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SUMMARY

Toxicity issue is always a main concern in phase I study and it is commonly

categorized to multiple grades. In this study, the concept of overall maximum

tolerated dose (overall MTD) is introduced along with its analytic properties.

The traditional definition of MTD is shown to be a special case of the overall

MTD. A dose finding strategy is also proposed to find the overall MTD.

Motivated by the continual reassessment method (CRM), a cumulative probit

model with latent variables is introduced to fit the data. By introducing latent

variables, Markov chain Monte Carlo (MCMC) methods are employed to

estimate the model parameters. Simulation studies show that the cumulative

probit model, which takes into account of the severity level of toxicity, reduces

the number of patients allocated to the higher toxicity dose level. This could

reduce the risk of toxicity for patients in the phase I study.
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1 Introduction

The primary goal of a phase I clinical trial is to determine the dose of a candidate drug

for use in the subsequent phase II trial. Toxicity issue is always a main concern in phase I

study and it is commonly categorized to multiple grades by the Common Toxicity Criteria

(CTC) (National Cancer Institute, 2003). The general guidelines of the CTC are grade 0

for no toxicity; grade 1, 2, 3, 4 and 5 for minimal toxicity, moderate toxicity, severe toxicity,

life threatening and death, respectively. In most dose allocation procedures, such as the

traditional “3+3”design [7], CRM [6] and EWOC [2], these grades are dichotomized. For

example, if grade 4 fatigue is considered DLT then grades 0−3 will be non-DLT and treated

identically from the point of view of an experimental design. Such dichotomization works for

relatively mild toxicities. However, for severe and possibly irreversible effects such as renal,

liver, or neurological toxicities, grade 4 renal toxicity is much more dangerous than that for

grade 3. Hence, those toxicity grades cannot be treated equivalently. Such concerns need be

addressed in the dose escalation process.

During the past ten years, polychotomous toxicity response has been widely discussed.

In 2000, Wang et al. [8] extended the CRM by incorporating the idea of unequal weights on

the assessments of grade 3 and grade 4 toxicity in the dose escalation. The simulation results

show that their procedures reduce the chance of recommendation to the higher dose levels by

taking into account of the impact of grade 4 toxicity, both for the standard design and for the

CRM. Similar trends are observed for patient allocation to the higher !eve!s. Additionally,

for CRM which performs more accurately on the estimation of maximum tolerated dose

(MTD), the proposed extended CRM maintains the same characteristic.

In 2004, Bekele and Thall [3] proposed a Bayesian method for dose finding in a sarcoma

trial based on a vector of correlated, ordinal-valued toxicities with severity levels varying

with dose. They also developed a method for jointly eliciting the prior, a vector of weights

quantifying the clinical importance of each level of each type of toxicity, and a target total

toxicity burden (TTB) acceptable to the physicians.

There are other research related to this type of problem. In 2007, Yuan et al. [10]

proposed another extension of the continual reassessment method (CRM), called the Quasi-

CRM, to incorporate the grade information. They convert the toxicity grades to numeric

scores that reflect their impacts on the dose allocation procedure, and then incorporate those

scores into the CRM using the quasi-Bernoulli likelihood. A simulation study demonstrates
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that the Quasi-CRM is superior to the standard CRM and comparable to a univariate version

of the Bekele and Thall method [3].

In Phase I clinical trial, Maximum tolerated dose (MTD) refers to the highest dose

of a drug or treatment that does not cause unacceptable side effects and it is determined

in clinical trials by testing increasing doses on different groups of people until the highest

dose with acceptable side effects is found (Dictionary of Cancer Terms. National Cancer

Institute). This is a descriptive definition rather than an analytical definition, and it leads

to different interpretations and comprehension of MTD in practice.

For most of the model-based designs, MTD is defined as a dose, x∗, at which the

probability of DLT is equal to θ, where θ is an aimed-for target DLT probability. This

definition of MTD works well under the case of dichotomous toxicity responses. However, it

is difficult to directly apply such definition in the case of polychotomous toxicity responses.

For example, suppose the probability configurations for toxicity grades 0−5 at dose level x1

and x2 are p1 = (0.10, 0.25, 0.35, 0.15, 0.10, 0.05) and p2 = (0.35, 0.25, 0.10, 0.05, 0.10, 0.15),

respectively, where the pij is the probability that the patient suffers the j th toxicity grade

at dose xi, j = 1, . . . , 6, i = 1, 2. For instance, p13 = 0.35 means the chance that the patient

suffers a 3rd toxicity grade at dose x1 is 35 percent. Assume that there is a DLT if the

toxicity grade is 4 or above and non-DLT otherwise and set the target DLT probability θ

equals to 0.30. Since P (DLT|x1) = P (DLT|x2) = 0.30, both dose levels x1 and x2 are MTD

according to such definition, i.e. there is no difference between dose levels x1 and x2 in the

sense of the probability of DLT. It is obvious that these two dose levels are not the same by

comparing their probability configurations. For dose x1, the probability mass concentrates

at third toxicity grade with probability 0.35. However, for dose x2, the probability mass

has dispersed concentrations at first and sixth toxicity grades with probabilities 0.35 and

0.15, respectively. Hence, it is hard to generate the definition of the MTD from the case of

dichotomous toxicity responses to that of the polychotomous toxicity responses naturally.

