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Abstract: 

Cross-selling is an integral component of customer relationship management. Using relevant 

information to improve customer response rate is a challenging task in cross-selling. Incorporating 

multitype multiway customer behavioral, including related product, similar customer and historical 

promotion, data into cross-selling models is helpful in improving the classification performance. 

Customer behavioral data can be represented by multiple high-order tensors. Most existing supervised 

tensor learning methods cannot directly deal with heterogeneous and sparse multiway data in cross-

selling. In this study, two novel ensemble learning methods, multiple kernel support tensor machine 

(MK-STM) and multiple support vector machine ensemble (M-SVM-E), are proposed for cross-

selling using multitype multiway data. The MK-STM and the M-SVM-E can also perform feature 

selections from large sparse multitype multiway data. Based on these two methods, collaborative and 

non-collaborative ensemble learning frameworks are developed. In these frameworks, many existing 

classification and ensemble methods can be combined for classification using multitype multiway 

data. Computational experiments are conducted on two databases extracted from open access 

databases. The experimental results show that the MK-STM exhibits the best performance and has 

better performance than existing supervised tensor learning methods. 
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1. Introduction 

Cross-selling has become an integral component of customer development in the life cycle of 

customer relationship management (CRM) (Ngai et al., 2009). Cross-selling refers to promotion 

activities aiming at selling products to customers who have already bought some other products from 

the same vendor (Knott et al., 2002; Li et al., 2011; Ngai et al., 2009). Selling additional products to 

the same customers can help the firm increase the customer lifetime value, improve the relationship 

with customers and reduce the chance of churn (Prinzie and Van den Poel, 2006; Rust and Chung, 

2006). The task of identifying specific customers for cross-selling recommendations is a two-class 

classification problem. 

Cross-selling managers face a challenging task of improving the low customer response rate (Li et 

al., 2011). Unlike repeated purchases, there are not any historical purchase data about customers of 

the products (services) for recommendation in cross-selling. Customer demographic data are usually 

used in cross-selling modeling. Introducing customer behavioral data may help in improving 

classification performance and customer response rate. In addition to customer demographic data, 

three types of customer behavioral data are used in this study as listed in the following. 

(1) Related product data. Customer purchase history of related products, i.e., products that are 

similar or complementary to the target product, can be used to predict the purchase likelihood of the 

target product. Related product data have been used in classification models for cross-selling 

(Kamakura et al., 2004; Prinzie and Van den Poel, 2006, 2007, 2011). Three typical purchase 

behavioral variables are recency, frequency and monetary (RFM) variables. Moreover, similarities 

between products have been used in item-based collaborative filtering methods to make 

recommendations (Adomavicius and Tuzhilin, 2005). 

(2) Similar customer data. Purchase history of similar customers, i.e., customers with similar 

purchase behavior to the target customer, can be used to predict the purchase likelihood of the target 

customer. Similar customer data have not yet been used for cross-selling modeling. However, 

similarities between customers have been used in user-based collaborative filtering methods to make 

recommendations (Adomavicius and Tuzhilin, 2005). 
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(3) Historical promotion data. Past promotions may have long-term effects on customer purchase 

behavior (Li et al., 2011). A few studies have used historical promotion data as controlled variables in 

cross-selling models (Li et al., 2011). 

All these three types of data are longitudinal behavioral data because each of them has a time 

aspect. Prinzie and Van den Poel (2006, 2007, 2011) described customer purchase behavior as 

unidimensional or multivariate sequences without considering the time aspect and used sequence 

analysis techniques to predict the next product to purchase. Unlike the sequential data, as special cases 

of longitudinal behavioral data (Chen et al., 2012), longitudinal behavioral data have fixed time-

intervals, and thus may be used to predict both the likelihood and the timing of the next purchase of 

specific products for cross-selling. 

The related product, similar customer and historical promotion data have higher dimensions than 

the customer demographic data. They are of multiway data and are represented by high-order tensors 

(Hoff, 2011). A tensor that generalizes the notions of vectors (first-order tensors) and matrices 

(second-order tensors) is a natural way to represent multiway data (Signoretto et al., 2011). Each 

dimension of a tensor is called a mode. The related product data can be represented by a fourth-order 

tensor with four modes: customerproductRFM variables time; the similar customer data can be 

represented by a fifth-order tensor with five modes: customer similar customerproductRFM 

variables time; and the historical promotion data can be represented by a fourth-order tensor with 

four modes: customerproductpromotion time. Because multiple types of multiway data are used, 

the term “multitype multiway data”, as a particular type of “big data”, is used to represent the input 

data of the ensemble learning models in this study. 

Compared with multiway data in many other applications such as image and medical signal 

processing, multiway data in cross-selling have two distinct characteristics, i.e., heterogeneousness 

and sparseness. Business firms usually record and store large amount of heterogeneous customer data 

in their data warehouses (Chen et al., 2012). As mentioned above, the classification models in cross-

selling involve three types of multiway data with different orders. To the best of our knowledge, no 

supervised tensor learning methods can be directly applied to multitype multiway data. Moreover, the 

uses of large amount of longitudinal behavioral, i.e., related product, similar customer and historical 

promotion, data in cross-selling provide both opportunities to improve the classification performance 
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and challenges to deal with redundant data. Hence, it is important to develop sparse tensor learning 

methods to identify potential sparse structures of multitype multiway data. Most existing supervised 

tensor learning methods cannot filer multiway data and end up with using sparse representations. 

In this study, two novel data mining methods, multiple kernel support tensor machine (MK-STM) 

and multiple support vector machine (SVM) ensemble (M-SVM-E), are proposed for cross-selling 

using multitype multiway data. Based on the MK-STM, a collaborative ensemble learning (CEL) 

framework is developed. In this framework, the base learners can be combined by integrative, parallel 

or sequential collaborative learning. Based on the M-SVM-E, a non-collaborative ensemble learning 

(NCEL) framework is developed. The advantage of this framework is that many existing 

classification and ensemble methods can be combined for classification using multitype multiway 

data. Unlike other supervised tensor learning methods, the ensemble learning methods including the 

MK-STM and M-SVM-E can directly deal with multitype multiway data. Furthermore, the MK-STM 

and M-SVM-E, as selective ensemble methods, can select a subset of features, i.e., variables, with 

good discriminative abilities from a large number of variables in the sparse multitype multiway data. 

This article is organized as follows. Section 2 discusses the relevant literature and outlines the 

contributions of this study. Section 3 describes the preliminaries of multilinear algebra, three typical 

supervised tensor learning methods, and tensor representation of the input data. The CEL framework 

and the MK-STM for cross-selling using multitype multiway data are developed in Section 4. The 

NCEL framework and the M-SVM-E for cross-selling using multitype multiway data are developed in 

Section 5. The computational experiments are described in Section 6. The computational results are 

reported in Section 7. Conclusions and directions for further research are given in Section 8. 

2.  Relevant Literature 

This study is related to three fields of research in the literature, i.e., cross-selling, supervised 

tensor classification and ensemble learning methods. These three fields will be discussed briefly and 

the contributions of this study relative to these fields will be outlined. 

Unlike other elements of CRM and direct marketing such as customer segmentation, customer 

targeting and churn management, there are relatively few studies on cross-selling (Ngai et al., 2009; 

Prinzie and Van den Poel, 2006). Different, including statistical (Ansell et al., 2007; Kamakura et al., 

2004; Li et al., 2011; Prinzie and Van den Poel, 2006, 2007), mathematical programming (Li et al., 
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2011) and machine learning, methods (Ahn et al., 2011; Prinzie and Van den Poel, 2011) have been 

used to identify cross-selling opportunities. Li et al. (2011) applied a multivariate probit model to 

predict customer responses for cross-selling solicitations. They then proposed a stochastic dynamic 

programming model to take into account the temporal customer demand and the long-term effect of 

cross-selling promotions to reach decisions about cross-selling recommendations. Prinzie and Van 

den Poel (2006, 2007, 2011) considered customer purchase behavior as unidimensional or 

multivariate sequences, and respectively applied the mixture transition distribution model, the Markov 

chain and the Bayesian network to model the behavioral data and predict the next purchase of a 

customer. Kamakura et al. (2004) developed a multivariate split-hazard model to estimate the 

probability and timing of purchasing new products. Ansell et al. (2007) combined the customer 

lifestyle segmentation and the proportional hazard model to identify the cross-selling opportunities. 

