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ABSTRACT
Malicious websites have become a major attack tool of the adver-
sary. There are two main approaches to detect malicious websites:
static anddynamic. The static approach is centered on the static
analysis of website contents and can scale up to a large number of
websites in cyberspace. However, this approach has limitedsuc-
cess in dealing with sophisticated attacks that include obfuscation.
The dynamic approach is centered on the analysis of website con-
tents via their run-time behaviors, and can cope with these sophisti-
cated attacks. However, this approach is often expensive and cannot
scale up to the magnitude of the number of websites in cyberspace.
This research aims to achieve the best performance of two mali-
cious website detection approaches simultaneously. In this paper,
we propose an analysis of the corresponding network-layer traffic
between the browser and the web server by incorporating the static
analysis of website contents, which is conducted at the application
layer. The insight of this approach is that the network-layer may ex-
pose useful information about malicious websites from a different
perspective. Evaluation based on the data collected during37 days
shows that certain cross-layer detection methods can be almost as
effective as the dynamic approach. Performance experiments show
that, when both approaches are deployed as a service, the cross-
layer detection approach is about 50 times faster than the dynamic
approach.

Categories and Subject Descriptors
K.6.5 [MANAGEMENT OF COMPUTING AND INFORMA-
TION SYSTEMS]: Security and Protection—Invasive software

General Terms
Security
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1. INTRODUCTION
Malicious websites have become a severe cyber threat because

they can cause the automatic download and execution of malware
in browsers, and thus compromise vulnerable computers [32]. The
phenomenon of malicious websites will persevere in the future be-
cause we cannot prevent websites from being compromised or abused.
For example, Sophos Corporation has identified the percentage of
malicious code that is hosted on hacked sites as 90% [6]. Often
the malicious code is implanted using SQL injection methodsand
shows up in the form of an embedded file. In addition, stolen ftp
credentials allow hackers to have direct access to files, where they
can implant malicious code directly into the body of a web page or
again as an embedded file reference. Yet another powerful adver-
sarial technique is obfuscation [36], which is very difficult to cope
with. These attacks are attractive to hackers because the hackers
can exploit them to better hide the malicious nature of theseem-
bedded links from the defenders.

Existing approaches to detect malicious websites can be classi-
fied into two categories:

• The static approach aims to detect malicious websites by
analyzing their URLs [25, 26] or their contents [39]. This
approach is very efficient and can scale up to deal with the
huge population of websites in cyberspace. This approach
however has limited success in coping with the aforesaid so-
phisticated attacks, and can cause high false-negative rates
by classifying malicious websites as benign ones.

• Thedynamicapproach aims to detect malicious websites by
analyzing their run-time behaviors using Client Honeypots
or their like [38, 28, 40, 4, 3]. This approach is very effec-
tive. However, it is resource-consuming because it runs or
emulates the browser and possibly the operating system [9],
and thus cannot scale up to deal with the large number of
websites in cyberspace.

How can we achieve the best of the static and dynamic approaches
simultaneously? A simple solution is to run a front-end static anal-
ysis tool that aims to rapidly detect suspicious websites, which are
then examined by a back-end dynamic analysis tool. However,
the effectiveness of this approach is fundamentally limited by the
assumption that the front-end static analysis tool has a very low
false-negative rate; otherwise, many malicious websites will not be



examined by the back-end dynamic analysis tool. Unfortunately,
static analysis tools often incur high false-negative rates, especially
when malicious websites are equipped with the aforesaid sophisti-
cated techniques. In this paper, we propose a novel technique by
which we can simultaneously achieve almost the same effective-
ness of the dynamic approach and the efficiency of the static ap-
proach. The core idea is to exploit the network-layer or cross-layer
information that somehow exposes the nature of malicious websites
from a different perspective.

1.1 Our Contributions
We propose an analysis of the corresponding network-layer traf-

fic between the browser and the web server by incorporating the
static analysis of website contents. The insight of this approach is
that the network-layer may expose useful information aboutmali-
cious websites from a different perspective. The cross-layer detec-
tion is further coupled with the trick of statically tracingredirects,
which are embedded into the websites to hide the actual websites
that disseminate malwares. That is, the redirection URLs are not
obtained via dynamic analysis, but obtained by slightly extending
the static analysis method. This allows us to consider not only redi-
rection related features of the present website, but also the redirec-
tion website contents.

Evaluation of our approach is based on real data that is collected
during the span of 37 days. We find that cross-layer detection
can be almost as effective as the dynamic approach and almostas
efficient as the static approach, where effectiveness is measured
via the vector of (detection accuracy, false-negative rate, false-
positive rate). For example, using the dynamic approach as effec-
tiveness base, our data-aggregation cross-layer classifier achieves
(99.178%, 2.284%, 0.422%), while the application-layer classifier
only achieves (96.394%, 6.096%, 2.933%). Moreover, theXOR-
aggregation cross-layer classifier can achieve (99.986%, 0.054%,
0.003%), while resorting only 0.014% of the websites to the dy-
namic approach. We also discuss the deployment issues of the
cross-layer detection approach. Since performance experiments
in Section 4.4 show that the cross-layer detection can be 50 times
faster than the dynamic approach when processing a batch of URLs,
the cross-layer detection is very suitable for deployment as a ser-
vice. Moreover, the cross-layer detection incurs no more than 4.9
seconds for processing an individual URL, whereas the dynamic
approach takes 20 seconds to process a URL on average. This
means that the cross-layer detection would be acceptable for real-
time detection.