In the case of polychotomous toxicity responses, Bekele and Thall [3] define MTD as

the dose at which the total toxicity burden (TTB) is equal to a target TTB. A numerical

variable, so called severity weight, is defined on the ordered toxicity grade. Then the TTB is

obtained by calculating the mean value of the severity weight. Simulation study shows that,

on average, this definition performs well under a wide variety of circumstances. However,

in practice, the meaning of the target TTB is not quite straightforward (e.g., 3.04 in Bekele

and Thall’s example [3]) and it requires a great deal of effort to interact with the physicians
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for establishing severity weight as well as target TTB.

It is thus important to reconsider the definition of MTD, which can be applied in both

cases of dichotomous and polychotomous toxicity responses and meanwhile can be easily

interpreted by physicians. In this research, we attempt to give a more rigorous definition for

MTD and we also propose an attractable way to deal with the computation of the MTD. In

Yang, Ye and Wang, 2011 [9] a probit model with latent variables in the case of dichotomous

toxicity responses is studied. In this article, a cumulative probit model with latent variables

will be investigated in the case of polychotomous toxicity responses. In next section, we

introduce the new definition of overall MTD along with its analytic properties. In Section

3, the cumulative probit model with latent variables and the full conditional distributions

are given. The likelihood function and the posterior distribution functions of the model

parameters will be given in Section 4. In Section 5, a simulation study exploring operating

characteristics of the proposed method is presented. Finally, in Section 6, conclusions and

discussions are provided.

2 The Overall MTD

Suppose that, instead of a binary definition of toxicity, we use an M -point ordinal toxicity

scale. Denoted by Y the polychotomous toxicity response which takes one of the M values,

{1, . . . ,M}. Define by py(x) the probability of suffering toxicity grade Y = y, y = 1, . . . ,M ,

at dose x such that
∑M

y=1 py(x) = 1 for all x ∈ X (where X is the set of all interesting

dose levels). Set a critical toxicity grade m, m ∈ {1, 2, . . . ,M}, such that there is a severe

toxicity response if the toxicity grade is m or higher, or, simply Y ≥ m , not a severe toxicity

response if the toxicity grade is less than m, or Y < m. Such severe toxicity is named as

level-m severe toxicity, denoted by Tm = {Y ≥ m}. For any level-m severe toxicity

Tm, there is a target toxicity probability θm, m ∈ {1, 2, . . . ,M}. A dose x is said level-m

tolerable if the probability of level-m severe toxicity Tm at x is less than or equal to θm, i.e.

P (Y ≥ m|x) ≤ θm, not level-m tolerable if the probability of Tm at x is greater than θm,

i.e. P (Y ≥ m|x) > θm. Given a critical toxicity grade m, the maximum dose of all level-m

tolerable doses is called the level-m maximum tolerated dose. To make it clearer, we

introduce the following definition.

Definition 2.1. For critical toxicity grade m, m ∈ {1, 2, . . . ,M}, associated with its target

3



severe toxicity probability θ, the level-m maximum tolerated dose (or briefly level-m

MTD), denoted by mMTD(θ), is defined as

mMTD(θ) = sup{x|P (Y ≥ m|x) ≤ θ} = sup

{
x

∣∣∣∣∣
M∑

y=m

py(x) ≤ θ

}
, (1)

where sup{S} is the supremum of set S.

Here, we take the supremum because of the belief that, given a target toxicity probabil-

ity, the higher the dosage, the more efficient the chemical compound, i.e. it is assumed that

dose-response curves for both toxicity and efficacy are increasing in the dosage, or, simply

expressed, “the more pain, the more gain.”

The following propositions show some properties of the level-m MTD.

Proposition 2.1. For any critical toxicity grade m, m ∈ {1, 2, . . . ,M}, mMTD(θ) is in-

creasing in θ, where θ is the target toxicity probability associated with the critical toxicity

grade m (See Figure 1 (a)).

Proof. Suppose θ′ < θ′′, then
∑M

y=m py(x) ≤ θ′ implies
∑M

y=m py(x) ≤ θ′′ , form ∈ {1, 2, . . . ,M}.
Hence, {x|

∑M
y=m py(x) ≤ θ′} ⊂ {x|

∑M
y=m py(x) ≤ θ′′ }. Therefore,

mMTD(θ′) = sup

{
x

∣∣∣∣∣
M∑

y=m

py(x) ≤ θ′

}
≤ sup

{
x

∣∣∣∣∣
M∑

y=m

py(x) ≤ θ′′

}
=mMTD(θ′′).

Referring to any level-m maximum tolerated dose, mMTD(θ), Proposition 2.1 shows

the higher the tolerance probability θ, the larger the amount of the dose should be applied

to achieve the maximum efficacy of the drug. The following proposition shows that, on the

other side, the higher the toxicity grade which is treated as the DLT, the larger the amount

of the drug that can be tolerated.

Proposition 2.2. Given a target toxicity probability θ, mMTD(θ) is increasing in toxicity

grade m (See Figure 1 (b)), i.e., m′MTD(θ) ≤m′′MTD(θ), for any m′ < m′′ in {1, 2, . . . ,m}.

