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Abstract

A new approach to derive the principal components of symbolic data is proposed in this
article. This is done in two stages: first getting eigenblocks and eigenmatrices of the variance-
covariance matrix, and then analyzing these eigenblocks and the corresponding principal vec-
tors together in some seemly sense to get the adjusted eigenvalues and the corresponding
eigenvectors of the interval data. The proposed method is very efficient in two-level and
three-level symbolic data sets. Results illustrating the accuracy and appropriateness of the
new method over the existing methods are presented. We have clearly shown with the help
of examples that our proposed method for principal component analysis (PCA) of three-level
symbolic data generalizes the commonly used PCA for multivariate data.
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1 Introduction

Advances in computing power in the past few decades greatly encouraged the collection of tensor

data sets in all fields of science, biomedical, medical, social science, engineering and business. In

many of these areas, recent technological advances allow for the collection of massive datasets with

interval-valued variables which occur naturally and is very common these days. In these situations

right thing to do is to model the symbolic data, especially the interval data which captures the

variability of events, rather than classical data. Moreover, in many real world applications the

available information is imprecise and ambiguous, and therefore cannot be expressed by a single

numerical data. In these cases it is better to summarize the information using interval-valued

data.

∗Correspondence to: Anuradha Roy, Department of Management Science and Statistics, The University of Texas
at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA
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Lauro and Palumbo (2000), Palumbo and Lauro (2003), Giordan and Kiers (2006) among

many others developed methods of conducting principal component analysis (PCA) on symbiloc

data for which each symbolic variable yj , j = 1, . . . , p, takes interval values [y−i j , y
+
i j ] for each

observation i = 1, . . . , n, and where each observation may even represent the aggregation of ni

individuals.

Thus, an interval-valued symbolic random variable is one that takes values in an interval.

Billard and Diday (2006) says, “It is the presence of this internal variation which necessitates the

need for new techniques for analysis which in general will differ from those for classical data”. But,

in this paper we consider the interval valued data as two repeated measurements at the lower and

upper bounds of an interval, and develop a new method using some recently developed classical

multi-level multivariate techniques (Leiva and Roy, 2011; Roy and Fonseca, 2012) carefully and

prudently to analyze the interval data. In this paper we especially develop a new method to derive

principal components (PCs) of symbolic data, and consider the Fruit Juice data from Giordani

and Kiers (2006, Table 4) which is reproduced here as Table 1 to show the performance of our

new method. This interval data set describing 16 fruit juices evaluated by a group of judges

on six features, namely, Appearance, Smell, Taste, Naturalness, Sweetness and Density. More

specifically, there are eight fruit juices (apple, apricot, banana, pineapple, grapefruit, orange,

peach and peer) and two brands for each juice. We guess the same fruit juice of the two different

brands should have some common factors like Appearance and Smell. Unfortunately, Giordani

and Kiers (2006) did not use this brand information in deriving the principal components in their

paper. We use this brand information in this article to derive the principal components and as a

consequence there is a substantial improvement in the result (Roy, 2014a,b). Without the brand

information first two PCs account for an apparent proportion of 85.54%, whereas the use of brand

information improves it to 91.51%.

All the judges evaluated the Appearance and the Smell before tasting and the remaining

characteristics later. It reveals the fact that these two features, Appearance and Smell, bring

together the first impression of the fruit juices. To evaluate each attribute, a scale, whose values

are from 1 to 10, is used. Unfortunately, the inter individual differences in judges were unknown.

With respect to the rating pertaining to the ith juice and the jth variable, only the lower bound

(y−L ), the upper bound y+R , the mean value (m) and the standard deviation (s) are known. Every

interval datum is then constructed as (y−L , y
− = m− s, y+ = m+ s, y+R). Since each attribute was

evaluated on a scale whose values are from 1 to 10, we may assume that the variance-covariance

matrix of the six features is same at the two ends of the intervals.
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In this article we introduce a new method using a two-stage principal component analysis ex-

ploiting multivariate equicorrelated (exchangeable) and jointly equicorrelated (doubly exchange-

able) covariance matrix (Roy and Leive, 2011, 2007) as defined in Section 2.2.1 to the Fruit juice

interval data considering it as two-level and three-level data respectively. We show in Example 1

in Section 3 that the midpoints and the midranges of the six interval valued variables are the first

two principal vectors of the equicorrelated covariance matrix considering the Fruit juice data as

two-level. And, grand midpoints and grand midranges of the six interval valued variables are the

first and the third principal vectors of the jointly equicorrelated covariance matrix considering

the Fruit juice data as three-level; the brand difference of the juices turns out to be the second

principal vector (see Example 2 in Section 3). The introduction of our new method needs some

preliminaries, which we present in the next section.

2 Preliminaries

2.1 Matrices of Intervals

Let I[Y ] represents the interval valued data matrix having p columns and n rows, where p denotes

the number of features/variables and n denotes the number of sampling units. So, we may write

I[Y ] as

I(Y ) =

 y′1
...
y′n

 =

 [y−1 1, y
+
1 1] · · · [y−1 p, y

+
1 p]

...
. . .

...
[y−n 1, y

+
n 1] · · · [y−n p, y

+
n p]

, (1)

where each component is an interval. The ith row of I(Y ) pertains to the ith observation unit,

i = 1, . . . , n. As each observation unit is characterized by p (interval valued) variables, it can be

represented as a hyperrectangle in ∈ Rp and the number of vertices of each hyperrectangle is 2p.

If p = 1, each hyper rectangle reduced to a segment, a rectangle if p = 2, a parallelepiped or

paralleletope in case of p = 3 and p > 3 respectively.

The extension of the PCA to the interval data has been proposed by Cazes, Chouakria,

Diday and Schektman (1997) and by Chouakria, Diday and Cazes (1999) as “Vertices Principal

Component Analysis” (V-PCA). See Bock and Diday (2000) too. V-PCA does not directly

summarize the interval data in (1). Each interval valued row is however transformed into the

numerical matrix Y i, such that each row in Y i refers to the ith hyperrectangle. Therefore, Y i’s

i = 1, . . . , n, has 2p rows and p columns. By stacking one below the other the matrices Y i’s

i = 1, . . . , n, we get the new numerical valued data matrix Y V-PCA with (n2p× p)−dimension as

3



T
ab

le
1:

F
ru

it
ju

ic
es

in
te

rv
al

d
at

a

F
ru

it
ju

ic
es

A
p
p

ea
ra

n
ce

S
m

el
l

T
a
st

e
N

a
tu

ra
ln

es
s

S
w

ee
tn

es
s

D
en

si
ty

A
p
p
le

1
(6

.7
8
,6

.7
8
,7

.5
0
,7

.5
2
)

(5
.4

7
,5

.5
9
,6

.4
9
,6

.5
9
)

(7
.4

0
,7

.4
0
,8

.1
7
,8

.4
0
)

(5
.6

6
,5

.7
7
,6

.8
6
,7

.2
0
)

(7
.2

7
,7

.2
7
,7

.9
9
,8

.2
9
)

(5
.8

1
,5

.8
1
,6

.7
,6

.7
4
)

A
p
p
le

2
(6

.6
0
,6

.7
9
,7

.6
4
,7

.7
2
)

(6
.2

8
,6

.3
4
,7

.2
3
,7

.4
0
)

(6
.3

1
,6

.3
2
,7

.3
3
,7

.4
3
)

(5
.7

2
,5

.8
7
,6

.9
1
,7

.1
2
)

(6
.6

7
,6

.6
7
,7

.5
7
,7

.6
5
)

(5
.4

7
,5

.5
5
,6

.5
3
,6

.5
9
)

A
p
ri

co
t1

(6
.8

2
,6

.8
2
,7

.5
0
,7

.6
8
)

(7
.8

7
,7

.8
7
,8

.4
5
,8

.6
8
)

(7
.6

0
,7

.6
0
,8

.3
6
,8

.5
4
)

(7
.3

5
,7

.5
1
,8

.2
5
,8

.4
7
)

(7
.4

2
,7

.4
6
,8

.1
1
,8

.4
0
)

(7
.0

3
,7

.0
4
,7

.8
2
,8

.1
5
)

A
p
ri

co
t2

(7
.3

2
,7

.5
3
,8

.1
5
,8

.1
6
)

(7
.0

9
,7

.0
9
,7

.8
9
,8

.1
9
)

(5
.1

7
,5

.4
2
,6

.4
2
,6

.7
1
)

(4
.6

6
,4

.8
1
,5

.8
2
,6

.0
6
)

(4
.9

0
,5

.1
5
,6

.1
5
,6

.3
1
)

(5
.7

9
,5

.8
7
,6

.7
2
,6

.7
7
)

B
a
n
a
n
a
1

(4
.9

6
,5

.2
4
,6

.2
1
,6

.3
7
)

(3
.9

2
,4

.1
4
,5

.2
0
,5

.6
0
)