Ahn et al. (2011) combined genetic algorithms with multiple classification methods for cross-selling 

in the mobile telecom market. 

The second field of research related to this study is supervised tensor classification methods. Prior 

to applying tensor learning methods, the high-order tensors have to be vectorized or unfolded in 

advance before being used as input into traditional classification models. Compared with vector-

represented learning methods, the tensor learning methods can preserve natural data structure and 

prevent information loss. In the last several years, supervised tensor learning have drawn wide 

attention in the fields of image, vision, video and medical signal processing (Hao et al., 2013; Lu et 

al., 2011; Signoretto et al., 2011). The representative supervised tensor learning methods include the 

support tensor machine (STM) proposed by Tao et al. (2007), linear support high-order tensor 

machine (SHTM) proposed by Hao et al. (2013) and tensor kernel method (TK) proposed by 

Signoretto et al. (2011). 

Ensemble learning, the third field of research related to this study, is a learning paradigm that 

combines multiple base learners to solve a problem (Dietterich, 2000). It is widely accepted that an 

ensemble of multiple classifiers often performs better than a single classifier (Zhou et al., 2002). 

Therefore, ensemble learning has been an active area of study and has been successfully applied to 

semi-supervised, active, cost-sensitive and class-imbalanced learning (Zhou, 2012). Recently, much 
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attention has been given to developing more efficient ensemble learning algorithms (Zhang and Zhou, 

2011). 

This study makes three major contributions. The first major contribution is the incorporation of 

multitype multiway data into classification models for cross-selling and tensor-based classification 

methods so as to improve classification performance and to improve customer response rate. In the 

past, customer demographic and aggregated behavioral data represented by matrices have usually 

been used as the input of standard cross-selling models. Despite the many uses of the tensor-based 

technologies across the literature of machine learning, attempt has not been made towards applying 

the tensor-based technologies to customer behavior modeling and cross-selling. The second major 

contribution of this study is the extension of the SHTM proposed by Hao et al. (2013) to the MK-

STM by combining multiple kernel learning techniques and using the projection and hierarchical 

kernels. Moreover, the proposed MK-STM and M-SVM-E can directly deal with the multitype 

multiway data, while the SHTM and other supervised tensor learning methods cannot. The third major 

contribution is the development of two ensemble learning frameworks applying the existing and 

ensemble classification methods for supervised learning with multitype multiway data. As far as we 

know, there are no attempts in the literature to introduce ensemble learning methods into the field of 

supervised tensor learning. 

3. Preliminaries 

In this section, the basic definitions and concepts of multilinear algebra are given, three methods 

for supervised tensor learning including the STM, SHTM and TK are presented, and the tensor 

representation of the input data to the ensemble learning models are formally described. The 

multilinear algebra, SHTM and TK are the foundations for the proposed MK-STM. The STM, SHTM 

and TK are all used as competitive methods in the computational experiments. 

3.1 Basic definitions 

Following the conventional notations of multilinear algebra (Kolda and Bader, 2009; Lu et al., 

2011), vectors are denoted by boldface lowercase letters, e.g., a , matrices by boldface capital letters, 

e.g., A , and tensors by calligraphic letters, e.g.,  . In the notation 1 2 NI I I    , N  is the order, 

i.e., the number of modes or ways, of   and pI  is the size, i.e., the number of elements, of 



 

6 

 

dimension p  for 1 p N  . An element of   is denoted by 
1 2, , , Ni i ia   where 1 p pi I   for 

1 p N  . 

The tensor product (outer product) of two tensors 1 2 NI I I     and 
' ' '
1 2 'NI I I     is 

defined by 

 ( )     (1)

with elements ' ' ' ' ' '
1 21 2 1 2 ' 1 2 '
, , ,, , , , , , , , , ,NN N N

i i ii i i i i i i i i
v x y   � . The inner product of two tensors 1 2 NI I I     

and 1 2 NI I I     is defined by 

 
1 2

1 2 1 2

1 2

, , , , , ,
1 1 1

,
N

N N

N

II I

i i i i i i
i i i

x y
  

      . (2)

Unfolding is the process of reordering the elements of a tensor into a matrix (Kolda and Bader, 

2009). The thp  mode unfolding of a tensor 1 2 NI I I     ( modep  ) is defined by 

 1 1 1( )p p p NI I I I Ip            , (3)

where the column vectors of p   are the modep   vectors of   (Lu et al., 2011). Note that there 

are different ways of ordering of the modep   vectors in the literature, but the ordering does not 

affect the computational results as long as it is consistent (Kolda and Bader, 2009). 

The modep   product of a tensor 1 2 NI I I     and a matrix p pJ IU  , denoted by 

p  U , is a tensor in 1 2 1 1p p p NI I I J I I         with elements 

 
1 2 1 1 1 2, , , , , , , , , , ,

1

p

p p p N N p p

p

I

i i i j i i i i i j i
i

h x u
 



  � . (4)

The Frobenius norm of a tensor 1 2 NI I IR      is given by 

 
1 2

1 2

1 2

2
, , ,

1 1 1

,
N

N

N

II I

i i iF
i i i

x
  

       . (5)

The Frobenius norm of a tensor   measures the size of the tensor and its square is the energy of the 

tensor (Tao et al., 2007). The distance between two tensors   and   is denoted by 
F

  . 

If a tensor 1 2 NI I I     can be written as 

  1 2

1 1 1

  p
R R N

IN p p
r r r r r

r r p

u u u u u R         

  

      , (6)
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then the result in (6) is called the rank-1 decomposition of   with length R . If 1R  , the tensor   

is called a rank-1 tensor. 

3.2 Support tensor machine 

The details of the STM can be found in Tao et al. (2007). A training dataset is represented by 

1, 1 ,{( ), ,( )}n nG y y    where i  is the input,  1, 1iy    is the class label or the desired output of 

observation i  and n  is the number of observations. A linear classification function is constructed in 

the original input space 

 

0 0
1

( ) sgn
N

p
i i n

p

f b 



 
    

 
 w  , (7)

for any observation 0i  with an input 
0i

  by training a STM, where p w  is the weight vector of the 

thp  hyperplane and b  is the bias. 

Let 1 2 N      w w w �  be a rank-1 tensor. The weight vector p w  and the bias b  are 

obtained by solving the following quadratic programming (QP) model 

, ,
min

p b w ξ
 

2

1 1

1

2

N n
p

i
p iF

C  

 

 w   (8)

s.t. 
1

1
N

p
i i p i

p

y b  



 
     

 
 w  1, ,i n   (9)

 0i   1, ,i n  , (10)

where C  is the regularization parameter. In the model, i  is an error term for observation i  and ξ  is 

the vector of all i  for 1, ,i n  . The QP model in (8)-(10) is the primal formulation of the STM. 

An alternating projection method (Tao et al., 2007) was proposed to decompose the QP model (8)

-(10) into P  sub-problems, each of which is also a QP model, 

, ,
min

p p pb     w ξ
 

2
2 ( )

1, 1

1

2

N n
p l p

iF
l l p iF

C    

  

 w w   (11)

s.t. 
( )

1,

( ) 1
N

p T l p p
i i l i

l l p

y b      

 

  
         

w w  1, ,i n   (12)

 0p
i
    1, ,i n  . (13)
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In this QP model, p w  and pb   are the weighting vector and the bias of the thp  hyperplane, p
i
   

is the error term of observation i  corresponding to the thp  hyperplane, and p ξ  is the vector of 

p
i
   for 1, ,i n  . Each sub-problem in (11)-(13) is a standard SVM and is iteratively solved to 

obtain the final results of the original problem in (8)-(10). 