Proof. Suppose m′ < m′′, then
∑M

y=m′ py(x) ≥
∑M

y=m′′ py(x), Hence, {x|
∑M

y=m′ py(x) ≤
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Figure 1: Graph illustration for Proposition 2.1 and 2.2. (a) shows that the level-m MTD,

mMTD(θ), is increasing in its corresponding target toxicity probability θ; (b) shows that, for
a fixed target toxicity probability θ, mMTD(θ) is increasing in the toxicity grade m.

θ} ⊂ {x|
∑M

y=m′′ py(x) ≤ θ}. Therefore,

m′MTD(θ′) = sup

{
x

∣∣∣∣∣
M∑

y=m′

py(x) ≤ θ

}
≤ sup

{
x

∣∣∣∣∣
M∑

y=m′′

py(x) ≤ θ

}
=m′′MTD(θ).

In order to define the overall MTD in the case of polychotomous toxicity responses

with M -point ordinal toxicity grade, let us introduce the following notations. Denoted

by Y = {1, . . . ,M} the set of ordered grades associated with the polychotomous toxicity

response Y. Suppose P = {p1(x), . . . , pM(x)|x ∈ X} such that
∑M

y=1 py(x) = 1, for all x ∈ X,
and θ = {θ1, . . . , θM}, where θm is the target toxicity probability corresponding to the level-m

severe toxicity Tm, m ∈ {1, 2, . . . ,M}. The triplet {Y,P ,θ} is called an M -point ordinal

toxicity grade system defined on X.

Example 2.1. Suppose Y = {1, 2}, where 1 indicates a non-DLT and 2 a DLT. Let P = {1−
p(x), p(x)|x ∈ X} and θ = {1, θ}, then {Y,P ,θ} is a 2-point ordinal toxicity grade system,

or dichotomous toxicity grade system, defined on X. Furthermore, if p(x) = [(1+tanhx)/2]a

and θ = 0.2, then the original CRM by O’Quigley et.al. [6] can be reconsidered under this
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framework {Y,P ,θ}.

Suppose {Y,P ,θ} is an M -point ordinal toxicity grade system defined on X. It is

reasonable to define the overall MTD of {Y,P ,θ} as the maximum dose of those dose x

such that it is level-m tolerable for any m ∈ {1, . . . ,M}. Based on Definition 2.1, dose x is

level-m tolerable if and only if dose x ≤ mMTD(θm). Hence, the overall MTD of {Y,P ,θ}
should be defined as the minimum of all the level-m MTD. To make it clearer, we introduce

the following definition.

Definition 2.2. Given M dimensional vector θ = (θ1, θ2, . . . , θM), whose elements θm’s

are pre-specified target toxicity probabilities with respect to the critical toxicity grade m’s,

the overall MTD of the M -point ordinal toxicity grade system, denoted by MMTD(θ), is

defined as
MMTD(θ) = min{mMTD(θm)|m = 1, 2, . . . ,M}, (2)

where mMTD(θm) is the level-m MTD associated with its target toxicity probability θm, for

m ∈ {1, 2, . . . ,M} (See Figure 2).

The following theorem shows that the target toxicity probability θm’s should be mono-

tone decreasing in practice, i.e., θ1 > θ2 > . . . > θM . Otherwise, the toxicity grade system

can be reduced to a lower dimension system.

Theorem 2.1. Suppose {Y,P ,θ} is an M -point ordinal toxicity grade system with its as-

sociated target toxicity probability θ = (θ1, θ2, . . . , θM) and P = {p1(x), . . . , pM(x)|x ∈ X}.
If there exists an m0 such that θm0 ≥ θm0−1, then the M -point ordinal toxicity grade system

{Y,P ,θ} is equivalent to the (M−1)-point ordinal toxicity grade system {Y∗,P∗,θ∗}, where
Y∗ = {1, . . . ,M−1}, P∗ = {p1(x), . . . , pm0−2(x), pm0−1(x)+pm0(x), pm0+1(x), . . . , pM(x)|x ∈
X} and θ∗ = {θ1, . . . , θm0−1, θm0+1, . . . , θM}. Hence, the toxicity grade m0−1 and m0 should

be combined into one single toxicity grade level m0 − 1. Here, “equivalence”is in the sense

of finding the overall MTD.

Proof. Denoted by MMTD(θ) and M−1MTD∗(θ∗) the overall MTD of {Y,P ,θ} and {Y∗,P∗,θ∗},
respectively. Since θm0 ≥ θm0−1, using Proposition 2.1 and 2.2, we have

m0−1MTD(θm0−1) ≤ m0MTD(θm0−1) ≤ m0MTD(θm0),

6
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Figure 2: Graph illustration for Definition 2.2. In this graph, there are 4 increasing curves
P (Y ≥ mi|x) =

∑M
y=mi

py(x), i = 1, . . . , 4, where m1 < . . . < m4 are some toxicity grades.
There is a level-mi MTD given the target toxicity probability θi, denoted by a small circle,
i = 1, . . . , 4. The overall MTD, denoted by a dotted circle, is the minimum of all level-mi

MTD’s.

where mMTD(θ) is the level-m MTD associated with system {Y,P ,θ}. Hence,

MMTD(θ) = min{mMTD(θm)|m = 1, . . . ,M}

= min{mMTD(θm)|m = 1, . . . ,m0 − 1,m0 + 1, . . . ,M}. (3)

Since P∗ = {p1(x), . . . , pm0−2(x), pm0−1(x) + pm0(x), pm0+1(x), . . . , pM(x)|x ∈ X}, one has∑M−1
y=m p∗y(x) =

∑M
y=m py(x) form ≤ m0−1 and

∑M−1
y=m p∗y(x) =

∑M
y=m+1 py(x) form > m0−1.