(3
.6

4
,4

.1
3
,5

.2
0
,5

.3
2
)

(4
.2

7
,4

.6
3
,5

.6
8
,5

.9
5
)

(4
.7

6
,4

.9
8
,5

.9
2
,6

.1
6
)

(3
.6

2
,3

.7
8
,4

.7
3
,4

.7
4
)

B
a
n
a
n
a
2

(5
.2

7
,5

.4
6
,6

.4
6
,6

.6
7
)

(3
.6

8
,3

.9
8
,5

.0
8
,5

.3
6
)

(3
.2

6
,3

.5
8
,4

.6
9
,4

.9
4
)

(3
.9

2
,4

.1
5
,5

.1
8
,5

.4
6
)

(4
.2

3
,4

.5
7
,5

.6
3
,5

.9
1
)

(3
.6

5
,3

.8
3
,4

.7
7
,4

.7
7
)

G
ra

p
ef

ru
it

1
(6

.2
8
,6

.3
0
,7

.2
6
,7

.4
0
)

(6
.5

2
,6

.6
5
,7

.5
9
,7

.6
5
)

(5
.1

7
,5

.4
6
,6

.5
8
,6

.8
5
)

(6
.0

0
,6

.1
6
,7

.2
0
,7

.3
3
)

(2
.4

5
,2

.6
5
,3

.3
9
,3

.3
9
)

(3
.6

4
,3

.8
4
,4

.7
2
,4

.7
6
)

G
ra

p
ef

ru
it

2
(6

.3
1
,6

.4
2
,7

.2
1
,7

.4
3
)

(5
.6

3
,5

.8
3
,6

.7
0
,6

.7
5
)

(6
.3

5
,6

.4
6
,7

.3
0
,7

.4
7
)

(6
.1

1
,6

.1
2
,6

.9
6
,7

.2
3
)

(4
.1

4
,4

.1
4
,5

.0
2
,5

.1
9
)

(3
.0

6
,3

.3
8
,4

.3
4
,4

.4
6
)

O
ra

n
g
e1

(6
.6

4
,6

.6
4
,7

.4
4
,7

.5
9
)

(7
.1

2
,7

.1
5
,7

.9
7
,8

.2
4
)

(6
.3

9
,6

.3
9
,7

.2
9
,7

.4
4
)

(5
.6

7
,5

.7
4
,6

.7
0
,6

.7
2
)

(5
.7

5
,5

.7
5
,6

.5
7
,6

.6
7
)

(3
.6

4
,3

.8
0
,4

.7
6
,4

.9
7
)

O
ra

n
g
e2

(6
.8

9
,6

.9
3
,7

.5
5
,7

.5
5
)

(6
.0

6
,6

.0
9
,6

.8
7
,6

.9
0
)

(6
.8

2
,6

.8
2
,7

.6
6
,7

.9
4
)

(5
.6

0
,5

.7
5
,6

.6
9
,6

.7
2
)

(5
.9

3
,5

.9
3
,6

.8
9
,7

.1
3
)

(3
.8

8
,4

.0
6
,4

.9
8
,4

.9
8
)

P
ea

ch
1

(7
.0

9
,7

.2
1
,7

.8
1
,7

.9
3
)

(6
.9

4
,6

.9
4
,7

.6
9
,7

.7
8
)

(6
.4

2
,6

.5
2
,7

.4
4
,7

.5
4
)

(5
.7

0
,5

.8
9
,6

.8
6
,7

.1
0
)

(6
.6

9
,6

.7
5
,7

.5
6
,7

.6
8
)

(5
.0

3
,5

.0
3
,5

.9
2
,5

.9
2
)

P
ea

ch
2

(6
.9

8
,7

.0
1
,7

.7
4
,7

.8
2
)

(6
.2

2
,6

.2
9
,7

.1
1
,7

.1
1
)

(7
.3

8
,7

.3
8
,8

.1
5
,8

.3
8
)

(6
.8

3
,6

.8
3
,7

.6
0
,7

.7
2
)

(6
.8

3
,6

.9
6
,7

.7
4
,7

.8
1
)

(4
.9

9
,4

.9
9
,5

.8
3
,5

.8
5
)

P
ee

r1
(6

.8
9
,6

.8
9
,7

.6
7
,7

.7
6
)

(7
.1

9
,7

.2
8
,8

.0
4
,8

.2
4
)

(7
.1

4
,7

.1
7
,7

.9
9
,8

.1
9
)

(6
.4

4
,6

.4
7
,7

.3
3
,7

.4
9
)

(7
.5

9
,7

.5
9
,8

.3
7
,8

.5
4
)

(7
.2

2
,7

.3
4
,8

.0
6
,8

.2
7
)

P
ee

r2
(7

.5
2
,7

.5
2
,8

.2
0
,8

.2
0
)

(6
.3

2
,6

.4
0
,7

.2
8
,7

.4
4
)

(7
.6

9
,7

.6
9
,8

.3
3
,8

.5
7
)

(6
.7

2
,6

.7
2
,7

.4
8
,7

.6
3
)

(7
.7

1
,7

.7
1
,8

.4
5
,8

.6
2
)

(6
.7

2
,6

.7
2
,7

.6
0
,7

.6
7
)

P
in

ea
p
p
le

1
(6

.6
1
,6

.7
7
,7

.5
1
,7

.6
6
)

(5
.7

4
,5

.7
4
,6

.5
4
,6

.6
6
)

(6
.1

8
,6

.2
1
,7

.1
0
,7

.3
1
)

(5
.4

5
,5

.5
2
,6

.5
2
,6

.8
5
)

(5
.6

3
,5

.8
2
,6

.7
1
,6

.7
5
)

(3
.9

2
,4

.1
6
,5

.0
0
,5

.0
0
)

P
in

ea
p
p
le

2
(6

.6
6
,6

.6
6
,7

.4
2
,7

.5
9
)

(5
.9

0
,6

.1
9
,7

.0
9
,7

.3
0
)

(5
.6

5
,5

.8
4
,6

.7
6
,6

.9
8
)

(5
.2

3
,5

.5
2
,6

.4
8
,6

.5
6
)

(5
.5

2
,5

.6
2
,6

.6
2
,6

.9
2
)

(3
.2

8
,3

.6
9
,4

.6
7
,4

.6
9
)

4



follows:

Y V-PCA =

 Y ′1
...
Y ′n

. (2)

V-PCA perform PCA on (2). The matrix Y V-PCA is now treated as though it represents classical

p−variate data for n2p individual units. Chouakria (1998) has shown that the basic theory for a

classical analysis carries through; hence a traditional PCA can be applied. Regrettably, V-PCA

requires the analysis of the data matrix Y V-PCA, the dimension of which increases exponentially

with the number of variables.

An exploratory tool in order to summarize interval valued data sets is centers principal compo-

nent analysis (C-PCA), as proposed by Cazes et al. (1997). Like V-PCA, C-PCA also transforms

the interval valued data matrix into a new single valued matrix – midpoint or center of the in-

terval at hand. Thus, C-PCA method basically consists of a PCA on the centers of the intervals,

whereas the V-PCA method uses all vertices of the hyperrectangle defined by the intervals for

all variables for each observation. A generic interval I[y]ij ≡ [y−i j , y
+
i j ] ∀ i = 1, . . . , n, j = 1, . . . , p

and y−i j ≤ y+i j . The interval I[y]ij can also be expressed by the couple {yci j , yri j} where

yci j = 1
2(y−i j + y+i j) and yri j = 1

2(y+i j − y
−
i j). As mentioned in the Introduction, these are actually

two principal vectors of the equicorrelated covariance structure (see Example 1 in Section 3),

but not normalized for two-level interval data. These two principal vectors together account for

the total variance of the data. So, just performing the principal component analysis on the new

midpoint variables yci j , j = 1, 2, . . . , p, which are actually the components of first principal vec-

tor, separately and calculating the percent eigenvalues separately is not correct. The eigenvalues

calculated on the new midpoint variables yci j , j = 1, 2, . . . , p are the second stage eigenvalues.

Palumbo and Lauro (2003) developed a PCA method for interval-valued data based on midpoints

(yci j) and midranges (yri j) for j = 1, 2, . . . , p separately, and calculated the percent eigenvalues

and percent cumulative eigenvalues separately or partially. Giordani and Kiers (2006) also cal-

culated PCs separately on midpoint variables, which account for 99.70% of the total variation of

the Fruit juice data. Consequently, 0.30% of the total variation of the data is accounted for by

midrange variables, which are the components of the second principal vector. The eigenvalues

calculated by these authors are the second stage eigenvalues on the first stage principal vectors.

Regrettably, they did not adjust the percent eigenvalues and percent cumulative eigenvalues to

the total variance, but worked on a partial basis. We show in this article that one should not

perform PCA on midpoint (C-PCA) by itself, as it only accounts for the partial variance and

5



does not account for the total variance of the data.