3.3 Linear support high-order tensor machine 

The details of the SHTM can be found in Hao et al. (2013). From the basic definitions of 

multilinear algebra, Hao et al. (2013) derived the following equations 

 
22

1

N
p

F F
p

 


 w  (14)

 
1, 1

, ( )
N N

p T l l
i i l i l

l l p l

     

  

 
     

 
 w w w    . (15)

Substituting the results in (14) and (15) into the STM model in (8)-(10) leads to the following QP 

model 

, ,
min

b ξ
 2

1

1

2

n

iF
i

C 


    (16)

s.t.  , 1i i iy b     , 1, ,i n   (17)

 0i   1, ,i n  . (18)

The dual of the QP model in (16)-(18), also a QP model, is given as follows 

max
α

 
1 1 1

1
( , )

2

n n n

i i j i j i j
i i j

y y  
  

        (19)

s.t. 
1

0
n

i i
i

y


  ,  (20)

 0 i C   1, ,i n  , (21)

where i  is the Lagrangian multiplier for observation i  and α  is a vector with i  for 1, ,i n   as 

components. 

From the definitions of the rank-1 decomposition of a tensor in (6) and the inner product of i  

and j  in (2), the QP model in (19)-(21) can be written as the following QP model 

max
α

 
ˆ ˆ

ˆ ˆ1 1 1 1 1 1

1

2

n n n R R N
p p

i i j i j ip jq
i i j p q p

y y      

     

  x x     (22)
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s.t. 
1

0
n

i i
i

y


  ,  (23)

 0 i C   1, ,i n  , (24)

where ˆ
p

ip
 x  and ˆ

p
jq
 x  are the elements of the rank-1 decomposition of i  and j , respectively. 

The QP model in (22)-(24) can be solved with standard QP solution algorithms or can be trained 

with standard SVM training procedures. The resulting classification function is 

 
0 0ˆ ˆ

ˆ ˆ1 1 1 1

( ) sgn
n R R N

p p
i i i ip i q

i p q p

f y b    

   

 
   

 
 x x , (25)

for any observation 0i  with an input 
0i

 , where ˆ
p

ip
 x  and 

0 ˆ
p

i q
 x  are the elements of the rank-1 

decomposition of i  and 
0i

 , respectively, and b  is the bias. 

3.4 Tensor kernels 

Assume reproducing kernel Hilbert space  
1

1, ,    ,  
2

2 , ,    ,  ,  , ,
N

N     of functions 

on an arbitrary set  . For any p , let ,p
p pk    be a reproducing kernel of p  with a 

nonlinear map p . 

Let 1 2:  N         be a bounded multilinear functional. For any  , Signoretto et 

al., (2011) showed that the multilinear function 

 
1 2

1 2

1 2
1 2 1 2, , ,

1 2

( , , , ) , , ,

= ( ) ( ) ( )

N

N

N
N Nk k k

N

f f f k f k f k f

f f f

  
   


  

  

  
 (26)

belongs to the Hilber-Schmidt functions. For any   and  , 

 1 2 1 2
1 2

, , , , , ,
, ( , ) ( , ) ( , )N N

N
k k k k k k

k k k    
     

      . (27)

According to (27), a kernel function can be stated as the product of some basic kernels 

 1 2( , ) ( , ) ( , ) ( , )Nk k k k         , (28)

where ( , )pk    for 1, ,p N   denotes the basic kernel of p . The basic kernel ( , )pk    can be 

a Gaussian, also called the RBF (Radial Basis Function), kernel 

 
2

2

1
( , ) exp

2
p p p

F
k


       

 
    , (29)

where 21 /  is the kernel parameter and p   and p   are the p  modes of   and  , 

respectively. 
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More generally, the basic kernel ( , )pk    can be stated as 

  22

1
( , ) exp ,

2
p p pk d


      

 
    , (30)

where  ,p pd       denotes the distance between the p modes of   and  . When a non-

Euclidean distance is used, the function  ,p pd       denotes the chordal distance (projection 

Frobenius norm) on the Grassmannian manifolds (Signoretto et al., 2011). 

Let r  represent the rank of the modep   of a tensor p  , i.e., ( )pr rank    . Singular 

value decomposition is applied to the modep   of a tensor p   as 

   ,1,1
,1 ,2

,2

0
 

0 0

pp
p p p

p

  
     

 

  
      

VS
U U

V


 



 , (31)

where p   is a n m   matrix, ,1
p U  is a n r   matrix, ,2

p U  is a ( )n n r    matrix, ,1
p V  is a 

r m   matrix, ,2
p V  is a ( )m r m     matrix and ,1

p S  is a r r   diagonal matrix. 

The basic kernel ( , )pk    adopting the projection Frobenius norm on the Grassmannian 

manifolds can be written as 

 
2T T

,1 ,1 ,1 ,12

1
( , ) exp

2
p p p p p

F
k


           

 
V V V V     . (32)

This kernel uses the projection Frobenius norm to capture the topology of the input patterns 

(Signoretto et al., 2011). 

3.5 Tensor representation of the input data 

As discussed in the Introduction, four types, i.e., customer demographic, related product, similar 

customer and historical promotion, data are used as input to the ensemble learning models. The 

demographic data are represented by a matrix and the last three types of data are multiway data and 

are represented by tensors. The number of modes of the three tensors are represented by 2 4N  , 

3 5N   and 4 4N  , respectively. The demographic data of a customer i  is represented by the vector 

1( ) 1( ) 1{ | 1, , }i ijx j m x   where 1m  denotes the number of demographic variables. 
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The related product data of a customer i  is represented by the third-order tensor 

2( ) 2( ) 2 3 1{ | 1, , ; 1, , ; 1, , }i ij ktx j m k m t T       . The three dimensions represent the related 

products, the RFM variables and the time points in the longitudinal purchase data. The numbers of the 

related products, RFM variables and time points are represented by 2m , 3m  and 1T , respectively. 

The similar customer data of a customer i  is represented by the fourth-order tensor 

3( ) 4 5 6 22( ){ | 1, , ; 1, , ; 1, , ; 1, , }i iijktx i m j m k m t T     
      . The four dimensions represent the 

similar customers, the related products, the RFM variables and the time points. The numbers of 

similar customers, related products, RFM variables and time points are represented by 4m , 5m , 6m  

and 2T , respectively. 

The historical promotion data of a customer i  is represented by the third-order tensor 

ˆˆ4( ) 7 8 3ˆ2( )
ˆˆ ˆ{ | 1, , ; 1, , ; 1, , }i ijkt

x j m k m t T      . The three dimensions represent the related 

products, the RFM variables and the time points. The numbers of the related products, RFM variables 

and time points are represented by 7m , 8m  and 3T , respectively. 

Cross-selling aims at selling multiple associated products to customers with heterogeneous 

preferences. Hence, the solicitation decisions in cross-selling can be viewed as multiple binary 

classification problems. For a given product, the class label  1, 1iy     in the dataset indicates the 

status of customer i , i.e., 1iy   if customer i  has purchased the product and 1iy    otherwise. 

4.  Collaborative Ensemble Learning and Multiple Kernel Support Tensor Machine 

In this section, a CEL framework is developed. Based on the framework, a data mining model, the 

MK-STM, is formulated to integrate multitype multiway data. The model also performs feature 

selection from large sparse multitype multiway data. The kernels and the training method for the MK-

STM are then presented. 