Furthermore, since θ∗ = {θ1, . . . , θm0−1, θm0+1, . . . , θM}, one has θ∗m = θm for m ≤ m0 − 1

and θ∗m = θm+1 for m > m0 − 1. Consequently,{
M−1∑
y=m

p∗y(x) ≤ θ∗m

}
is equivalent to

{
M∑

y=m

py(x) ≤ θm

}
for m ≤ m0 − 1,
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and {
M−1∑
y=m

p∗y(x) ≤ θ∗m

}
is equivalent to

{
M∑

y=m+1

py(x) ≤ θm+1

}
for m > m0 − 1.

Therefore, according to (1), mMTD∗(θ∗m) = mMTD(θm) for m ≤ m0 − 1 and mMTD∗(θ∗m) =

m+1MTD(θm+1) for m > m0 − 1, where mMTD∗(θ∗m) is the level-m MTD associated with

system {Y∗,P∗,θ∗}. Finally, using (3),

MMTD(θ) = min{mMTD(θm)|m = 1, . . . ,m0 − 1,m0 + 1, . . . ,M}

= min{mMTD∗(θ∗m)|m = 1, . . . ,M − 1} = M−1MTD∗(θ∗),

which implies that {Y,P ,θ} is equivalent to {Y∗,P∗,θ∗} in the sense of finding the overall

MTD.

Repeatedly applying Theorem 2.1, we obtain the following corollary.

Corollary 2.1. Suppose {Y,P ,θ} is an M -point ordinal toxicity grade system with its

associated target toxicity probability θ = (θ1, θ2, . . . , θM) and P = {p1(x), . . . , pM(x)|x ∈
X}. If there exists anm0 such that θm = 1, form < m0 and θm = θ < 1, form ≥ m0, then the

M -point ordinal toxicity grade system {Y,P ,θ} is equivalent to the 2-point ordinal toxicity

grade system {Y∗,P∗,θ∗}, where Y∗ = {1, 2}, P∗ =
{∑m0−1

y=1 py(x),
∑M

y=m0
py(x)

∣∣∣ x ∈ X
}

and θ∗ = {1, θ}. Furthermore,

MMTD(θ) = 2MTD∗(θ∗) = sup

{
x

∣∣∣∣∣
M∑

y=m0

py(x) ≤ θ

}
.

So, for the admissibility requirement, we assume 1 = θ1 > θ2 > . . . > θM > 0. Since

θ1 = 1 and
∑M

y=1 py(x) = 1, 1MTD(1) = sup
{
x|
∑M

y=1 py(x) ≤ 1
}
= sup{X}. Hence, (2) is

equivalent to
MMTD(θ) = min{mMTD(θm)|m = 2, . . . ,M}. (4)

The dichotomized response model might be considered as a special case of the poly-

chotomous response model, where M = 2, Y ∈ {0, 1} (to provide the notation consistency,

we use {0, 1} instead of {1, 2}) and m = 1, which is actually a 2-point ordinal toxicity grade
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system. The overall MTD, 2MTD(θ) is equal to the level-1 MTD, 1MTD(θ) = sup{x|P (Y =

1|x) ≤ θ} = sup{x|ψ(x, a) ≤ θ}, where ψ(x, a) is defined as in the original CRM paper by

O’Quigley et.al. [6].

3 The Cumulative Probit Model with Latent Variables

To make the problem more interesting, we will assign a model structure on the M -point

ordinal toxicity grade system, {Y,P ,θ}, in the following context. Define the cumulative

probabilities of the toxicity response Y at dose x as

ηy(x) = P (Y ≤ y|x) =
y∑

j=1

pj(x), y = 1, . . . ,M − 1.

Then, (1) is equivalent to

mMTD(θ) = sup{x|ηm−1(x) ≥ 1− θ}. (5)

Instead of assigning a model structure on toxicity response Y directly, we will assign a

model structure on the cumulative probabilities ηy(x), which is the usual way to fit the

ordered categorical data. Assume that there exists a latent continuous random variable Zx

with probability density function fZx(z|x,β) or cumulative density function FZx(z|x,β), at
dosage x, where β is the model parameters. Suppose that we observe toxicity grade Y = y,

y ∈ {1, 2, . . . ,m}, at dose x, where Y = y|x if γy−1 < Zx ≤ γy. Here, γ0, γ1, . . . , γM−1, γM

are unknown bin boundaries (we define γ0 = −∞ and γM = ∞). Hence,

py(x) = P (Y = y|x) = FZx(γy|x,β)− FZx(γy−1|x,β)

and the cumulative probabilities at dose x is

ηy(x) = P (Y ≤ y|x) =
y∑

j=1

pj(x) =

y∑
j=1

[FZx(γj|x,β)− FZx(γj−1|x,β)]