We assume that the interval variables in I[Y ] have been centered with respect to their mean

interval I[ȳ]j for j = 1, . . . , p. Thus, the interval valued data matrix can be written as I[Y ] ≡

{Y c,Y r}, where

Y C-PCA = Y c =

 yc1 1 · · · yc1 p
...

. . .
...

ycn 1 · · · ycn p

 , (3)

and Y r =

 yr1 1 · · · yr1 p
...

. . .
...

yrn 1 · · · yrn p

 .

C-PCA perform PCA on (3). Palumbo and Lauro (2003) mentioned that PCA on interval-valued

data can be then resolved in terms of midpoints, midranges. The terms (Y ′
c
Y c) and (Y ′

r
Y r)

are two standard variance-covariance matrices computed on single-valued data. Palumbo and

Lauro (2003) also mentioned that two independent PCA’s could be singly exploited on these two

matrices that do not cover the whole variance. Then they introduced residual variance-covariance

matrix to solve the issue and defined the global variance-covariance matrix. We show in this article

that these two independent PCs really cover the whole variance. However, Palumbo and Lauro

(2003) have correspondingly introduced standardized interval matrix I(Z) ≡ {Y cΣ−1,Y rΣ−1}

to get both midpoint and midranges PCA, which admit an independent representation, where the

square diagonal (p×p) matrix Σ has the generic term σj , with σ2j represents the generic diagonal

term of the global variance-covariance matrix. It is to be noticed that both the Equations (6) and

(7) on Page 6 in their paper are not properly represented, as (Y cΣ−1) is not a (p× p) matrix, it

should be rather (Σ−1Y ′
c
Y cΣ−1). The same correction also holds for the Equation (7).

In the literature we see that C-PCA is widely used by many authors (Cazes et al., 1997;

Palumbo and Lauro, 2003; Giordani and Kiers; 2006). Among them Palumbo and Lauro (2003)

used midpoints (C-PCA) and midranges separately, and Cazes et al. (1997), and Giordani and

Kiers (2006) used C-PCA by itself. This is however not appropriate and thus not accurate. One

has to accomplish PCA for interval data together with midpoint (C-PCA) and midrange vari-

ables to calculate percent and percent cumulative eigenvalues. Otherwise, some part of the total

variance would be unaccountable. Thus, in this article we propose adjusted percent eigenvalues

and adjusted percent cumulative eigenvalues. We show in Section 5.1 that to get adjusted percent

eigenvalues we must divide each eigenvalue corresponding to midpoint variables and midrange

variables by a sum of total midpoint eigenvalues and total midrange eigenvalues, because the total

6



variance in the data is the sum of total midpoint eigenvalues and total midrange eigenvalues for

two-level interval data. We then extend this concept to adjusted percent eigenvalues and adjusted

percent cumulative eigenvalues for three-level interval data in Section 5.2.

2.2 Formulation of the problem

As mentioned in the introduction we use the recently developed multi-level covariance structure

(Roy and Leive, 2011, 2007) to derive the PCs of the Fruit juice data. We consider the six

variables as the first level, the lower and upper bounds of an interval as the second level and the

two brands as the third level of the Fruit juice data. Thus each of the eight observation units

in this data has information on three multivariate level. Let a typical sample in the Fruit juice

data looks like
(
(y11 1, y12 1), . . . , (y11 6, y12 6), (y21 1, y22 1), . . . , (y21 6, y22 6)

)
. The first subscript

from the right represents the variable. The second subscript: if it is 1, then it is the lower

bound of an interval, and if it is 2, it is the upper bound of an interval. The third subscript

represents the brand of the data set: for example, if it is 1 then it represents Brand 1, and if

2 it represents Brand 2. We can write the interval samples as a (12 × 1) dimensional vector

form as (y11 1, y12 1, . . . , y11 6, y12 6, y21 1, y22 1, . . . , y21 6, y22 6)
′. We then rearrange this vector by

grouping together first the six lower bounds of the intervals and then the six upper bounds of the

intervals for each of the brands as follows

y = (y11 1, . . . , y11 6, y12 1, . . . , y12 6, y21 1, . . . , y21 6, y22 1, . . . , y22 6)
′.

In this article we consider the two bounds of an interval valued variable as two repeated measure-

ments of that variable, and since the values from 1 to 10 are used to evaluate each variable we may

assume that the variance covariance matrix of the six variables are the same at the lower bound

as well as at the upper bound. If we do not consider brand as separate level, we may assume

the Fruit juices data with 16 observations as two-level data set with multivariate equicorrelated

covariance structure in deriving its PCs. As mentioned before we may consider two brands as

the third level of the data set and use jointly equicorrelated covariance structure in deriving the

PCs of the Fruit juice data. In the next two sections we talk about equicorrelated covariance

structure and the jointly equicorrelated covariance structure that are suitable for the Fruit Juice

data in deriving its principal components.
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2.2.1 Equicorrelated and jointly equicorrelated covariance structures

We will first consider the Fruit juice data as two-level data set, i.e., we do not consider brand

as a separate level like Giordani and Kiers (2006). The (12 × 12)−dimensional equicorrelated

covariance structure suitable for the Fruit juice data deeming it as two-level is described as:

Γ
(2)
y =

[
U0 U1

U1 U0

]
= I2 ⊗ (U0 −U1) + J2 ⊗U1, (4)

where Iu is the u× u identity matrix, and Ju = 1u1′u with 1u is a u× 1 vector of ones. Clearly

this data set has six variables and two repeated measurements, and number of samples is 16.

Thus, the 6 × 6−dimensional blocks U0 in (4) represent the variance-covariance matrix of the

six feature variables at the lower as well as at the upper bounds of the intervals, whereas the

6×6−dimensional off-diagonal blocks U1 in (4) represent the covariance matrix of the six features

between the lower and the upper bounds of the intervals. The matrix U0 is positive definite and

the matrix U1 is just symmetric. The variance covariance matrix Γ
(2)
y is then said to have an

equicorrelated covariance structure with equicorrelation parameters U0 and U1. The matrices

U0 and U1 are unstructured.

Nevertheless, there are two brands for each juice, and most likely these two brands must have

some common factors like the Appearance and smell, and we must take this information too in

the modeling of the Fruit juice data. In others words, we may say that these two brands are

correlated and we may consider brand as the third level of the data. So, the same Fruit juice

data set can be considered as three-level data set with six variables, two bounds and the two

brands as the three levels, and consequently, the number of samples reduces to 8. Therefore, the

(24× 24)−dimensional jointly equicorrelated covariance structure suitable for Fruit juice data is

described as follows

Γ
(3)
y =


U0 U1 W W
U1 U0 W W

W W U0 U1

W W U1 U0

 ,
= I4 ⊗ (U0 −U1) +I2 ⊗J2 ⊗ (U1 −W ) +J4 ⊗W, (5)

where U0 is a positive definite symmetric 6 × 6 matrix, and U1 and W are symmetric 6 ×

6 matrices. The variance covariance matrix Γ
(3)
y is then said to have a jointly equicorrelated

covariance structure with equicorrelation parameters U0,U1 and W . The matrices U0,U1 and

W are all unstructured.
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Thus, the 6 × 6−dimensional blocks U0 in (5) represent the variance-covariance matrix of

the six features at the lower as well as at the upper bounds of the intervals, whereas the 6 ×

6−dimensional off-diagonal blocks U1 in (5) represent the covariance matrix of the six features

between the lower and the upper bounds of the intervals, and it is same for the two brands. U0

is same for the two bounds and as well for the two brands. The 6 × 6 block off diagonals W

represent the covariance matrix of the six response variables between any two brands and it is

assumed to be the same for any bound (lower or upper) or between the two bounds. If we do not

consider brand as a separate level, i.e., there is only one brand, the above jointly equicorrelated

matrix (5) reduces to equicorrelated matrix (4).

In this article we derive the principal components in two stages using our new method con-

sidering the data as two-level and show that the results are same as that of Giordani and Kiers

(2006). We will then derive principal components using our new method considering the data as

three-level and show that there is a huge improvement in the result. Not only this, considering

the data as three-level gives the information about the difference between the two brands

At the first stage we derive ‘eigenblocks’ and ‘eigenmatrices’ of equicorrelated and jointly

equicorrelated covariance structures as described in (4) and (5), and the corresponding ‘principal

vectors’. At the second stage we derive the eigenvalues and eigenvectors of the ‘eigenblock’ with

the components of the principal vectors derived at the first stage as the variables, and then

derive the adjusted eigenvalues and the principal components as the linear combination of the

components of the first stage principal vectors.

