratic subspace. According to the coordinate free approach,

the expectation of vec{Myy′M} = vec(My)vec(My)′ can be written as a linear combination of

orthogonal vectors vec(MK
(0)
ij ) and vec(MK

(1)
ij ) with unknown coefficients σ

(0)
ij and σ

(1)
ij respec-

tively. Note also that identity covariance operator of yy′ belongs to sp{cov(yy′)}. It implies that

the ordinary best quadratic estimators are least square estimators for corresponding parameters

σ
(0)
ij and σ

(1)
ij and they are calculated independently from the following normal equations because

of orthogonality

[vec(MK
(l)
ij )′vec(MK

(l)
ij )]σ

(l)
ij = [vec(MK

(l)
ij )]′vec[(My)(My)′],

for l = 0, 1 and i ≤ j = 1, . . . ,m.

Because M2 = M , M commutes with K
(l)
ij and because vec(A)′vec(B) = tr(A′B), one can easily

find the above equations are equivalent to

tr
(
M(K

(l)
ij )2

)
σl
ij = (My)′(K

(l)
ij )My for l = 0, 1 and i ≤ j = 1, . . . ,m,
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and the explicit estimators are

σ̃
(l)
ij =

1

tr
(
M(K

(l)
ij )2

)(My)′(K
(l)
ij )(My) for l = 0, 1 and i ≤ j = 1, . . . ,m,

or, if r stands for the residual vector, i.e., r = My = (I −P )y. Then, the above estimators are of

the form

σ̃
(l)
ij =

1

tr
(
M(K

(l)
ij )2

)r′(K(l)
ij )r for l = 0, 1 and i ≤ j = 1, . . . ,m. (4.15)

Now, we consider the following four cases:

Case 1 : for l = 0, i = j we have

tr(M(K
(0)
ii )2) = tr[(In −

1

n
Jn)⊗ Iu ⊗A2

ii]

= tr(In −
1

n
Jn)tr(Iu)tr(Aii) = (n− 1)u, and

(My)′K
(0)
ii My = r′(In ⊗ Iu ⊗Aii)r =

n∑
k=1

u∑
p=1

r2kpi.

Case 2 : for l = 0, i < j we have

tr(M(K
(0)
ij )2) = tr[(In −

1

n
Jn)⊗ Iu ⊗A2

ij ]

= tr(A2
ij)tr(In −

1

n
Jn)tr(Iu) = 2(n− 1)u, for i < j and

(My)′K
(0)
ij My = r′(In ⊗ Iu ⊗Aij)r

= 2
n∑

k=1

u∑
o=1

rkoirkoj for i < j.

Thus, in Cases 1 and 2, it follows that BQUE for σ
(0)
ij in view of (4.15) are

σ̃
(0)
ij =

1

(n− 1)u

n∑
k=1

u∑
o=1

rkoirkoj for i ≤ j,

and BQUE for Γ0 we get Γ̃0 = 1
(n−1)uC0, where C0 is defined in (3.2). Cases 3 and 4 are similar

to the previous ones for estimation of σ
(1)
ij and Γ1.
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Case 3 : for l = 1, i = j, one gets the estimators by noting the following

tr(M(K
(1)
ii )2) = tr[(In −

1

n
Jn)⊗ (Ju − Iu)2 ⊗A2

ii]

= tr(In −
1

n
Jn)tr{(Ju − Iu)2}tr(A2

ii) = (n− 1)u(u− 1),

and (My)′K
(1)
ii My = r′(In ⊗ (Ju − Iu)⊗Aii)r

=
n∑

k=1

u∑
p=1

u∑
q 6=p

rkpirkqi.

Thus, in view of (4.15) we have

σ̃
(1)
ii =

1

(n− 1)u(u− 1)

n∑
k=1

u∑
p=1

u∑
q 6=p

rkpirkqi.

Finally, in a similar way as in Case 2 we get Case 4 as follows:

Case 4 : for l = 1, i < j

tr(M(K
(1)
ij )2) = tr[(In −

1

n
Jn)⊗ (Ju − Iu)2 ⊗A2

ij ]

= tr(In −
1

n
Jn)tr{(Ju − Iu)2}tr(A2

ij) = 2(n− 1)u(u− 1), for i < j, and

(My)′(K
(1)
ij )My = r′(In ⊗ (Ju − Iu)⊗Aij)r

= 2

n∑
k=1

u∑
p=1

u∑
q 6=p

rkpirkqj , for i < j.

Now, again in view of (4.15) we have

σ̃
(1)
ij =

1

(n− 1)u(u− 1)

n∑
k=1

u∑
p=1

u∑
q 6=p

rkpirkqj , for i ≤ j,

and as in the previous case we conclude that Γ̃1 = 1
(n−1)u(u−1)C1 where C1 is given in (3.3). Now,

from Result 2 it follows that estimates for considered parameters are the best unbiased estimators

BUEs as a function of complete sufficient statistics.