= FZx(γy|x,β). (6)
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Therefore, (5) can be modified as

mMTD(θ) = sup{x|FZx(γm−1|x,β) ≥ 1− θ}. (7)

Given the critical value m ∈ {1, 2, . . . ,M}, Y ≥ m implies that there is a level-m severe

toxicity at dosage x. If we define the probability of toxicity as

ψ(x,β, γm−1) = P (Y ≥ m|x) = 1− FZx(γm−1|x,β),

then (1) becomes

mMTD(θ) = sup{x|ψ(x,β, γm−1) ≤ θ}, (8)

which is similar to the dichotomized response case. Furthermore, suppose we choose the

normal latent variable, Zx ∼ N(xTβ, 1), where β = (β0, β1)
T and x = (1, x)T , then, the

probability of toxicity is

ψ(x,β, γm−1) = 1− Φ(γm−1 − xTβ) = Φ(xTβ − γm−1), m = 1, . . . ,M − 1. (9)

Consequently, under the normal assumption, the MTD derived from (8) is

mMTD(θ) =
γm−1 − β0 − Φ−1(1− θ)

β1
.

For an M -point ordinal toxicity grade system, {p1(x), . . . , pM(x)}, associated with its target

toxicity probability θ = (θ1, θ2, . . . , θM), if the normal latent variable is used, then the overall

MTD is defined as

MMTD(θ) = min

{
γm−1 − β0 − Φ−1(1− θm)

β1

∣∣∣∣m = 2, . . . ,M

}

In next section, we will use the Bayes method to fit model (9).
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4 The Likelihood Function and the Posterior Distribu-

tion

Denoted by Fj = {(x1, y1), . . . , (xj, yj)} the history of the first j assignments and responses,

where xl is the dose level of the lth patient (that is xl ∈ {d1, . . . , dK}) and yl is the observed
response which takes one of M ordered categories, 1, . . . , M and l = 1, . . . , j. In model (9)

of Section 3, both the regression parameter β and the bin boundary γ = (γ1, γ2, . . . , γM−1)

are unknown. To ensure that the parameters are identifiable, it is necessary to impose one

restriction on the bin boundary γ (See Albert and Chib [1]). Without loss of generality, we

take γ1 = 0. The likelihood function of β and γ is

L(β,γ|Fj) ∝
j∏

l=1

M∑
y=1

I(yl = y)[Φ(γy − xT
l β)− Φ(γy−1 − xT

l β)].

It is straightforward to find the maximum likelihood estimate of (β,γ) by using Newton-

Raphson method and to obtain the approximate standard deviations of (β,γ) by using the

second derivative of log likelihood evaluated at the maximum likelihood estimate. But,

unfortunately, due to the small sample size in phase I clinical trials the accuracy of the MLE

is questionable (see Albert and Chib [1]).

In order to increase the accuracy of the estimation, the Gibbs sampling algorithm (see

Gelfand and Smith [5]) for the polychotomized response described in [1] can be generalized

to this situation. We introduce j latent variables Z1, Z2, . . . , Zj, where Zl are independent

N(β0 + β1xl, 1) and xl is the dose level of the lth patient.

Define

Yl = y, if γy−1 < Zl ≤ γy, for y = 1, 2, . . . ,M. (10)

The joint likelihood function of (β,γ,Z) is

L(β,γ,Z|Fj) ∝
j∏

l=1

[
M∑
y=1

I(yl = y)I(γy−1 < Zl < γy)

]
ϕ(Zl;x

T
l β, 1).

Let π(β,γ) = π(β)π(γ) be the prior on (β,γ), the joint posterior density function of
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(β,γ,Z) given data Fj is

π(β,γ,Z|Fj) ∝ π(β,γ)

j∏
l=1

[
M∑
y=1

I(yl = y)I(γy−1 < Zl < γy)

]
ϕ(Zl;x

T
l β, 1)

= π(β)π(γ)

j∏
l=1

[
M∑
y=1

I(yl = y)I(γy−1 < Zl < γy)

]
ϕ(Zl;x

T
l β, 1). (11)

Since the probability of DLT is assumed to be increasing in dose level x and the categories

of toxicity grade are ordered, we need certain constraints on the prior distribution of (β,γ).

The prior π(β,γ) should be defined on {(β,γ)|β1 > 0,−∞ < γ1 < γ2 < · · · < γM−1 <∞}.

In order to evaluate (9) at any given dose x ∈ {d1, . . . , dK}, parameters (β, γm−1) need to

be jointly generated from (11). Note that this joint posterior distribution (11) is complicated

in the sense that it is difficult to normalize and sample from it directly. But computation

of the marginal posterior distribution of (β, γm−1) using the Gibbs sampling algorithm re-

quires only the posterior distribution of β conditional on (Z,γ), posterior distribution of Z

conditional on (β,γ) and the posterior distribution of γ conditional on (β,Z), and these full

conditional posterior distributions are easy to obtained and easy to sample from.