3 Eigenblocks and eigenmatrices of equicorrelated and jointly
equicorrelated covariance structures

Eigenblocks and eigenmatrices were first introduced by Roy and Fonseca (2012) without properly

naming it as eigenblocks and eigenmatrices. They have worked with eigenblocks and eigenmatri-

ces, and therefore worked with a set of independent principal vectors with eigenblocks as their

variance-covariance matrices while working on linear models with jointly equicorrelated (doubly

exchangeable) distributed errors. In this paper we are interested in seeing the usefulness and

interpretations of the independent principal vectors to derive PCs of interval data.
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3.1 Eigenblocks and eigenmatrices of equicorrelated covariance structure

When we consider the Fruit juice data as two-level we use equicorrelated covariance structure as

defined in (4). Let us consider the orthogonal matrix Γ0 = (P ′2 ⊗ I6) where

P ′2 =

[
1√
2

1√
2

1√
2
− 1√

2

]
. (6)

Clearly P ′2 is an orthogonal matrix, so is Γ0, and Γ0 is not function of either U0 or U1. This

(12×12)−dimensional orthogonal matrix Γ0 diagonalizes the (12×12)−dimensional equicorrelated

matrix Γ
(2)
y such that

Γ0Γ
(2)
y Γ′0 = Diag [∆2,2; ∆2,1] , (7)

where the 6× 6 block diagonals ∆2,2 and ∆2,1 are given by

∆2,2 = U0 +U1,

and ∆2,1 = U0 −U1.

See Lemma 3.1 in Roy and Fonseca (2012) for detail. Therefore,

Γ
(2)
y = Γ′0Diag [∆2,2; ∆2,1] Γ0.

Since Γ0 is an orthogonal matrix

tr
(
Γ
(2)
y

)
= tr

(
Γ′0Diag [∆2,2; ∆2,1] Γ0

)
= tr

(
Diag [∆2,2; ∆2,1] Γ0Γ

′
0

)
= tr

(
Diag [∆2,2; ∆2,1]

)
= tr

(
∆2,2

)
+ tr

(
∆2,1

)
.

Thus, the total population variance tr
(
Γ
(2)
y

)
= tr

(
∆2,2

)
+ tr

(
∆2,1

)
. Therefore, the trace of the

variance-covariance matrix of the data is the sum of the traces of the two eigenblocks.

We now partition (horizontal, side by side) the orthogonal matrix Γ′0 as two 12× 6 blocks as

Γ′0 = [E2,1 : E2,2]. So,

Γ0 =

[
E′2,1
E′2,2

]
.

Therefore, the eigenblock-eigenmatrix pairs of Γ
(2)
y are (∆2,2,E2,1) and (∆2,1,E2,2), where tr∆2,2 ≥

tr(∆2,1). Therefore, the spectral decomposition of the equicorrelated matrix Γ
(2)
y is

Γ
(2)
y = E2,1∆2,2E

′
2,1 +E2,2∆2,1E

′
2,2,

10



where E2,1 is the eigenmatrix corresponding to the eigenblock ∆2,2 and E2,2 is the eigenmatrix

corresponding to the eigenblock ∆2,1. Let

z = Γ0y =

[
E′2,1
E′2,2

]
y =

[
E′2,1y

E′2,2y

]
.

Therefore, Var(z) = Γ0Var(y)Γ′0 = Γ0Γ
(2)
y Γ′0 = Diag [∆2,2; ∆2,1] from (7). Thus, E′2,1y and

E′2,2y are independent and Var(E′2,1y) = ∆2,2 and Var(E′2,2y) = ∆2,1.

Thus, when we consider the Fruit juice data as two-level, the (12× 12)−dimensional equicor-

related matrix has a total of two (6×6)−dimensional eigenblocks: both the eigenblocks ∆2,2 and

∆2,1 are with multiplicity one. Therefore, the two (6× 1)−dimensional principal vectors for the

equicorrelated matrix Γ
(2)
y are E′2,1y and E′2,2y, and these two principal vectors are independent.

The first principal vector has the variance-covariance matrix ∆2,2 and the second one has the

variance-covariance matrix ∆2,1. The interpretation of these two (6 × 1)−dimensional principal

vectors is given in the following example.

Example 1: For the sake of simplicity, we consider each observation in the data has in-

formation on three variables in a two-level interval data set. Thus, a typical sample looks

like
(
(y11 1, y12 1), (y11 2, y12 2), (y11 3, y12 3)

)
. We write the interval samples as a vector form

(y11 1, y12 1, y11 2, y12 2, y11 3, y12 3)
′. As mentioned before we then rearrange the vector by group-

ing together first the three lower bounds of the intervals and then the three upper bounds of the

intervals as y = (y11 1, y11 2, y11 3, y12 2, y12 1, y12 3)
′. Now, premultiplying y by the orthogonal
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matrix Γ0 we get

Γ0y =

([
1√
2

1√
2

1√
2
− 1√

2

]
⊗ I3

)


y11 1

y11 2

y11 3

y12 1

y12 2

y12 3

 =



1√
2

0 0
1√
2

0 0

0
1√
2

0 0
1√
2

0

0 0
1√
2

0 0
1√
2

1√
2

0 0 − 1√
2

0 0

0
1√
2

0 0 − 1√
2

0

0 0
1√
2

0 0 − 1√
2





y11 1

y11 2

y11 3

y12 1

y12 2

y12 3



=



(y11 1 + y12 1)/
√

2

(y11 2 + y12 2)/
√

2

(y11 3 + y12 3)/
√

2

(y11 1 − y12 1)/
√

2

(y11 2 − y12 2)/
√

2

(y11 3 − y12 3)/
√

2


.

Now, the six rows in the above matrix are the two (3 × 1)−dimensional independent principal

vectors of the variance-covariance matrix Γ
(2)
y . Therefore, the first principal vector is

y2,1 =

 (y11 1 + y12 1)/
√

2

(y11 2 + y12 2)/
√

2

(y11 3 + y12 3)/
√

2

,
and the second principal vector is

y2,2 =

 (y11 1 − y12 1)/
√

2

(y11 2 − y12 2)/
√

2

(y11 3 − y12 3)/
√

2

.
The (3 × 1)−dimensional first principal vector y2,1 corresponding to eigenblock ∆2,2 represents

the midpoints between the lower bounds and the corresponding upper bounds of the intervals.

Similarly, the (3× 1)−dimensional second principal vector y2,2 corresponding to eigenblock ∆2,1

represents the midranges between the lower bounds and the corresponding upper bounds of the

intervals.

Since orthonormal eigenvectors and the corresponding percent eigenvalues do not change if

we multiply the above principal vectors by some constant, we prefer to work with y2,i instead of

1√
2
y2,i for i = 1, 2, even though these represent the true midpoints and true midranges (Palumbo

and Lauro, 2003).

Now, we work independently with these principal vectors and their corresponding variance-

covariance matrices, i.e., the corresponding eigenblocks at the second stage to get the eigenvalues
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and eigenvectors of Γ
(2)
y . We use Factor Procedure of SAS (SAS Institute Inc., 2012) with

Method= Prin Priors=One with Cov and Rotate=Varimax option to get varimax rotated PCs of

the components of the first principal vector with variance-covariance matrix ∆2,2. Similarly, PCs

of the components of the second principal vector with variance-covariance matrix ∆2,1. Even

though we get the eigenvalues independently from the two eigenblocks using Proc Factor, all

the percent eigenvalues and percent cumulative eigenvalues are recalculated as if their total is(
tr(∆2,2)+tr(∆2,1)

)
, which indeed is the total variance of the equicorrelated covariance structure.

As mentioned in the Introduction these recalculated percent eigenvalues and percent cumulative

eigenvalues are adjusted percent eigenvalues and adjusted percent cumulative eigenvalues.

Therefore, we see that by premultiplying the observation vector by orthogonal matrix we

can transform the data to a set of independent principal vectors that represent midpoints and

midranges of the interval data. Note that if the lower bounds and the corresponding upper

bounds become equal, i.e., if y11 1 = y12 1, y11 2 = y12 2 and y11 3 = y12 3, the interval data

just becomes a (3 × 1)−dimensional multivariate observation and hence we may just consider a

(3×1)−dimensional multivariate observation yTra = (y11 1, y11 2, y11 3)
′ with a covariance matrix

U0 and perform the traditional PCA.

On the other hand with y11 1 = y12 1, y11 2 = y12 2 and y11 3 = y12 3, the first principal vector

becomes

y2,1 =


√

2 y11 1√
2 y11 2√
2 y11 3

 =
√

2yTra,

with eigenblock ∆2,2 = U0 +U0 = 2U0, as U1 = U0 in this case. The second principal vector

becomes a null vector with null eigenblock. Therefore, the total variance = ∆2,2 + ∆2,1 = 2U0.