4.1 The CEL framework 

The MK-STM is trained through the CEL framework. The components of the CEL framework for 

cross-selling recommendations using multitype multiway data are summarized in the following. 
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(1) Data sources. Cross-selling using multitype multiway data involves diverse data from different 

sources. The input data include the demographic, related product, similar customer and historical 

promotion data which can be represented as a matrix, a fourth-order tensor, a fifth-order tensor and 

another fourth-order tensor, respectively. 

(2) Unfolding of multiway data. An effective approach is needed to set up the kernel functions 

between two tensors. A straightforward way is to vectorize the multiway data, and then to use the 

standard kernels for the input vectors. However, unfolding, which transforms a tensor into matrices 

along each dimension, can preserve more structural information. 

(3) Training the MK-STM with multiple tensor kernels. The projection and hierarchical kernels 

presented in Section 4.3 are used to model the diverse data including the demographic data and the 

three types of multiway data. The standard SVM training algorithms are then used to solve a QP 

problem to obtain the Lagrangian multipliers. 

(4) Learning the weights of the basic kernels. When the projection and hierarchical kernels are 

used, a linear programming (LP) problem is solved to obtain the weights of the basic kernels. The 

final classification results are obtained using the Lagrangian multipliers and the weights of the basic 

kernels. 

The MK-STM using multiple kernels to model diverse data is optimized to simultaneously obtain 

the final results. In this study, this method is called the CEL meaning that multiple base learners 

collaborate with each other to obtain the global results. With the development of massive data mining, 

collaborative learning has been the focus of study in recent years. For example, Zhu et al. (2011) 

developed a collaborative pattern mining framework for distributed frequent pattern mining. 

The CEL framework is illustrated in Fig. 1. The framework consists of three main components: 

data sources, unfolding and collaborative learning. Collaborative learning is an integrated process of 

training and ensemble of the base learners. There are three, i.e., integrative, parallel and sequential, 

ways for collaborative learning. 

For integrative collaborative learning, the base learners are integrated into one model and an 

efficient algorithm is necessary to solve this model to obtain the weights of the base learners and the 

final results. The multiple kernel learning (MKL) algorithms such as the multiple kernel SVM (MK-
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SVM) and the MK-STM discussed in the next subsection are the typical methods of integrative 

collaborative learning. 

For parallel collaborative learning, the base learners are trained in a distributed way and they 

collaborate with each other by some communication strategy, e.g., through a central processor, to 

obtain the final results. The collaborative MKL algorithm (Chen and Fan, 2012) is a typical method of 

parallel collaborative learning. 

For sequential collaborative learning, the base learners are trained sequentially and the result of 

one base learner is used in the training of the next. For example, the boosting algorithms compute the 

weights of the observations in the training dataset according to the training errors of the previous base 

learner, and then use the weights to select observations from the training datasets and compute the 

weighted training errors of the current base learner. 

Selective ensemble may be used as an ensemble strategy in the CEL framework. For example, the 

LP boosting method used to train the MK-STM in the second phase of the two-phase iterative strategy 

is selective ensemble selecting a few from a large number of basic kernels. 

Fig. 1 approximately here 

4.2 The MK-STM 

In the last decade, SVM and MKL have been hot topics in the field of machine learning (Bach et 

al., 2004; Cui and Curry, 2005). Specifically, MK-SVM is a state-of-the-art ensemble learning 

method which can combine multiple heterogeneous data and improve classification performance 

(Chen et al., 2007). In this study, the MK-SVM is extended to the MK-STM for classification with 

multitype multiway data in cross-selling. 

A MK-STM is used to construct a classification function. Consider a training dataset 

1(1) 2(1) 3(1) 4(1) (1){( , , , , )G y x    , , 1( ) 2( ) 3( ) 4( ) ( )( , , , , )}n n n n nyx     with 1( )ix , 2( )i , 3( )i  and 

4( )i  as the input and  ( ) 1, 1iy    as the class label or the desired output of observation i . A 

classification function of the following form is determined through learning 

  
0 0 0 0

0 0 0 0

1( ) 2( ) 3( ) 4( )

1 1 1( ) 2 2 2( ) 3 3 3( ) 4 4 4( )

( , , , )

sgn , , , ,

i i i i

i i i i

f

b       

x

w x 

  

     
, (33)
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for any observation 0i  with an input 
0 0 0 01( ) 2( ) 3( ) 4( )( , , , )i i i ix     by training a MK-STM, where 1w , 

2 , 3  and 4  are the weights of the data components, 1 , 2 , 3  and 4  are the overall weights 

of the four types of input data, and b  is the bias. In the following, β  is used to represent a vector with 

components q   for 1, ,4q   . 

The weights 1w , 2 , 3  and 4  and the bias b  are obtained by solving the following QP 

model 

1 2 3 4, , , , , ,
min

bw ξ β   
 22 2 231 2 4

1 2 3 4
12 2 2 2

n

iF F FF
i

C
   



    w     (34)

s.t. 
        1 1 1( ) 2 2 2( ) 3 3 3( ) 4 4 4( ), , , , 1i i i i i iy b         w x         

1, ,i n   
(35)

 0i   1, ,i n  , (36)

where C  is the regularization parameter and 1 , 2 , 3  and 4  are the nonlinear maps. The model in 

(34)-(36) is the primal MK-STM model, while the weights 1w , 2 , 3  and 4 , the bias b , the 

overall weights β  and the error terms ξ  are the primal variables in the QP model. 

With the Lagrangian multipliers 0i   for the constraints in (35) and 0i   for the constraints 

in (36), for 1, ,i n  , the Lagrangian of the QP model in (34)-(36) is 

 

         

22 2 231 2 4
1 2 3 4 1 2 3 4

1 1

1 1 1( ) 2 2 2( ) 3 3 3( ) 4 4 4( )
1

( , , , , , , )
2 2 2 2

, , , , 1

n n

i iF F FF
i i

n

i i i i i i i i
i

L b C

y b

    

      

 



     

      

 



w ξ α w

w x

 

  

     

     

. (37) 

The results in (38)-(43) in the following are obtained by taking the derivatives of the Lagrangian (37) 

with respect to the primal variables 

 1 1 1( )
1 1

0 ( )
n

i i i
i

L
y 




  

 w x
w

  (38)

 2 2 2( )
2 1

0 ( )
n

i i i
i

L
y 




  

  


  (39)

 3 3 3( )
3 1

0 ( )
n

i i i
i

L
y 




  

  


  (40)

 4 4 4( )
4 1

0 ( )
n

i i i
i

L
y 




  

  


  (41)
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1

0 0
n

i
i

L

b





  

    (42)

 0 i i
i

L
C 




   
 

 1, ,i n   (43)

Using the results in (38)-(43), the dual of the QP model in (34)-(36) is then given in (44)-(46) in 

the following 

,
max
α β

 
4

1 1 1( ) 1( ) ( ) ( )
1 1 1 2

1
( , ) ( , )

2

n n n

i i j i j i j q q q i q j
i i j q

y y k k    
   

               
  x x    (44)

s.t. 
1

0
n

i i
i

y


   (45)

 0 i C   1, ,i n  , (46)

where α  is the vector of Lagrangian multipliers with components i  for 1, ,i n  . The dual in (44)-

(46) is a standard MKL problem. The input 1( ) 2( ) 3( ) 4( )( , , , )i i i ix     of an observation i  such that 

0 i C   is called as a support tensor. 

4.3 Kernels in the MK-STM 

The non-tensor kernel 1 1( ) 1( )( , )i jk x x  in (44) can be the widely used Gaussian kernel 

 
2

1 1( ) 1( ) 1( ) 1( )2

1
( , ) exp

2
i j i jk


    
 

x x x x . (47)

According to (28), the tensor kernel ( ) ( )( , )q q i q jk    in (44) can be written as the product of some 

basic kernels 

 1 1 1 2 2 2
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( , ) ( , ) ( , ) ( , )q qq N NN

q q i q j q q i q j q q i q j q q i q jk k k k
                    (48)

where ( ) ( )( , )q q i q jk    denotes the basic kernel on the tensor q  and qN , as mentioned in Section 

3.5, denotes the order of ( )q i  for 2, ,4q   . 