Based on (11), the full conditional posterior distributions are found as follows.

• π(β|γ,Z,Fj)

The posterior densities of β0 and β1, given γ and Z, is given by the follows. If a flat prior

π(β0) ∝ 1 is assigned on β0, then,

β0|β1,Z,Fj ∼ N

(∑j
l=1(zl − β1xl)

j
,
1

j

)
. (12)

If a proper conjugate prior N(β̄0, σ̄
2
0) is assigned, then,

β0|β1,Z,Fj ∼ N

(
σ̄2
0

∑j
l=1(zl − β1xl) + β̄0

1 + σ̄2
0j

,
σ̄2
0

1 + σ̄2
0j

)
. (13)
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If a flat prior π(β1) ∝ I(β1 > 0) is assigned, then,

β1|β0,Z,Fj ∼ N

(∑j
l=1(zl − β0)xl∑j

l=1 x
2
l

,
1∑j

l=1 x
2
l

)
I(β1 > 0). (14)

If a proper conjugate truncated normal prior N(β̄1, σ̄
2
1)I(β1 > 0) is assigned, then,

β1|β0,Z,Fj ∼ N

(
σ̄2
1

∑j
l=1(zl − β0)xl + β̄1

1 + σ̄2
1

∑j
l=1 x

2
l

,
σ̄2
1

1 + σ̄2
1

∑j
l=1 x

2
l

)
I(β1 > 0). (15)

If a proper, but non-conjugate exponential prior exp{−β1}I(β1 > 0) is assigned, then,

β1|β0,Z,Fj ∼ N

(∑j
l=1(zl − β0)xl − 1∑j

l=1 x
2
l

,
1∑j

l=1 x
2
l

)
I(β1 > 0). (16)

• π(Z|β,γ,Fj)

Zl’s are latent variables, not parameters. Hence no priors are needed. Using (11), the

posterior density of Z, given β and γ, is

π(Z|β,γ,Fj) ∝
j∏

l=1

[
M∑
y=1

I(yl = y)I(γy−1 < Zl < γy)

]
ϕ(Zl;x

T
l β, 1), (17)

which implies that Z1, Z2, . . . , Zj are independent with

Zl|β,γ,Fj ∼ N(xT
l β, 1)I(γy−1 < Zl < γy), if yl = y, (18)

where y takes one of the M ordered categories, 1, . . . , M and l = 1, . . . , j − 1. (18) implies

that Zl|β,γ,Fj is a normal random variable truncated at the left γy−1 and right γy when

yl = y.

• π(γ|β,ZFj)

According to (11), the posterior density of γ, given β and Z, is

π(γ|β,Z,Fj) ∝ π(γ)

j∏
l=1

[
M∑
y=1

I(yl = y)I(γy−1 < Zl < γy)

]
, (19)
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which implies that γ1, γ2, . . . , γj are dependent. Suppose a flat prior is assigned on γ

π(γ) = I(−∞ < γ1 < γ2 < · · · < γM−1 <∞),

then the full conditional posterior distribution of γi given β, γ−i = {γy, y ̸= i}, Z and Fj, is

π(γi|β,γ−i,Z,Fj) ∝
j∏

l=1

[I(yl = i)I(γi−1 < Zl < γi) + I(yl = i+ 1)I(γi < Zl < γi+1)] .

This conditional distribution can be seen to be uniform, i.e.,

γi|β,γ−i,Z,Fj ∼ U(a, b), (20)

where a = max{max{Zl : yl = i}, γi−1} and b = min{min{Zl : yl = i+ 1}, γi+1}.

Based on the Gibbs sampler, β0, β1, Z and γ could be generated from those full condi-

tional posterior distributions.

After drawing from the marginal joint posterior distribution π(β, γm−1), one can esti-

mate the overall MTD by using the following formula.

MM̂TD(θ) = min

{
Eπ(γm−1|Fj)γm−1 − Eπ(β0|Fj)β0 − Φ−1(1− θm)

Eπ(β1|Fj)β1
|m = 2, . . . ,M

}
. (21)

The estimates of the expectations in (21) are obtained based on the simulation. Suppose

one has obtained N generations of (β0, β1, γm−1), which are (β
(i)
0 , β

(i)
1 , γ

(i)
m−1), i = 1, 2, . . . , N ,

then,

Êπ(β0|Fj)(β0) =
1

N

N∑
i=1

β
(i)
0 ,

Êπ(β1|Fj)(β1) =
1

N

N∑
i=1

β
(i)
1 ,

Êπ(γm−1|Fj)(γm−1) =
1

N
γ
(i)
m−1.
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5 Simulation Results

To evaluate the operating characteristics of the polychotomous response model, a simulation

study is performed. We use a 5-point ordinal toxicity scale, i.e., the polychotomous toxicity

response Y takes one of the 5 values, {1, . . . , 5} at any given dose level, with grade 1

representing no toxicity, grade 2 minor toxicity, grade 3 moderate toxicity, grade 4 severe

toxicity, and grade 5 very severe or life threatening toxicity. We suppose there are six ordered

dose levels, x1, x2, . . . , x6 and the data are simulated according to the following probabilities,

pij = P (Y = i|Dose = xj), for i = 1, . . . , 5 and j = 1, . . . , 6,

where
∑5

i=1 pij = 1 for any j = 1, . . . , 6, and, for any i0 = 2, . . . , 5,
∑5

i=i0
pij′ <

∑5
i=i0

pij′′ ,

for any 1 ≤ j′ < j′′ ≤ 6. Table 1 show the true probabilities of each grade (1 − 5) at each

dose level (1− 6) for four simulation scenarios.