Also, Var(y2,1) = Var(
√

2yTra) = 2Var(yTra) = 2U0 = ∆2,2. Hence, if we perform PCA on yTra

or on the first principal vector y2,1, the percent eigenvalues and the percent adjusted eigenvalues

would be the same. Furthermore, the normalized eigenvectors would also be the same in both

the cases. Thus, we see that our proposed method of PCA for two-level interval data generalizes

the commonly used PCA for multivariate data.
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3.2 Eigenblocks and eigenmatrices of jointly equicorrelated covariance struc-
ture

When we consider the Fruit juice data as three-level we use equicorrelated covariance structure

as defined in (5). Let us consider the following two orthogonal matrices

Γ1 = P ′2 ⊗ I12

and Γ2 = I2 ⊗ Γ0,

where Γ0 and P ′2 are orthogonal matrices as defined in Section 3.1 with P ′2 defined in (6) (Γ1

and Γ2 are not function of either U0,U1 or W ). Since the product of orthogonal matrices is an

orthogonal matrix,

Γ21 = Γ2Γ1

=
(
I2 ⊗ (P ′2 ⊗ I6)

)(
P ′2 ⊗ I12

)
= P ′2 ⊗ P ′2 ⊗ I6,

is an orthogonal matrix. In Lemma 3.1 in Roy and Fonseca (2012) it is shown that

Γ21Γ
(3)
y Γ′21 =


∆3,3 0 0 0

0 ∆3,1 0 0
0 0 ∆3,2 0
0 0 0 ∆3,1

,
where the three 6× 6 eigenblocks ∆3,3,∆3,2 and ∆3,1 are given by

∆3,3 = U0 +U1 + 2W = (U0 +W ) + (U1 +W ),

∆3,2 = U0 +U1 − 2W = (U0 −W ) + (U1 −W ),

and ∆3,1 = U0 −U1.

Thus, the (24× 24)−dimensional orthogonal matrix Γ21 diagonalizes the (24× 24)−dimensional

jointly equicorrelated matrix Γ
(3)
y such that

Γ21Γ
(3)
y Γ′21 = Diag [∆3,3; ∆3,1; ∆3,2; ∆3,1]. (8)

Finally, note that premultiplying and postmultiplying the above equation (8) by the following

permutation matrix (Harville, 1997) K6 and its transpose, where

K6 =


I6 0 0 0
0 0 I6 0
0 I6 0 0
0 0 0 I6

,
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we get

K6Γ21Γ
(3)
y Γ′21K

′
6 = Diag [∆3,3; ∆3,2; ∆3,1; ∆3,1] . (9)

Therefore,

Γ
(3)
y = Γ′21K

′
6Diag

[
∆3,3; ∆3,2; ∆3,1; ∆3,1

]
K6Γ21.

Since the permutation matrix is an orthogonal matrix, K6 and Γ21 are both orthogonal matrices.

Therefore,

tr
(
Γ
(3)
y

)
= tr

(
Γ′21K

′
6Diag

[
∆3,3; ∆3,2; ∆3,1; ∆3,1

]
K6Γ21

)
= tr

(
Diag [∆3,3; ∆3,1; ∆3,2; ∆3,1]K6Γ21Γ

′
21K

′
6

)
= tr

(
Diag [∆3,3; ∆3,2; ∆3,1; ∆3,1]

)
= tr

(
∆3,3

)
+ tr

(
∆3,2

)
+ 2tr

(
∆3,1

)
.

Thus, the total population variance tr
(
Γ
(3)
y

)
= tr

(
∆3,3

)
+ tr

(
∆3,2

)
+ 2tr

(
∆3,1

)
. Therefore, the

trace of the variance-covariance matrix of the data is the sum of traces of its eigenblocks.

We now partition (horizontal, side by side) the orthogonal matrix Γ′21K
′
6 as four 24×6 blocks

Γ′21K
′
6 = [E3,1 : E3,2 : E3,3 : E3,4]. So,

K6Γ21 =


E′3,1
E′3,2
E′3,3
E′3,4

.
Therefore, the eigenblock-eigenmatrix pairs of Γ

(3)
y are (∆3,3,E3,1), (∆3,2,E3,2), (∆3,1,E3,3)

and (∆3,1,E3,4), where tr(∆3,3) ≥ tr∆3,2 ≥ tr(∆3,1). Therefore, the spectral decomposition of

equicorrelated matrix Γ
(3)
y is

Γ
(3)
y = E3,1∆3,3E

′
3,1 +E3,2∆3,2E

′
3,2 +E3,3∆3,1E

′
3,3 +E3,4∆3,1E

′
3,4,

where E3,1 is the eigenmatrix corresponding to eigenblock ∆3,3, E3,2 is the eigenmatrix corre-

sponding to eigenblock ∆3,2 and E3,3 and E3,4 are the two eigenmatrices corresponding to the

eigenblock ∆3,1. Let

z = K6Γ21y =


E′3,1
E′3,2
E′3,3
E′3,4

y =


E′3,1y

E′3,2y

E′3,3y

E′3,4y

.
15



Therefore, Var(z) = K6Γ21Var(y)Γ′21K
′
6 = K6Γ21Γ

(3)
y Γ′21K

′
6 = Diag

[
∆3,3; ∆3,2; ∆3,1; ∆3,1

]
from (9). Thus, E′3,1y, E′3,2y, E′3,3y and E′3,4y are independent and Var(E′3,1y) = ∆3,3,

Var(E′3,2y) = ∆3,2, and Var(E′3,3y) = Var(E′3,4y) = ∆3,1.

When we consider the Fruit juice data as three-level, the (24 × 24)− dimensional jointly

equicorrelated matrix has a total of four eigenblocks: the eigenblocks ∆3,3 and ∆3,2 are with

multiplicity one, and the eigenblock ∆3,1 is with multiplicity two. Therefore, the four (6 ×

1)−dimensional independent principal vectors for the jointly equicorrelated covariance matrix

Γ
(3)
y are E′3,1y, E′3,2y, E′3,3y and E′3,4y. The interpretation of these four (6 × 1)−dimensional

principal vectors is given in the following example.

Example 2: As before for the sake of simplicity, let us again consider that each observation

unit has information on three variables in a three-level interval data set. Thus, a typical sample

looks like
(
(y11 1, y12 1), (y11 2, y12 2), (y11 3, y12 3), (y21 1, y22 1), (y21 2, y22 2), (y21 3, y22 3)

)
. As be-

fore, we rearrange the vector by grouping together first the three lower bounds of the intervals

and then the three upper bounds of the intervals at the first brand and then the same at the

second brand as y = (y11 1, y11 2, y11 3, y12 2, y12 1, y12 3, y21 1, y21 2, y21 3, y22 2, y22 1, y22 3)
′. Thus,

premultiplying y by Γ21 = Γ2Γ1 we get all four (3 × 1)−dimensional principal vectors in one

vector. We first premultiply y by Γ1, and then premultiply the result by Γ2. Now,

Γ1y =

([
1√
2

1√
2

1√
2
− 1√

2

]
⊗ I6

)



y11 1

y11 2

y11 3

y12 1

y12 2

y12 3

y21 1

y21 2

y21 3

y22 1

y22 2

y22 3



=



(y11 1 + y21 1)/
√

2

(y11 2 + y21 2)/
√

2

(y11 3 + y21 3)/
√

2

(y12 1 + y22 1)/
√

2

(y12 2 + y22 2)/
√

2

(y12 3 + y22 3)/
√

2

(y11 1 − y21 1)/
√

2

(y11 2 − y21 2)/
√

2

(y11 3 − y21 3)/
√

2

(y12 1 − y22 1)/
√

2

(y12 2 − y22 2)/
√

2

(y12 3 − y22 3)/
√

2



.
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Therefore,

Γ2Γ1y =

(
I2 ⊗

([
1√
2

1√
2

1√
2
− 1√

2

]
⊗ I3

))