Now we are able to make a statement that estimators presented in Theorem 1 are consistent

and obviously the family of distribution of above estimators are complete.

Theorem 2. Estimators given in (4.13) and (4.14) are consistent. Moreover, the family of distri-

butions of these estimators is complete.
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Proof. Note that the variance of the quadratic forms y′Ay, where y ∼ N(µ,V ), is given by the

following formula

var(y′Ay) = 2tr
{

(AV AV ) + (AV Aµµ′ + µµ′AV A)
}
. (4.16)

In a special case, if A = MAM , and if MV = VM then Aµµ′ = 0, and (4.16) reduces to the

following form

var(y′Ay) = 2tr(MAVAV ). (4.17)

Now, making an use of (4.17), of the BCS structure of the covariance matrix of y and from (4.9),

it follows that for any fixed Γ

var(σ̃
(0)
ij ) =

2

(n− 1)u2
tr
{

(Iu ⊗Aij)Γ(Iu ⊗Aij)Γ
}
→ 0 if n→∞

and from (4.10) it follows that for each fixed Γ

var(σ̃
(1)
ij ) =

2

(n− 1)u2(u− 1)2
tr
{

((Ju − Iu)⊗Aij)Γ((Ju − Iu)⊗Aij)Γ
}
→ 0 if n→∞

Estimators for µ and estimators for elements of covariance matrix are one-to-one functions of

minimal sufficient statistic given by (4.11) and (4.12). One can easily check that the (rs)th element

of (3.2) is given by (4.11) for l = 0 and the rsth element of (3.3) is given by (4.12) for l = 1.

Moreover, y•s are part of µ̂ in both (3.2) and (3.3).

Remark 1. Note that the mean vector can be replaced by any vector a. It means that E(y) = a⊗µ.

5 A real data Example

This data set is taken from Johnson and Wichern (2007, p. 43). An investigator measured the

mineral content of bones (radius, humerus and ulna) by photon absorptiometry to examine whether

dietary supplements would slow bone loss in 25 older women. Measurements were recorded for three

bones on the dominant and non-dominant sides. Thus, the data is doubly multivariate, and clearly

m = 3 and u = 2. We rearrange the variables in the data set by grouping together the mineral

content of the dominant sides of radius, humerus and ulna as the first three variables, that is, the
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variables in the first location (u = 1) and then the mineral contents for the non-dominant side

of the same bones (u = 2). Using the likelihood ratio test Roy and Leiva (2011) demonstrated

that the data fail to reject the null hypothesis that the covariance structure is of the BCS form

(p−value = 0.5786). Using the formula (4.13) presented in Section 4 the unbiased estimate of µ is

µ̃ =
[

0.84380 1.79268 0.70440 0.81832 1.73484 0.69384
]
.

Using Theorems 1 we say that the above estimate µ̃ is BLUE for µ. Furthermore, using the

formulas (3.4) and (3.5) presented in Section 3 the unbiased estimates of Γ0 and Γ1 are

Γ̃0 =

 0.01221 0.02172 0.00901
0.02172 0.07492 0.01682
0.00901 0.01682 0.01108

,
and

Γ̃1 =

 0.01038 0.01931 0.00824
0.01931 0.06678 0.01529
0.00824 0.01529 0.00807

,
respectively. Using the above estimates the unbiased estimate of Γ is

Γ̃ = Iu ⊗
(
Γ̃0 − Γ̃1

)
+ Ju ⊗ Γ̃1

=



 0.01221 0.02172 0.00901
0.02172 0.07492 0.01682
0.00901 0.01682 0.01108

 0.01038 0.01931 0.00824
0.01931 0.06678 0.01529
0.00824 0.01529 0.00807

0.01038 0.01931 0.00824
0.01931 0.06678 0.01529
0.00824 0.01529 0.00807

 0.01221 0.02172 0.00901
0.02172 0.07492 0.01682
0.00901 0.01682 0.01108



.

Using Theorems 1 and 2 we say that the above estimate Γ̃ is the best unbiased and complete

estimate of Γ.

6 Conclusions

Estimates of covariance matrices are needed for the principal component analysis and factor anal-

ysis, and are also involved in versions of regression analysis that treat the dependent variables in a

data-set, jointly with the independent variable as the outcome of a random sample. Thus, optimal

estimation of covariance matrices is very important aspect in any data analysis, and the obtained

results demonstrate the optimality of estimates for both fixed effects and variance-covariance ma-

trices using the coordinate free approach theory for estimation.
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