In this simulation study, the probabilities are generated in one of the following two ways.

(1) Normal latent: pij = P (γj−1 < Zi ≤ γj), for i = 1, . . . , 5 and j = 1, . . . , 6, where

Zi ∼ N(β0+βxi, 1), γ0 = −∞, γ5 = ∞ and β = (β0, β1), γ = (γ1, . . . , γ4) are set to different

values for different scenarios.

(2) General situation: for any i0 = 2, . . . , 5,
∑5

i=i0
pij′ <

∑5
i=i0

pij′′ , if 1 ≤ j′ < j′′ ≤ 6.

The target toxicity probabilities, θ = (θ1, . . . , θ5), are set in three different combinations.

For each scenario we use 200 duplications (trials). In each trial, we recruit 30 patients in 10

cohort with 3 patients per cohort. The first cohort of subjects in each trial was treated at

the lowest dose. Additional constraints follow those of Faries [4] where dose escalation was

limited to a maximum of 1 dose between consecutive subjects. The dose closest to the final

updated MTD was taken to be the final recommended dose. The updated MTD was then

calculated by using (21).

The working model is
Y = y|x, if γy−1 < Zx ≤ γy, where y = 1, 2, . . . , 5,

and, −∞ = γ0 < γ1 < . . . < γ4 < γ5 = ∞,

Zx ∼ N(β0 + β1x, 1), for x ∈ {x1, x2, . . . , x6}.
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Table 1: True Probabilities of Toxicity for Various Grade and Dose Levels

Dose level
Scenario Grade x1 x2 x3 x4 x5 x6

A 1 0.87 0.78 0.70 0.51 0.19 0.12
2 0.08 0.12 0.15 0.19 0.16 0.13
3 0.03 0.06 0.09 0.15 0.20 0.18
4 0.01 0.03 0.04 0.09 0.18 0.20
5 0.00 0.01 0.02 0.06 0.27 0.37

B 1 0.87 0.78 0.70 0.51 0.19 0.12
2 0.08 0.12 0.15 0.19 0.16 0.13
3 0.02 0.04 0.05 0.08 0.10 0.09
4 0.02 0.04 0.06 0.12 0.20 0.19
5 0.01 0.02 0.04 0.10 0.36 0.47

C 1 0.82 0.73 0.53 0.35 0.23 0.15
2 0.10 0.14 0.19 0.20 0.17 0.15
3 0.05 0.08 0.14 0.18 0.20 0.19
4 0.02 0.04 0.08 0.14 0.17 0.19
5 0.01 0.02 0.06 0.13 0.23 0.32

D 1 0.83 0.75 0.55 0.37 0.24 0.16
2 0.09 0.12 0.17 0.18 0.16 0.14
3 0.03 0.05 0.08 0.10 0.10 0.09
4 0.03 0.05 0.11 0.16 0.19 0.20
5 0.02 0.03 0.09 0.19 0.31 0.41

We always set a prior π(β0, β1) ∝ exp(−β1), β1 > 0 on the parameter in each scenario. To

ensure that the parameters are identifiable, it is necessary to impose one restriction on the

bin boundary γ = (γ1, . . . , γ4). Since toxicity grade 3, 4 and 5 represent moderate ,severe

and very severe or life threatening toxicity, we take γ2 = 0. Table 2 is an illustration of the

process from one of the simulated trials. We frame those toxicity grades which are grade 3, 4

and 5, since they represent the moderate, severe and very severe or life threatening toxicities.

Figure 3 shows an example of the simulated parameters of β = (β0, β1) and γ =

16



Table 2: An Illustration of One of the Simulated Trials

Toxicity Grade

Cohort Dose level Subject 1 Subject 2 Subject 3

1 x1 1 2 1
2 x2 2 1 1

3 x3 1 1 3

4 x4 1 1 3

5 x5 5 5 1

6 x4 1 1 4
7 x3 1 1 1

8 x4 1 1 4
9 x4 1 2 2

10 x4 3 1 2

Recommendation x4

(γ1, γ3, γ4) at the sample size 30. Based on the trace in Figure 3, the MCMC results converge

and based on the density in Figure 3, all the constraints on the model parameters, such as

β1 > 0, γ1 < 0, γ3 > 0 and γ4 > 0, are satisfied.