(y11 1 + y21 1)/
√

2

(y11 2 + y21 2)/
√

2

(y11 3 + y21 3)/
√

2

(y12 1 + y22 1)/
√

2

(y12 2 + y22 2)/
√

2

(y12 3 + y22 3)/
√

2

(y11 1 − y21 1)/
√

2

(y11 2 − y21 2)/
√

2

(y11 3 − y21 3)/
√

2

(y12 1 − y22 1)/
√

2

(y12 2 − y22 2)/
√

2

(y12 3 − y22 3)/
√

2



=



1√
2

0 0
1√
2

0 0 0 0 0 0 0 0

0
1√
2

0 0
1√
2

0 0 0 0 0 0 0

0 0
1√
2

0 0
1√
2

0 0 0 0 0 0

1√
2

0 0 − 1√
2

0 0 0 0 0 0 0 0

0
1√
2

0 0 − 1√
2

0 0 0 0 0 0 0

0 0
1√
2

0 0 − 1√
2

0 0 0 0 0 0

0 0 0 0 0 0
1√
2

0 0
1√
2

0 0

0 0 0 0 0 0 0
1√
2

0 0
1√
2

0

0 0 0 0 0 0 0 0
1√
2

0 0
1√
2

0 0 0 0 0 0
1√
2

0 0 − 1√
2

0 0

0 0 0 0 0 0 0
1√
2

0 0 − 1√
2

0

0 0 0 0 0 0 0 0
1√
2

0 0 − 1√
2





(y11 1 + y21 1)/
√

2

(y11 2 + y21 2)/
√

2

(y11 3 + y21 3)/
√

2

(y12 1 + y22 1)/
√

2

(y12 2 + y22 2)/
√

2

(y12 3 + y22 3)/
√

2

(y11 1 − y21 1)/
√

2

(y11 2 − y21 2)/
√

2

(y11 3 − y21 3)/
√

2

(y12 1 − y22 1)/
√

2

(y12 2 − y22 2)/
√

2

(y12 3 − y22 3)/
√

2



=



((y11 1 + y21 1) + (y12 1 + y22 1))/2

((y11 2 + y21 2) + (y12 2 + y22 2))/2

((y11 3 + y21 3) + (y12 3 + y22 3))/2

((y11 1 + y21 1)− (y12 1 + y22 1))/2

((y11 2 + y21 2)− (y12 2 + y22 2))/2

((y11 3 + y21 3)− (y12 3 + y22 3))/2

((y11 1 − y21 1) + (y12 1 − y22 1))/2

((y11 2 − y21 2) + (y12 2 − y22 2))/2

((y11 3 − y21 3) + (y12 3 − y22 3))/2

((y11 1 − y21 1)− (y12 1 − y22 1))/2

((y11 2 − y21 2)− (y12 2 − y22 2))/2

((y11 3 − y21 3)− (y12 3 − y22 3))/2



.
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As a result,

K3Γ2Γ1y =


I3 0 0 0
0 0 I3 0
0 I3 0 0
0 0 0 I3





((y11 1 + y21 1) + (y12 1 + y22 1))/2

((y11 2 + y21 2) + (y12 2 + y22 2))/2

((y11 3 + y21 3) + (y12 3 + y22 3))/2

((y11 1 + y21 1)− (y12 1 + y22 1))/2

((y11 2 + y21 2)− (y12 2 + y22 2))/2

((y11 3 + y21 3)− (y12 3 + y22 3))/2

((y11 1 − y21 1) + (y12 1 − y22 1))/2

((y11 2 − y21 2) + (y12 2 − y22 2))/2

((y11 3 − y21 3) + (y12 3 − y22 3))/2

((y11 1 − y21 1)− (y12 1 − y22 1))/2

((y11 2 − y21 2)− (y12 2 − y22 2))/2

((y11 3 − y21 3)− (y12 3 − y22 3))/2



=



((y11 1 + y21 1) + (y12 1 + y22 1))/2

((y11 2 + y21 2) + (y12 2 + y22 2))/2

((y11 3 + y21 3) + (y12 3 + y22 3))/2

((y11 1 − y21 1) + (y12 1 − y22 1))/2

((y11 2 − y21 2) + (y12 2 − y22 2))/2

((y11 3 − y21 3) + (y12 3 − y22 3))/2

((y11 1 + y21 1)− (y12 1 + y22 1))/2

((y11 2 + y21 2)− (y12 2 + y22 2))/2

((y11 3 + y21 3)− (y12 3 + y22 3))/2

((y11 1 − y21 1)− (y12 1 − y22 1))/2

((y11 2 − y21 2)− (y12 2 − y22 2))/2

((y11 3 − y21 3)− (y12 3 − y22 3))/2



.

Now, the 12 rows in the above matrix are the four (3 × 1)−dimensional principal vectors of the

variance-covariance matrix Γ
(3)
y , and they are as follows:

y3,1 =

 ((y11 1 + y21 1) + (y12 1 + y22 1))/2
((y11 2 + y21 2) + (y12 2 + y22 2))/2
((y11 3 + y21 3) + (y12 3 + y22 3))/2

,

y3,2 =

 ((y11 1 − y21 1) + (y12 1 − y22 1))/2
((y11 2 − y21 2) + (y12 2 − y22 2))/2
((y11 3 − y21 3) + (y12 3 − y22 3))/2

,

y3,3 =

 ((y11 1 + y21 1 − (y12 1 + y22 1))/2
((y11 2 + y21 2 − (y12 2 + y22 2))/2
((y11 3 + y21 3 − (y12 3 + y22 3))/2

,
and

y3,4 =

 ((y11 1 − y21 1)− (y12 1 − y22 1))/2
((y11 2 − y21 2)− (y12 2 − y22 2))/2
((y11 3 − y21 3)− (y12 3 − y22 3))/2

.
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The first principal vector y3,1 corresponding to eigenblock ∆3,3 represents the total grand mid-

points of the feature variables. The second principal vector y3,2 corresponding to eigenblock

∆3,2 represents the difference between the two brands of fruit juices. For example (y11 1 − y21 1)

provides the difference between the first brand and the second brand of the first variable at

the lower bound of an interval. And, (y12 1 − y22 1) provides the difference between the first

brand and the second brand of the first variable at the upper bound of the same interval. So,(
(y11 1−y21 1)+(y12 1−y22 1)

)
/2 represents the average difference between the first brand and the

second brand of the first feature variable. Similarly, for the other two components of the second

principal vector. The third and the fourth principal vectors correspond to the same eigenblocks

∆3,1. And, these two principal vectors are independent. The average of these two blocks, which

represents the grand midranges has the variance-covariance matrix ∆3,1.

Now, we work independently with these principal vectors and their corresponding variance-

covariance matrices, i.e., the corresponding eigenblocks at the second stage to get the eigenvalues

and eigenvectors of Γ
(3)
y . Even though we get the eigenvalues independently from the eigenblocks,

all the percent eigenvalues and percent cumulative eigenvalues are recalculated as if their total is

tr
(
(∆3,3) + tr(∆3,2) + 2tr(∆3,1)

)
, which indeed is the total variance of the jointly equicorrelated

covariance structure. As before, we call these recalculated percent eigenvalues and percent cumu-

lative eigenvalues as adjusted percent eigenvalues and adjusted percent cumulative eigenvalues.

Now, we have seen that if the data have equicorrelated covariance structure or jointly equicor-

related covariance structure, premultiplying and postmultiplying it by some orthogonal matries

yield blockdiagonal matrix with eigenblocks of size (6 × 6) and the first principal vector corre-

sponding to the first eigenblock represents to the grand midpoints of the interval data.

Therefore, we see that by premultiplying three-level observation vector by an orthogonal ma-

trix we can transform the data to a set of independent principal vectors that represent grand

midpoints, brand difference and grand midranges. In general for multi-level interval data we can

premultiply the data vector by some suitable multiple orthogonal matrices and get the represen-

tation of grand midpoints and midranges.

Note that if there is only one brand, following the same way as in Example 1, one can show

that the four principal vectors of three-level interval data reduces to two principal vectors of two-

level interval data as in Example 1. Furthermore, in Example 1 we have shown that our proposed

method for PCA for two-level interval data generalizes the commonly used PCA for multivariate

data. Thus, we can say that our suggested method extends the traditional PCA not only to the

two-level interval data, but also to three-level interval data.
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Now, for the Fruit juice data the population variance-covariance matrix is unknown, thus

in the next section we derive an unbiased estimate of jointly equicorrelated covariance matrix

considering the data are three-level.

4 Unbiased estimate of jointly equicorrelated covariance matrix

LetQp = Ip−Jp be an orthogonal projector matrix of (any) order p. Let Y = (Y 1,1,Y 1,2,Y 2,1,Y 2,2)

be the data matrix from N4p(µ,Γ
(3)
y ). In the component matrices in Y , the first subscript from

the right represents the two bounds of an interval, the second subscript from the right represents

the two brands. Therefore, the unbiased estimate of the unstructured variance-covariance matrix

S = 1
n−1Y QnY

′ (see Mardia et al., 1979). To obtain unbiased estimates of U0,U1 and W , we

expand S blockwise as

S =
1

n− 1
Y ′QnY =

1

n− 1
(Y 1,1,Y 1,2,Y 2,1,Y 2,2)

′Qn (Y 1,1,Y 1,2,Y 2,1,Y 2,2)

=
1

n− 1


Y ′1,1QnY 1,1 Y ′1,1QnY 1,2 Y ′1,1QnY 2,1 Y ′1,1QnY 2,2

Y ′1,2QnY 1,1 Y ′1,2QnY 1,2 Y ′1,2QnY 2,1 Y ′1,2QnY 2,2

Y ′2,1QnY 1,1 Y ′2,1QnY 1,2 Y ′2,1QnY 2,1 Y ′2,1QnY 2,2

Y ′2,2QnY 1,1 Y ′2,2QnY 1,2 Y ′2,2QnY 2,1 Y ′2,2QnY 2,2

.
Therefore,

Û0 =
1

4(n− 1)

 2∑
i=1

2∑
j=1

Y ′i,jQnY i,j

,

Û1 =
1

4(n− 1)


2∑

i=1

2∑
j=1

2∑
j′=1

j 6=j′

Y ′i,jQnY i,j′

,

and Ŵ =
1

8(n− 1)

 2∑
i=1

2∑
i′=1

i6=i′

2∑
j=1

Y ′i,jQnY i′,j +
2∑

i=1

2∑
j=1

i6=j

Y ′i,jQnY j,i +
2∑

i=1

2∑
j=1

i6=j

Y ′i,iQnY j,j

.
Therefore, an unbiased estimator of Γ is

Γ̂ = I4 ⊗
(
Û0 − Û1

)
+I2 ⊗J2 ⊗

(
Û1 − Ŵ

)
+J4 ⊗Ŵ .