Compared with the multiplicative kernel in (48), the additive kernel has some advantages. The 

first advantage is its comprehensibility. The models with additive kernels are relatively easy to 

interpret (Christmann and Hable, 2012). As Chen et al. (2007) and Verbeke et al. (2011) pointed out, 

comprehensibility is an important metric to evaluate an intelligent model. The second advantage is its 

simplicity because additive kernels are linear combinations of basic kernels. Learning the weights of 
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the sparse additive kernels in a LP model is computationally easy. The tensor kernel (48) can be 

written as the weighted sum of the basic kernels  

 ( ) ( ) ( ) ( )
1

( , ) ( , )
q

q qq

q

q

N
p pp

q q i q j p q q i q j
p

k k    



     , (49)

where 
qp  is the weight of the basic kernel ( ) ( )( , )q qq p pp

q q i q jk
   

  , and qN , as before, denotes the order 

of ( )q i . In the following, γ  is used to represent a vector with components 
qp  for 1, ,q qp N   and 

2, ,4q   . 

When the projection Frobenius norm is used in the basic kernel ( ) ( )( , )q qq p pp
q q i q jk

   
  , the kernel 

used in the QP model in (44)-(46) becomes 

 

( ),1 ( ),1 ( ),1 ( ),1

1 1( ) 2( ) 3( ) 4( )

4 2T T
1 1 1( ) 1( ) 2

2 1

( , , , , , )

1
( , ) exp

2

q
q q q q

q q i q i q j q j

q

i i i i

N
p p p p

i j q p
Fq p

K

k  


       

 



         
 

β γ x

x x V V V V   

  

. (50) 

The kernel with the projection Frobenius norm in (50) is called projection kernel. 

When the Euclidean distance is used, the basic kernel ( ) ( )( , )q qq p pp
q q i q jk

   
   can be written as a 

linear combination of multiple kernels 

  ,

( ) ( ) ( , ) ( , )
1

ˆ( , ) ,
pq

q pq q q qq q

p p pq q q
pq

Z
p zp p p pp

q z qq i q j q i z q j z
z

k k       



     , (51)

where 
qpZ  denotes the number of rows of the modeqp   matrix of the tensor q  and ˆ

pq
z  is the 

weight of the basic kernel  ,

( , ) ( , ),q p q qq

p pq q

p z p p
q q i z q j zk

   
  . 

Using the multiple kernels in (49) and (51), the hierarchical kernel used in the QP model in (44)-

(46) becomes 

 

 
2 1( ) 2( ) 3( ) 4( )

4 ,
1 1 1( ) 1( ) ( , ) ( , )

2 1 1

ˆ( , , , , , , )

ˆ( , ) ,
pq q

q p q qq

q p p pq q q
q pq

i i i i

ZN
p z p p

i j q p z q q i z q j z
q p z

K

k k       

  



   

β γ γ x

x x

  

 
. (52)

In (52), ( , )
q

pq

p
q i z
 

  and ( , )
q

pq

p
q j z
 

  are vectors representing the th
qpz  rows of the modeqp   matrices of 

the tensors ( )q i  and ( )q j , respectively, and ˆ
pq

z  is the weight of the basic kernel 

 ,

( , ) ( , ),q p q qq

p pq q

p z p p
q q i z q j zk

   
  . When convenient, γ̂  will be used to represent the vector with components 



 

17 

 

ˆ
pq

z  for 1, ,
q qp pz Z  , 1, ,q qp N   and 2, ,4q   . The basic kernel  ,

( , ) ( , ),q p q qq

p pq q

p z p p
q q i z q j zk

   
   

can be a standard Gaussian kernel 

   2,

( , ) ( , ) ( , ) ( , )2

1
, exp

2
q p q q q qq

p p p pq q q q

p z p p p p
q q i z q j z q i z q j zk


        

   
 

    . (53)

4.4 Training of the MK-STM 

A two-phase iterative strategy (Chen et al., 2007) is employed to train the MK-STM. When the 

weights β  and γ  in the kernel in (50) (or β , γ  and γ̂  in the kernel in (52)) are fixed, the QP 

problem in (44)-(46) is solved in the first phase with standard SVM training procedures to obtain the 

Lagrangian multipliers α . When the Lagrangian multipliers α  are fixed, the LP boosting method 

adopting the 1 normL  based shrinkage strategy (Demiriz et al., 2002) is employed in the second 

phase to solve the LP problem so as to obtain the sparse coefficients β  and γ  (or β , γ  and γ̂ ). The 

features corresponding to the non-zero components of the coefficients β  and γ  (or β , γ  and γ̂ ) are 

selected from the multitype multiway data. Therefore, the second phase is also a feature selection 

process. With fewer features in the models, the classification performance and the comprehensibility 

of the models can be improved. 

When the Lagrangian multipliers α  are obtained in the first phase, the weights 1w , 2 , 3  and 

4  in (38)-(41) can be obtained. Plugging these weights into the primal model in (34)-(36), the 

coefficients β  and γ  in the kernel (50) can be obtained by solving the following LP problem 

, , ,
min

bβ γ ξ 
 

1 1( ) 2( ) 3( ) 4( )
1 1 1

1
( , , , , , )

2

n n n

i j i j i i i i i
i j i

y y K C  
  

 β γ x     (54)

s.t. 1 1( ) 2( ) 3( ) 4( )
1

( , , , , , ) 1
n

i j j i i i i i
j

y y K b 


 
    

 
 β γ x   

 

1, ,i n   (55)

 0i   1, ,i n   (56)

 0q   1, ,4q    (57)

 0
qp   1, ,q qp N  , (58)

where 1 1( ) 2( ) 3( ) 4( )( , , , , , )i i i iK β γ x     is given in (50). A two-phase strategy, which is nested in the 

above mentioned iterative strategy for the problem in (44)-(46), is adopted to solve the above LP 
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problem. The coefficients γ  are obtained in the first phase using fixed β  and known α . The 

coefficients β  are then obtained in the second phase using fixed γ  and known α . 

After the training of the MT-STM, the bias b  can be computed using any support tensor i  

 
1 1( ) 2( ) 3( ) 4( )

1

( , , , , , )
n

i ii i i i i
i

b y y K


  β γ x        . (59)

When the kernel in (50) is used, the resulting classification function is 

 

0 0 0 0 0 0 0 01( ) 2( ) 3( ) 4( ) 1 1( ) 2( ) 3( ) 4( )
1

( , , , ) sgn ( , , , , , )
n

i i i i i i i i i i
i

f y K b


 
  

 
x β γ x       , (60)

for any observation 0i  with an input  
0 0 0 01( ) 2( ) 3( ) 4( ), , ,i i i ix    . 

When the kernel in (52) is used, the coefficients β , γ  and γ̂  can be obtained by solving the 

following LP problem 

ˆ, , , ,
min

bβ γ γ ξ
  

2 1( ) 2( ) 3( ) 4( )
1 1 1

1
ˆ( , , , , , , )

2

n n n

i j i j i i i i i
i j i

y y K C  
  

 β γ γ x     (61)

s.t. 2 1( ) 2( ) 3( ) 4( )
1

ˆ( , , , , , , ) 1
n

i j j i i i i i
j

y y K b 


 
    

 
 β γ γ x


  

 

1, ,i n   (62)

 0i   1, ,i n   (63)

 0q   1, ,4q    (64)

 0
qp   1, ,q qp N   (65)

 ˆ 0
pq

Z   1, ,
q qp pz Z  . (66)

where 2 1( ) 2( ) 3( ) 4( )ˆ( , , , , , , )i i i iK β γ γ x     is given in (52). Similarly, a three-phase strategy is adopted 

to solve this LP problem sequentially by solving three LP problems so as to obtain the coefficients γ̂ , 

γ  and β . 