Table 3 shows the simulation results. In Table 3, we only display target toxicity prob-

abilities (θ3, θ4, θ5), since θ1 has been always set to be equal to 1 and θ2 is associated with

toxicity grade 2 (which is minor toxicity) and above, hence we also set θ2 = 1. For (θ3, θ4, θ5),

we consider three settings, (0.3, 0.3, 0.3) which is equivalent to the dichotomized model,

(0.3, 0.1, 0.05) which indicates that toxicity grades 4 and 5 are considered and differentiated,

(0.3, 0.06, 0.02) which indicates that grades 4 and 5 are more severe in toxicity than grade

3. Table 3 shows that both percent of recommended level and percent of patient allocation

are toward the lower dose levels in general. For the first scenario, 83% of the recommen-

dations are x4 for dichotomized model. However, for the polychotomous model, 54% and

21% of the recommendations are x4 for target toxicity probability settings (0.3, 0.1, 0.05) and

(0.3, 0.06, 0.02), respectively. In addition, for (0.3, 0.06, 0.02), 46% of the recommendations

are x3, which is the largest recommendation rate among all six dose levels. As for patient

allocation, 34% and 20.4% of them allocate to x4 for (0.3, 0.1, 0.05) and (0.3, 0.06, 0.02), re-

spectively (decrease from 44.6% for dichotomized model). Similar results are shown for the
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Figure 3: An illustration of simulated β and γ (Sample size = 30). The trace column gives
the time series plot for each parameter. After burn-in the first 1000 generations and thinning
in each 100 generations, the time series plots appear to be stationary. The ACF column gives
the autocorrelation function for each parameter and it shows that the parameters are nor
significantly autocorrelated. From the density column, it is clear that β1 > 0, γ1 < 0, γ3 > 0
and γ4 > 0, which satisfy the constraints on the model parameters.
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Table 3: Simulation Results

Target Dose Level

Scenario (θ3, θ4, θ5) x1 x2 x3 x4 x5 x6

A
(.30, .30, .30) Rec. 1.5 11.5 83.0 4.0

Exp. 12.1 14.5 21.8 44.6 6.7 0.2
(.30, .10, .05) Rec. 3.5 7.0 34.5 54.0 1.0

Exp. 16.5 16.8 27.7 34.0 4.9 0.1
(.30, .06, .02) Rec. 13.0 20.0 46.0 21.0

Exp. 22.1 24.4 29.4 20.4 3.7

B
(.30, .30, .30) Rec. 0.5 13.0 80.5 6.0

Exp. 12.7 13.4 22.9 42.9 7.7 0.4
(.30, .10, .05) Rec. 6.5 18.5 47.0 27.5 0.5

Exp. 20.6 22.3 31.7 22.2 2.9 0.3
(.30, .06, .02) Rec. 28.0 33.5 32.6 6.0

Exp. 33.0 26.9 26.4 11.6 1.9 0.1

C
(.30, .30, .30) Rec. 1.0 9.5 67.5 21.0 1.0

Exp. 14.4 21.6 42.3 18.0 3.5 0.2
(.30, .10, .05) Rec. 6.5 32.5 53.5 8.0

Exp. 18.2 32.2 37.1 11.2 1.2 0.1
(.30, .06, .02) Rec. 20.5 49.5 29.0 1.0

Exp. 28.2 37.3 27.1 6.3 1.1

D
(.30, .30, .30) Rec. 7.0 68.5 22.5 2.0

Exp. 14.1 21.8 42.8 17.6 3.4 0.4
(.30, .10, .05) Rec. 17.5 48.0 32.5 2.0

Exp. 27.2 35.9 29.6 6.3 1.0
(.30, .06, .02) Rec. 43.0 45.5 11.5

Exp. 41.3 34.8 19.1 4.1 0.7
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scenario B, C and D. In conclusion, the polychotomous model, which takes severity level of

toxicity into account, reduces the number of patients allocated to the higher toxicity dose

level. That reduces the risk of toxicity for patients in the phase I study.

6 Conclusions and Discussions

In this study, we make a new definition of overall MTD, MMTD(θ), in the case of the

polychotomous toxicity responses and the analytic properties of the overall MTD are also

examined. It is shown that the traditional definition of MTD in the case of the dichoto-

mous (binary) toxicity responses is a special case of the overall MTD. In order to find

the overall MTD, MMTD(θ), in practice, the target toxicity probability θ = {θ1, . . . , θM},
where θm is the target toxicity probability corresponding to the level-m severe toxicity Tm,

m ∈ {1, 2, . . . ,M}, needs to be pre-specified. The determination of each θm, m = 1, . . . ,M ,

is same as the determination of the target probability θ in the dichotomous (binary) toxicity

case. Therefore, compared with the existing methods described in [3, 8, 10], there is not

much more effort needed to interact with the physicians.

As an illustration of our research, we utilize the cumulative probit model (9) with

the normal latent variables as the working model. The simulation studies show that the

cumulative probit model, which takes severity level of toxicity into account, reduces the

number of patients allocated to the higher toxicity dose level. That reduces the risk of

toxicity for patients in the phase I study.

In practice, other working model, such as cumulative logistic model or other suitable

models, can be utilized under the same framework. Prior elicitation is also an important

issue. In this study, we provide full conditional distributions for the parameters and latent

variables for various priors. When more complex models or hard-to-deal-with priors are

used, the difficulties might arise when complex full conditional distributions are obtained.

However, many simulation methods can be applied to handel those difficulties, such as

acceptance-rejection algorithms or Metropolis-Hastings algorithm.
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