Also,

∆̂3,3 = Û0 + Û1 + 2Ŵ = (Û0 + Ŵ ) + (Û1 + Ŵ ),

∆̂3,2 = Û0 + Û1 − 2Ŵ = (Û0 − Ŵ ) + (Û1 − Ŵ ),

and ∆̂3,1 = Û0 − Û1,
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are unbiased estimators of ∆3,3, ∆3,2 and ∆3,1, respectively.

4.1 Unbiased estimate of equicorrelated covariance matrix

Unbiased estimators of equicorrelated covariance matrix Γ
(2)
y can be deduced from S by consid-

ering Y for only one brand, i.e., Y = (Y 1,1,Y 1,2). Therefore

Û0 =
1

2(n− 1)

 2∑
j=1

Y ′1,jQnY 1,j

,

and Û1 =
1

2(n− 1)


2∑

j=1

2∑
j′=1

j 6=j′

Y ′1,jQnY 1,j′

.
Thus,

∆̂2,2 = Û0 + Û1,

and ∆̂2,1 = Û0 − Û1,

are unbiased estimators of ∆2,2 and ∆2,1, respectively.

5 Results

In this section we illustrate our proposed method to the Fruit juices data as described in the

Introduction. We work on this data (Support data) in their original interval structure [x−L , x
+
R] as

shown in Table 2. We consider these two measurements as two repeated measures for each of the

six variables. We as well work on the interval structure [y−, y+], where y− = m− s, y+ = m+ s

and call this data as Core data (Giordan and Kiers, 2006), and consider these two measurements

as the two repeated measures for each of the six variables. We will analyze the data set first

considering it as two-level and then considering it as three-level, and the results are presented in

the following sections.

5.1 Results considering the Fruit juice data as two-level

The PCA of Fruit juice data considering it as two-level is performed in this section. The

trace(eigenblocks), the percent(%) and the percent(%) cumulative trace(eigenblocks) at the first

stage PCA are presented in Table 3. We see the first eigenblock ∆2,2 accounts for 99.7021% of

the total variation of the Core data and 98.8744% for the Support data. So, for the next stage

PCA we will only consider the components of first principal vector as the variables corresponding
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to the first eigenblock ∆2,2, which is the variance-covariance matrix of the first principal vector

for both Core and Support data. Results of second stage PCA of both the Core and Support

data are presented in Table 4. Both percent and the cumulative percent of the total variance due

to each principal component are given in Table 4. For comparison perpose we also have given

Table 2: Fruit juices interval Support data

Fruit juices Appearance Smell Taste Naturalness Sweetness Density

Apple1 [ 6.78,7.52 ] [ 5.47,6.59 ] [ 7.40,8.40 ] [ 5.66,7.20 ] [ 7.27,8.29 ] [ 5.81,6.74 ]
Apple2 [ 6.60,7.72 ] [ 6.28,7.40 ] [ 6.31,7.43 ] [ 5.72,7.12 ] [ 6.67,7.65 ] [ 5.47,6.59 ]
Apricot1 [ 6.82,7.68 ] [ 7.87,8.68 ] [ 7.60,8.54 ] [ 7.35,8.47 ] [ 7.42,8.40 ] [ 7.03,8.15 ]
Apricot2 [ 7.32,8.16 ] [ 7.09,8.19 ] [ 5.17,6.71 ] [ 4.66,6.06 ] [ 4.90,6.31 ] [ 5.79,6.77 ]
Banana1 [ 4.96,6.37 ] [ 3.92,5.60 ] [ 3.64,5.32 ] [ 4.27,5.95 ] [ 4.76,6.16 ] [ 3.62,4.74 ]
Banana2 [ 5.27,6.67 ] [ 3.68,5.36 ] [ 3.26,4.94 ] [ 3.92,5.46 ] [ 4.23,5.91 ] [ 3.65,4.77 ]
Grapefruit1 [ 6.28,7.40 ] [ 6.52,7.65 ] [ 5.17,6.85 ] [ 6.00,7.33 ] [ 2.45,3.39 ] [ 3.64,4.76 ]
Grapefruit2 [ 6.31,7.43 ] [ 5.63,6.75 ] [ 6.35,7.47 ] [ 6.11,7.23 ] [ 4.14,5.19 ] [ 3.06,4.46 ]
Orange1 [ 6.64,7.59 ] [ 7.12,8.24 ] [ 6.39,7.44 ] [ 5.67,6.72 ] [ 5.75,6.67 ] [ 3.64,4.97 ]
Orange2 [ 6.89,7.55 ] [ 6.06,6.90 ] [ 6.82,7.94 ] [ 5.60,6.72 ] [ 5.93,7.13 ] [ 3.88,4.98 ]
Peach1 [ 7.09,7.93 ] [ 6.94,7.78 ] [ 6.42,7.54 ] [ 5.70,7.10 ] [ 6.69,7.68 ] [ 5.03,5.92 ]
Peach2 [ 6.98,7.82 ] [ 6.22,7.11 ] [ 7.38,8.38 ] [ 6.83,7.72 ] [ 6.83,7.81 ] [ 4.99,5.85 ]
Peer1 [ 6.89,7.76 ] [ 7.19,8.24 ] [ 7.14,8.19 ] [ 6.44,7.49 ] [ 7.59,8.54 ] [ 7.22,8.27 ]
Peer2 [ 7.52,8.20 ] [ 6.32,7.44 ] [ 7.69,8.57 ] [ 6.72,7.63 ] [ 7.71,8.62 ] [ 6.72,7.67 ]
Pineapple1 [ 6.61,7.66 ] [ 5.74,6.66 ] [ 6.18,7.31 ] [ 5.45,6.85 ] [ 5.63,6.75 ] [ 3.92,5.00 ]
Pineapple2 [ 6.66,7.59 ] [ 5.90,7.30 ] [ 5.65,6.98 ] [ 5.23,6.56 ] [ 5.52,6.92 ] [ 3.28,4.69 ]

C-PCA, V-PCA and neural networks PCA (NN-PCA) from Giordan and Kiers (2006, Table 5) in

Table 4. We suspect that there is a misprint on Component 4 in the C-PCA column in their paper;

it should be 97.76 instead of 98.76,. We use Proc Factor of SAS with Method= Prin Priors=One

with Cov and Rotate=Varimax option to get the varimax rotated PCs of the components of the

first principal vector with variance-covariance matrix ∆2,2. Note that the total eigenvalue for

both

Table 3: Trace(eigenblocks), percent(%) trace(eigenblocks) and percent(%) cumulative
trace(eigenblocks) of Fruit juice data considering it as two-level

Eigen Core Data Support Data
Block Trace(Eigenblock) % % Cum. Trace(Eigenblock) % % Cum.

∆2,2 13.55237 99.70209 99.70209 14.63206 98.87437 98.87437
∆2,1 0.04049 0.29791 100.00 0.16658 1.12563 100.00

Total 13.59286 100.00 14.79864 100.00

Core data and Support data are the respective trace of ∆2,2 as shown in Table 3. So, Proc Factor

calculates the percent eigenvalues and cumulative percent eigenvalues based on the total variance

13.55237, which is the trace of ∆2,2 in the Core data. Note that percent cumulative of our method

and C-PCA
(
calculated by Giordan and Kiers (2006)

)
method are the exact same. Nevertheless,
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the total variance is 13.59286, which is the sum of the traces of two eigenblocks in Table 3. So,

we must calculate the adjusted percentage eigenvalue as Eigenvalue/13.59286 instead of Eigen-

value/13.55237. Therefore, in Core data the adjusted percentage of total variance accounted for by

the first two principal components is 100(9.44793+2.14455)/13.59286 = 85.28359%. So, it is actu-

ally 85.28% not the apparent 85.54% as shown in Table 4; also found the same by by Giordan and

Kiers (2006). Similarly, for the Support Data the adjusted percentage of total variance accounted

for by the first two principal components is 100(10.28341 + 2.19060)/14.79864 = 84.29159%. So,

Table 4: Eigenvalues, percent(%) eigenvalues and percent(%) cumulative eigenvalues as output
of Proc Factor of Fruit juice data considering it as Two-level

No. of Core Data Support Data Core Data
comp. Midpoint, ∆2,2 Midpoint, ∆2,2 C-PCA V-PCA NN-PCA

(p) Eigenvalue % % Cum. Eigenvalue % % Cum. % Cum. % Cum. % Cum.