When the kernel in (52) is used, the resulting classification function is 

 
0 0 0 0 0 0 0 01( ) 2( ) 3( ) 4( ) 2 1( ) 2( ) 3( ) 4( )

1

ˆ( , , , ) sgn ( , , , , , , )
n

i i i i i i i i i i
i

f y K b


 
  

 
x β γ γ x


        (67)

for any observation 0i  with an input  
0 0 0 01( ) 2( ) 3( ) 4( ), , ,i i i ix    . The bias b


 can be computed using a 

way similar to (59) where b  is determined but with 
0 0 0 01 1( ) 2( ) 3( ) 4( )( , , , , , )i i i iK β γ x     replaced by 

0 0 0 02 1( ) 2( ) 3( ) 4( )ˆ( , , , , , , )i i i iK β γ γ x    . 
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5.  Non-collaborative Ensemble Learning and Multiple SVM Ensemble 

In this section, a NCEL framework is developed. Based on the framework, a data mining model, 

the M-SVM-E, is formulated to integrate multitype multiway data and perform feature selection from 

large sparse multiype multiway data in cross-selling. 

5.1 The NCEL framework 

The M-SVM-E, as a system using multiple SVM classifiers, is an alternative ensemble learning 

method. The M-SVM-E is trained through the NCEL framework. The NCEL framework for cross-

selling recommendations using multitype multiway data includes the following components. 

(1) Data sources. Four types of data like those in the CEL framework are used. 

(2) Unfolding of multiway data. The multiway input data are transformed into multiple modes 

each of which is represented as a matrix. 

(3) Training of the SVMs. Different modes of the multitype multiway data are used as inputs of 

different SVMs and each SVM is individually trained. As mentioned before, there are 1, 2N , 3N  and 

4N  modes for the demographic, related product, similar customer and historical promotion data, 

respectively. Therefore, 2 3 4
ˆ (1 )N N N N     SVMs are in the system of multiple SVM classifiers. 

A standard SVM training procedure is used to train the SVMs of different modes to obtain the 

Lagrangian multipliers 

(4) Learning the weights of multiple SVMs. The LP boosting method is used to obtain the weights 

of these SVMs by solving a LP problem. 

The NCEL framework is based on the M-SVM-E as illustrated in Fig. 2. The framework consists 

of four main components: data sources, unfolding, base learner training and base learner ensemble. 

Different from the CEL framework, each base learner for the NCEL framework is individually trained 

and the training and ensemble of the base learners are performed in two separate phases. 

Classification methods such as the SVMs, artificial neural networks and classification trees can be 

used as the base learners. Besides LP boosting, other ensemble methods such as majority voting (MV), 

weighted majority voting (WMV), mean (M), weighted average (WA), decision templates and 

Dempster-Shafer evidence theory can be used to combine the base learners (Polikar, 2006). When a 
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base learner is not a kernel method such as the SVM, each mode of the multiway data needs to be 

further vectorized so as to be used as the input of the base learner. 

Fig. 2 approximately here 

5.2 The M-SVM-E 

The training dataset of the SVM for the demographic data is 1 1(1) (1){( , )G y x , , 1( ) ( )( , )}n nyx . 

The training dataset of each of the SVMs for the other three types of multiway data is 

(1)(1){( , )qp
q qG y

   , , ( )( )( , )}qp
nq n y

 
 , where ( )

qp
q i
 

  denotes the modeqp   matrix of the tensor 

( )q i , for 2, ,4q    and 1, ,q qp N  . There are N̂  SVMs in the M-SVM-E. For the three types of 

multiway data, the 2 3 4N N N   training datasets are indexed as 

 

2( ) 3( ) 4( )

2 2 2 3 2 3
ˆ2, ,1 ,2 , ,(1 ),(2 ), ,

i i i

g N N N N N N N          
  

, 
(68)

where the related product data 2( )i , similar customer data 3( )i  and historical promotion data 4( )i  

of observation i  have 2N , 3N  and 4N  modes and thus training datasets, respectively. The 

connections among g , q  and qp  are specified as follows 

 2 2 2

2 3 3 3

2 3 4 4 4

1 ,                   1, , ;  2

1 ,           1, , ;  3

1 ,  1, , ;  4

p p N q

g N p p N q

N N p p N q

  
    
     





. (69)

The QP model for the demographic data is a standard SVM model 

1
max
α

  1 1 1 1
( ) ( ) ( ) 1( ) 1( )

1 1 1

1
,

2

n n n

i i j i j i j
i i j

y y k  
  

  
  
  x x  (70)

s.t. 1
( )

1

0
n

i i
i

y


   (71)

 1
( )0 i C   1, ,i n  , (72)

where 1
( )i  for 1, ,i n   are the Lagrangian multipliers of the first SVM. In the following, 1α  

represents the vector with all the elements 1
( )i  for 1, ,i n  . 

For the three types of multiway data, the thg  SVM, for ˆ2, ,g N  , solves the following QP 

problem 
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max
gα

  ( ) ( ) ( ) ( ) ( )
1 1 1

1
,

2
q q

n n n
p pg g g g

i ji i j q i q j
i i j

y y k      

  

  
  
     (73)

s.t. ( )
1

0
n

g
i i

i

y





  (74)

 ( )0 g
i C   1, ,i n  , (75)

where ( )
g
i  for 1, ,i n   are the Lagrangian multipliers of the thg  SVM. In the following, gα  is 

used to represent a vector with components ( )
g
i  for 1, ,i n   and for ˆ2, ,g N  . The following 

unweighted hierarchical kernel is used in the thg  SVM in (73)-(75) 

  ,
( ) ( ) ( , ) ( , )

1

( , ) ,
pq

q pq q q qq

p pq q
pq

Z
p zp p p pg
qq i q j q i z q j z

z

k k
       


     . (76)

The following projection kernel can also be used 

 
( ),1 ( ),1 ( ),1 ( ),1

2T T
( ) ( ) 2

1
( , ) exp

2
q q q q q q

q i q i q j q j

p p p p p pg
q i q j

F
k


            

   
 

V V V V     . (77)

An important issue in the M-SVM-E is how to combine the local results of multiple individual 

SVMs to obtain better classification performance. Selective ensemble, as an ensemble strategy, refers 

to combining the outputs of some instead of all base learners to achieve good performance (Zhou et 

al., 2002). Sparse ensemble, as a special case of selective ensemble, refers to combining the outputs of 

all base learners using a sparse weighting vector (Zhang and Zhou, 2011). Hence, only base learners 

with nonzero weights contribute to the final results of the ensemble. Sparse ensemble is used in the 

M-SVM-E in this study. The LP boosting method minimizes the 1 normL  soft margin error function 

(Demiriz et al., 2002). As a sparse ensemble method, it can select the best combination of multiple 

base learners. 

The weight of the base leaner g  is represented by g  and the vector of all base leaners is 

represented by β̂  with elements g  for ˆ1, ,g N  . A two-phase strategy is employed to train the M-

SVM-E. When the weights β̂  of the base learners are fixed, each of the N̂  QP problems in (70)-(72) 

and in (73)-(75) is solved individually in the first phase with standard SVM training procedures to 

obtain the Lagrangian multipliers gα  for ˆ1, ,g N  . When the Lagrangian multipliers gα  for 



 

22 

 

ˆ1, ,g N   are fixed, the weights β̂  can be obtained in the second phase to combine the local results 

of the N̂  individual SVMs by solving the following LP problem 

ˆ,
min
β ξ

 
ˆ

( )
1 1

ˆ
N n

g i
g i

  
 

   (78)

s.t.  
ˆ

1
( ) 1 ( ) ( ) 1( ) 1( ) ( )( ) ( ) ( )

1 2 1

ˆ ˆ ˆ( , ) , 1q q
n N n

p pg g
i j j i j g j ij q i q j

j g j

y y k y k b       

  

 
     

 
  x x    

1, ,i n   

(79)

 0i   1, ,i n   (80)

 ˆ 0g   ˆ1, ,g N  . (81)

where b̂  is the bias. The resulting classification function is 

  
0 0 0 0

0 0

1( ) 2( ) 3( ) 4( )

ˆ
1

1 ( ) ( ) 1( ) 1( ) ( )( ) ( ) ( )
1 2 1

( , , , )

ˆ ˆ ˆsgn ( , ) ,q q

i i i i

n N n
p pg g

i i i i g ii q i q i
i g i

f

y k y k b       

  



 
   

 
  

x

x x

  

 
, (82)

for any observation 0i  with an input  
0 0 0 01( ) 2( ) 3( ) 4( ), , ,i i i ix    . Because each of the N̂  SVMs in (70)

-(72) and in (73)-(75) has its bias, the bias b̂  can be computed by averaging the biases of the SVMs. 

6.  Computational Experiments 

Two databases, AW-Customers and AW-Resellers, are used to test the performance of the MK-

STM and the M-SVM-E as well as the CEL and NCEL frameworks. Both of the databases are 

extracted from the open access databases AdventureWorksDW1 in Microsoft SQL Server 2005 (Chen 

et al., 2012). The characteristics of the two databases are shown in Tables 1 and 2, respectively. 

Tables 1-2 approximately here 

The computational experiments consist of the following steps: data preparation, data 

preprocessing, model training, parameter selection and model testing. These steps are described in the 

following. 

Data preparation. The original datasets in these two databases are transformed into customer-

centered datasets. Both of the transformed databases consist of four, i.e., the demographic, related 

product, similar customer and historical promotion, datasets. For the AW-Customers database, the 

variables in the demographic dataset include annual income, total number of children, number of 

children at home, occupation and the number of automobiles owned. For the AW-Resellers database, 
                                                      
1 Available at http://msftdbprodsamples.codeplex.com/releases/view/55330. 
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the variables in the demographic dataset include the number of employees, annual sales and the 

number of years in business. For these two databases, the RFM variables in the related product and 

similar customer datasets include the amount spent on the product category (Sales) and the number of 

products purchased in the specific product category (Quantity) per month by each customer, and the 

variable in the historical promotion dataset is the number of promotions received per month by each 

customer. The output of the models is whether or not a customer will purchase a specific product 

which has not been purchased by the customer over the next three months. 

The related product ratio of a specific product, say product A, is defined as the number of units of 

each product other than product A purchased by the customers who purchased product A divided by 

that purchased by the customers who did not purchase product A in the training set. The products with 

high related product ratios are selected as the related products. The customers who have similar Sales 

and Quantity to a specific customer in the training dataset are the similar customers of the specific 

customer. The characteristics and more details of the transformed databases are shown in Table 3. 

Table 3 approximately here 

Data preprocessing. The input data are normalized and the observations with missing values are 

deleted. The related product, similar customer and historical promotion datasets are transformed into 

matrices with multiple modes through unfolding. A holdout validation method is used for the AW-

Customers database. Each transformed dataset in the AW-Customer database is randomly partitioned 

into a training set, a validation set and a testing set. A five-fold cross validation method is used for the 

AW-Reseller database. 

Model training. For the MK-STM, the Lagrangian multipliers α  are obtained by solving the QP 

problem in (44)-(46). The Gaussian kernel (53) is used as the basic kernel. When the projection kernel 

(50) is used, the coefficients β  and γ  are obtained by solving the LP problem in (54)-(58). When the 

hierarchical kernel in (52) is used, the coefficients β , γ  and γ̂  are obtained by solving the LP 

problem in (61)-(66). For the M-SVM-E, one SVM is trained to model the demographic data by 

solving the QP problem in (70)-(72) and ˆ 1N   individual SVMs are trained to model the multitype 

multiway data by solving the QP problem in (73)-(75). The outputs of all the individual SVMs are 

combined to obtain the final results by solving the LP problem in (78)-(81). 
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Parameter tuning and model testing. The grid-search method (Chen et al., 2012) is used to 

determine the values of the parameters including C , C  and 21 /  in the MK-STM as well as C  and 

21 /  in the M-SVM-E. The validation set is used for parameter tuning. The trained models with the 

best parameter values are applied to the testing set to obtain the classification results. 

Seven criteria are used to evaluate the classification performance of the models including the 

percentage of correctly classified observations (PCC), the percentage of correctly classified 

observations in the positive class (Sensitivity), the percentage of correctly classified observations in 

the negative class (Specificity), the area under the receiver operating characteristic curve (AUC), the 

top 10% lift (Lift) and the computational time (Time). 

7. Computational Results 

The computational experiments are carried out in the Matlab 7.4 development environment. The 

laptop computer used for the computation has an Intel Core i7 processor with a 2.80 GHz clock speed 

and has 4GB of RAM. The computational results of the MK-STM, the M-SVM-E and some other 

ensemble learning methods are reported in this section. Comparisons of results of the ensemble 

learning methods and some other supervised tensor learning methods for cross-selling using multitype 

multiway data are also reported. 

7.1 Performance of the MK-STM  

The results of the MK-STM using the projection kernel (50) and the hierarchical kernel (52) on 

the AW-Customers and AW-Resellers databases are reported in Table 4. As shown in Table 4, the 

MK-STM with the hierarchical kernel obtained an AUC of 91.39 and a Lift of 3.01 on the AW-

Customer database and an AUC of 71.09 and a Lift of 2.44 on the AW-Reseller database. The MK-

STM with the hierarchical kernel obtained better AUC and Lift than the MK-STM with the projection 

kernel. Moreover, the Time of the MK-STM with the hierarchical kernel is far less than that with the 

projection kernel. 

Table 4 approximately here 
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7.2 Performance of the M-SVM-E and some other ensemble methods 

The results of the M-SVM-E using the hierarchical kernel on the AW-Customers and AW-

Resellers databases are reported in Tables 5 and 6, respectively. The results of the MK-STM using the 

hierarchical kernel on these two databases are also listed in these two tables. 

Four ensemble methods, i.e., the MV, WMV, M and WA, are used to combine the local results of 

multiple individual SVMs. Their results are compared with those of the MK-STM and the M-SVM-E 

in Tables 5 and 6. For these four ensemble methods, SVMs are used as the base learners. The SVM 

with the Gaussian kernel (47) is used for the demographic data. The SVMs with the unweighted 

hierarchical kernel (76) are used for the multitype multiway data. 

For the WMV and WA, the weights of the base learners can be the normalized classification rates 

of the base learners in the training set or can be those in the weighting strategy in the Adaboost 

algorithm (Polikar, 2006). By comparing their classification performance, normalized classification 

rates of the base learners in the training set are used as the weights of the base learners. 

It can be seen from Table 5 that the MK-STM obtained far higher AUC and Lift and used much 

shorter Time than other methods on the AW-Customer database. The M-SVM-E obtained almost the 

same AUC and used the same Time as the MV, WMV, M and WA. The MV and WMV obtained far 

lower Lift than other methods. 

It can be seen from Table 6 that the MK-STM obtained the second highest AUC and the highest 

Lift and used the shortest Time, the M obtained the highest AUC and the M-SVM-E obtained the 

second highest Lift on the AW-Reseller database. The MK-STM used the shortest and the M-SVM-E 

used the longest Time. 

The results in Tables 5 and 6 show that the MK-STM exhibits the best performance on these two 

databases. These results also show that the M-SVM-E has almost the same performance as the M and 

WA, while the M and WA have better performance than the MV and WMV. 