1 9.44793 69.71 69.71 10.28341 70.28 70.28 69.71 58.15 71.29
2 2.14455 15.82 85.54 2.19060 14.97 85.25 85.54 73.58 85.34
3 1.14163 8.42 93.96 1.30346 8.91 94.16 93.96 84.29 91.91
4 0.51418 3.79 97.76 0.56904 3.89 98.05 98.76 91.25 97.25
5 0.25193 1.86 99.62 0.23386 1.60 99.65 99.62 96.43 99.04
6 0.05215 0.39 100.00 0.05170 0.35 100.00 100.00 100.00 100.00

Total 13.55237 100.00 14.63207 100.00

we see that Core data accounts for little larger variance. Therefore, we only consider the compo-

nent loading matrices of the first two PCs for the Core data and they are given in Table 7. The

components are varimax rotated as we have used Rotate=Varimax option in Proc Factor of SAS.

We see that these component loadings are different from the reported varimax rotated component

loadings in Giordan and Kiers (2006). However, the interpretation of the principal components

are the exact same. We see that the first PC especially related to Smell, Taste and Naturalness,

and the second PC refers to the features Sweetness and Density. The first two PCs which truly

account for 85.28% of the variance does not even refer Appearance as an important feature. This

is somehow not expected as all the judges evaluated Appearance and Smell first before tasting

and the remaining characteristics later, even though Giordan and Kiers (2006) commented Ap-

pearance is less important than the other attributes, and fruit juice can be very nice but its

appearance may be unpleasant. Since all the judges evaluated the attributes Appearance and

Smell first, we strongly believe that these two features, Appearance and Smell, bring together the

first impression of the fruit juices. Anyway, Appearance seems to be not an important attribute

as Smell is, according to our analysis. Nonetheless, it does not seem to be right somehow. In the

following section we analyze the Fruit juice data as three-level data and see whether Appearance
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emerges as an important feature as it should be.

5.2 Results considering the Fruit juice data as three-level

The PCA of Fruit juice data considering it as three-level is conducted in this section. The

trace(eigenblocks), the percent and the percent cumulative trace(eigenblocks) at the first stage

PCA are presented in Table 5. We see the first eigenblock ∆3,3 accounts for 86.5471% of the

total

Table 5: Trace(eigenblocks), percent(%) trace(eigenblocks) and percent(%) cumulative
trace(eigenblocks) of Fruit juice data considering it as three-level

Eigen Core Data Support Data
Block Trace(Eigenblock) % % Cum. Trace(Eigenblock) % % Cum.

∆3,3 24.81989 86.54707 86.54707 26.72301 85.67737 85.67737
∆3,2 3.77795 13.17375 99.72082 4.12342 13.22022 98.89759
∆3,1 2 ×0.04003 0.27917 100.00 2 ×0.17192 1.10240 100.00

Total 28.67790 100.00 31.19027 100.00

variation and the second eigenblock ∆3,2 accounts for 13.1738% of the total variation of the Core

data, while for the Support data first eigenblock ∆3,3 accounts for 85.6774% and the second

eigenblock ∆3,2 accounts for 13.2202% of the total variation. In other words, the first two

eigenblocks account for 99.7208% of the total variance for the Core data, while the first two

eigenblocks account for 98.8976% of the total variance for the Support data. So, for the second

Table 6: Eigenvalues, percent(%) eigenvalues and percent(%) cumulative eigenvalues as output
of Proc Factor of Fruit juice data considering it as three-level

No. of Core Data Support Data
comp. Brand Difference, ∆3,2 Midpoint, ∆3,3 Brand Difference, ∆3,2 Midpoint, ∆3,3

(p) Eigen % % Cum. Eigen % % Cum. Eigen % % Cum. Eigen % % Cum.
Value Value Value Value

1 2.82965 74.90 74.90 18.37705 74.04 74.04 3.16187 76.68 76.68 19.86196 74.33 74.33
2 0.63535 16.82 91.72 4.33446 17.46 91.51 0.60070 14.57 91.25 4.44492 16.63 90.96
3 0.19595 5.19 96.90 1.63450 6.59 98.09 0.25411 6.16 97.41 1.83128 6.85 97.81
4 0.08500 2.25 99.15 0.39946 1.61 99.70 0.07423 1.80 99.21 0.49909 1.87 99.68
5 0.02838 0.75 99.90 0.05788 0.23 99.93 0.02747 0.67 99.88 0.06954 0.26 99.94
6 0.00363 0.10 100.00 0.01654 0.07 100.00 0.00504 0.12 100.00 0.01622 0.06 100.00

Total 3.77795 24.81988 4.12342 26.72301

stage PCA we analyze the first two principal vectors with the variance-covariance matrices ∆3,3

and ∆3,2 respectively for both Core and Support data as discussed in Example 2. The first

principal vector represents the grand midpoints and the second principal vector represents the

difference between the two brands. As before, we use Proc Factor of SAS with Method= Prin,
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Priors=One, Cov and Rotate=Varimax option to get the varimax rotated PCs. Eigenvalues,

percent eigenvalues and percent cumulative eigenvalues for both Core and Support data are given

in Table 6. Note that Proc Factor calculates the percent eigenvalue and percent cumulative

eigenvalue based on the total variance 24.8199 and 3.7780, which are the traces of ∆3,3 and ∆3,2

for the Core data as shown in Table 5. Proc Factor also calculates the same for the Support

data. Nevertheless, the total variance is 28.6779 for the Core data, which is the sum of the traces

of all three eigenblocks in Table 5. So, we should calculate the adjusted percent eigenvalue as

Eigenvalue/28.6779 instead of Eigenvalue/24.81989 and Eigenvalue/3.77795 for midpoints and

Brabd difference. Therefore, in Core data the adjusted percentage of total variance accounted

for by the first two principal components in midpoint is 100(18.37705 + 4.33446)/28.677904=

79.195153%, not the apparent 91.51% as shown in Table 6. Now, if we calculate the adjusted

percentage eigenvalues we see that

Table 7: Component loading matrices for Two-level as well as Three-level of the Fruit juice data

Tow-level Three-level
Midpoint, ∆2,2 Midpoint, ∆3,3 Brand Difference, ∆3,2

PC1 PC2 PC1 PC2 PC3

Appearance 0.6878 0.2707 0.8692 0.4176 -0.4936
Smell 0.8503 -0.0464 0.9309 0.0984 0.0480
Taste 0.8155 0.5498 0.8712 0.4446 0.6167
Naturalness 0.8564 0.3033 0.9254 0.1395 0.8758
Sweetness 0.2220 0.9055 0.2332 0.9085 0.3870
Density 0.2960 0.4911 0.3374 0.4738 0.7410

we can take only one PC in brand difference along with two PCs in Midpoint. Therefore, in Core

data the first three principal components explain a percentage

100(18.37705 + 4.33446 + 2.82965)/28.677904 = 89.062157%

of the total population variance. And, in Support data the first three principal components

explain a percentage

100(19.86196 + 4.44492 + 3.16187)/31.19027 = 88.06833%

of the total population variance. Since Core data accounts for larger variance we only discuss

component loadings for PCs of Core data and the results are given in Table 7. We see this time

the first PC clearly refers Appearance, Smell, Taste and Naturalness all together. As expected

Appearance and Smell have come together as important attributes in the first PC. The second

PC is same as before, like it refers to Sweetness and Density. The third PC which represents the
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brand difference refers to Taste, Naturalness and Density. So, the attributes Taste, Naturalness

and Density are vital in differentiating the brands. Note that Appearance and Smell do not play

any role in differentiating the brands; as Appearance and smell are same for both the brands of a

particular fruit juice, and thus these two attributes cannot differentiate the brands. Results seem

promising when we treat Fruit juice data as three-level, since it gives all the relevant information

of the data as anticipated and guessed.

6 Concluding Remarks

Due to recent development of cheaper and more manageable way to store large amounts of digital

data, big data are registered continuously in almost all scientific fields. Appropriate statistical

methods need to be developed that is suitable for multi-level interval data. In this article we

have proposed a new approach to modeling and analyzing three-level interval data analytically

and systematically and deriving principal components in two stages.

In this article we have discussed why one should not just analyze the midpoint variables and

just get percent and percent cumulative eigenvalues for only midpoint variables, rather should

get adjusted percent and adjusted percent cumulative eigenvalues. Our approach can be easily

extended to more than three levels, i.e., to multi-level or multi-dimensional interval data where

each component variable is bounded within hyper-rectangles. We are working on this and report

it in a future correspondence.
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