Tables 5 and 6 approximately here 
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7.3 Comparisons of different supervised tensor learning methods 

The TK, SHTM and STM are three typical supervised tensor learning methods. For the TK, the 

unweighted hierarchical kernel (76) is used as the basic kernel of the multiplicative kernel in (28). It 

should be noted that the TK, SHTK and STM can’t directly deal with multitype multiway data. 

Therefore, the related product data and the historical promotion data are merged as a fourth-order 

tensor which is used as the input of these methods. The results of the TK, SHTK and STM and those 

of the MK-STM and M-SVM-E on the AW-Customers and AW-Resellers databases are compared in 

Tables 7 and 8, respectively. 

As shown in tables 7 and 8, the MK-STM obtained the highest AUC and Lift on these two 

databases, the M-SVM-E obtained the second highest AUC on these two databases and the TK 

obtained the second highest Lift on the AW-Customers database. Although the SHTM took shorter 

Time, its AUC and Lift are far lower than those of the MK-STM, M-SVM-E and TK due to the use of 

the linear kernel. 

Furthermore, the STM (Tao et al., 2007) is a popular supervised tensor learning method. Like the 

SHTM, the STM uses the linear kernel, and thus is not suitable for nonlinear classification. Using the 

alternating projection optimization procedure (Tao et al., 2007), the computational complexity of the 

STM is 3( )O MNn  where M  denotes the number of iterations, N , as used in Section 3, denotes the 

number of modes of the multiway data and n , as used earlier, is the number of observations in the 

training set. The computational complexity of the MK-STM, SHTM and TK is the same as that of the 

SVM, i.e., 3( )O n . The computational complexity of the M-SVM-E and the four other ensemble 

learning methods, i.e., the MV, WMV, M and WA, is 3ˆ( )O Nn  where N̂ , as used earlier, denotes the 

number of base learners and N̂ N  when only one type of multiway data is used. By comparison, the 

STM has the highest computational complexity, and thus the highest computational cost. 

Tables 7-8 approximately here 

8. Conclusions 

In this study, two ensemble learning frameworks, the CEL and the NCEL, one collaborative and 

the other non-collaborative, are developed. Based on these two frameworks, two ensemble learning 

models, the MK-STM and the M-SVM-E, are proposed as data mining tools for cross-selling using 
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multitype multiway data. In comparison with existing supervised tensor learning methods, the major 

contributions of this study are (1) multitype multiway data are incorporated into the learning models 

for cross-selling to improve classification performance so as to improve customer response rate; (2) 

two novel ensemble learning methods, the MK-STM and the M-SVM-E, are proposed to deal with 

multitype multiway data and select features with good discriminative abilities from large sparse 

multitype multiway data; (3) two ensemble learning frameworks, the CEL and the NCEL, are 

developed to apply the classification and ensemble methods for supervised learning with multitype 

multiway data represented by tensors. 

Computational experiments are conducted on two databases extracted from open access databases. 

The experimental results show that (1) the MK-STM exhibits the best performance; (2) the ensemble 

learning methods including the MK-STM, M-SVM-E, M and WA using SVMs as base learners have 

better performance than the existing supervised tensor learning methods including the TK and SHTM; 

and (3) the MK-STM, SHTM and TK are the methods with low computational cost. 

There are a few directions for further research. The association rules and customer segmentation 

methods can be used in the ensemble learning frameworks to select the related products and similar 

customers. In the age of big data, the ensemble learning frameworks and methods, as data mining 

tools, can be applied to integrate multitype multiway data in the fields of CRM and direct marketing 

in social media and social commerce. They can also be extended to the problems of regression, 

clustering and semi-supervised learning. 
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Fig. 1. The CEL framework for cross-selling using multitype multiway data 
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Fig. 2. The NCEL framework for cross-selling using multitype multiway data 
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Table 1. Characteristics of the AW-Customers database 
Datasets Records Customer-centered Timestamp 

Customers 18,485 Yes No 
Customer sales 60,398 No Yes 
Product 37 No No 
Promotion 16 No No 
Time 1158 No No 

 

Table 2. Characteristics of the AW-Resellers database 
Datasets Records Customer-centered Timestamp 

Resellers 701 Yes No 
Reseller sales 60,855 No Yes 
Product 37 No No 
Promotion 16 No No 
Time 1158 No No 

 

Table 3. Characteristics of the transformed databases 

Databases n  Demographic 
data 

Related product 
data 

Similar customer 
data 

Historical 
promotion data 

AW- 
Customers 

4649 1 5m   2 2m  ; 3 2m 

1 24T   
4 2m  ; 5 1m  ;

6 2m  ; 2 24T   
7 2m  ; 8 1m  ;

3 24T   

AW- 
Resellers 

359 1 3m   2 2m  ; 3 2m 

1 18T   
4 2m  ; 5 1m  ;

6 2m  ; 2 24T   
7 1m  ; 8 1m  ;

3 18T   

 

Table 4. Performance of the MK-STM using the hierarchical and projection kernel on the AW-

Customers and AW-Resellers databases 
Databases Kernel PCC Sensitivity Specificity AUC Lift Time(s) 

AW-Customers Hierarchical  88.20 69.91 93.54 91.39 3.01 313.94
AW-Customers Projection 70.80 8.85 88.89 47.20 0.80 4350.20
AW-Resellers Hierarchical  55.56 83.33 49.38 71.09 2.44 147.88
AW-Resellers Projection 47.47 83.33 39.51 64.54 1.83 880.74

 

Table 5. Comparisons of the MK-STM, the M-SVM-E and some other ensemble methods on the AW-

Customers database 
Classifiers Ensemble PCC Sensitivity Specificity AUC Lift Time

MK-STM 88.20 69.91 93.54 91.39 3.01 313.94
M-SVM-E 50.20 48.67 50.65 56.78 1.33 409.98
SVM MV 76.80 0.00 99.22 55.23 0.00 406.60
SVM WMV 77.00 0.88 99.22 55.48 0.09 406.60
SVM M 52.80 45.13 55.04 56.87 1.24 406.60
SVM WA 68.20 33.63 78.29 57.00 1.33 406.60
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Table 6. Comparisons of the MK-STM, the M-SVM-E and some other ensemble methods on the AW-

Resellers database 
Classifiers Ensemble PCC Sensitivity Specificity AUC Lift Time 

MK-STM 55.56 83.33 49.38 71.09 2.44 147.88
M-SVM-E 51.51 88.88 43.21 68.48 1.93 1008.64
SVM MV 20.20 100.00 2.47 63.34 1.22 564.43
SVM WMV 20.20 100.00 2.47 62.31 0.61 564.43
SVM M 22.22 100.00 4.94 72.43 1.22 564.43
SVM WA 22.22 100.00 4.94 71.16 0.61 564.43

 

Table 7. Comparisons of the MK-STM, the M-SVM-E and some other tensor learning methods on the 

AW-Customers database 
Methods PCC Sensitivity Specificity AUC Lift Time 

MK-STM 88.20 69.91 93.54 91.39 3.01 313.94
M-SVM-E 50.20 48.67 50.65 56.78 1.33 409.98
TK 67.80 31.86 78.29 55.63 1.50 133.22
SHTM 78.20 10.62 97.93 32.27 1.06 253.69
STM 66.80 3.54 85.27 68.16 0.09 461.22

 

Table 8. Comparisons of the MK-STM, the M-SVM-E and some other tensor learning methods on the 

AW-Resellers database 
Methods PCC Sensitivity Specificity AUC Lift Time 

MK-STM 55.56 83.33 49.38 71.09 2.44 147.88
M-SVM-E 51.51 88.88 43.21 68.48 1.93 1008.64
TK 65.45 66.67 29.63 55.73 1.22 111.34
SHTM 81.81 0.00 100.00 51.23 0.00 65.07
STM 77.78 0.00 100.00 46.91 0.00 817.52
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