1.2 Related Work
Both the industry and academia are actively seeking effective

solutions to the problem of malicious websites. The industry has
mainly offered their proprietary blacklists of malicious websites,
such as Google’s Safe Browsing [1] and Mcafee’s SiteAdvisor[5].
Effectiveness of the blacklist approach is fundamentally limited by
the frequency the blacklists are updated and disseminated.This jus-
tifies why we advocate pursuing light-weight real-time detection,
which is the goal of the present paper.

Researchers have used logistic regression to study phishing URLs
[18], which does not consider the issue of redirection. On the other
hand, redirection has been used as an indicator of web spams [8, 29,
41, 33]. Kurt et al. [39] presented a system for scalably detecting
spam contents. Ma et al. [25, 26] studied how to detect phishing
and spams based on URLs themselves.

In terms of detecting malicious websites that may host malwares,
Choi et al. [11] investigated the detection of malicious URLs, and
Canali et al. [9] presented the design and implementation ofa static

detection tool called Prophiler. However, all these studies did not
consider the usefulness of cross-layer detection. On the other hand,
the back-end system for deeper analysis is also an active research
topic [13, 10, 42, 27], because attackers have been attempting to
circumvent dynamic analysis [23, 35].

The rest of the paper is organized as follows. Section 2 describes
our cross-layer data collection and analysis methodology.Section 3
investigates two single-layer detection systems. Section4 presents
our cross-layer detection systems. Section 5 explores the deploy-
ment of cross-layer detection systems. Section 6 discussesthe lim-
itation of the present study and future research directions. Section
7 concludes the present paper.

2. METHODOLOGY
We now describe the methodology underlying our study, includ-

ing data collection, data pre-processing, evaluation metrics and data
analysis methods. The methodology is general enough to accom-
modate single-layer analyses, but will be extended slightly to ac-
commodate extra ideas that are specific to cross-layer analyses.

2.1 Data Collection
In order to facilitate cross-layer analysis and detection,we need

an automated system to collect both the application-layer website
contents and the corresponding network-layer traffic. The archi-
tecture of our automated data collection system is depictedin Fig-
ure 1. At a high level, the data collection system is centeredon a
crawler. The crawler takes a list of URLs as input, automatically
fetches the website contents by launching HTTP/HTTPS requests
and tracks the redirects that are identified from the websitecontents
(elaborated below). The crawler also uses the URLs, including the
input URL and the detected redirection URLs, to query the DNS,
Whois, and Geographic services. This collects informationabout
the registration dates of websites and the geographic locations of
the URL owners/registrants. The application-layer website con-
tents and thecorrespondingnetwork-layer IP packets are recorded
separately (where the IP packets are caused by the application-layer
activities), but are indexed by the input URLs to facilitatecross-
layer analysis.

Figure 1: Data collection system architecture.

As mentioned above, the data collection system proactivelytracks
redirects by analyzing the website contents in a static fashion. Specif-



ically, it considers the following four types of redirects.The first
type is the server side redirects, which are initiated either by server
rules (i.e.,.htaccess file) or by server side page code such as
PHP. These redirects often utilize HTTP 300 level status codes.
The second type is JavaScript-based redirects. The third type is
the refresh Meta tag and the HTTP refresh header, which allowto
specify the URLs of the redirection pages. The fourth type isthe
embedded file redirects. Some examples of this type are the fol-
lowing: <script src=’badsite.php’> </script>,
<iframe src=’badsite.php’/>,
and<img src=’badsite.php’/>.

The input URLs may consist of malicious and benign websites.
A URL is malicious if the corresponding website content is mali-
cious or any of its redirects leads to a URL that corresponds to ma-
licious content; otherwise, it is benign. In this paper, thetermsma-
licious URLsandmalicious websitesare used interchangeably. In
our experimental system for training and testing detectionmodels,
malicious URLs are initially obtained from the following blacklists:
compuweb.com/url-domain-bl.txt,malware.com.br,
malwaredomainlist.com,zeustracker.abuse.chand
spyeyetracker.abuse.ch. Since some of the blacklisted
URLs are not accessible or malicious any more, we use the high-
interactive client honeypot called Capture-HPC version 3.0 [38]
to identify the subset of URLs that are still accessible and mali-
cious. To be concrete, our experiments were based on Capture-
HPC, which is assumed to offer the ground truth. This is a practi-
cal choice because we cannot manually analyze the large number
of websites. Even if we can, manual analysis might be still error-
prone. Note that any dynamic analysis system (e.g., anotherclient
honeypot system) can be used instead in a plug-and-play fashion.
Pursuing a client honeypot that truly offers the ground truth is an
orthogonal research problem. The benign URLs are obtained from
alexa.com, which lists the top 2,088 websites that are supposed
to be well protected. The data was collected for a period of 37days
between 12/07/2011 and 01/12/2012, with the input URLs updated
daily.

2.2 Data Pre-Processing
Each input URL has an associated application-layer raw fea-

ture vector. The features record information such as HTTP header
fields, information returned by DNS, Whois and Geographic ser-
vices, information about JavaScript functions that are called in the
JavaScript code embedded into the website content, information
about redirects (e.g., redirection method, whether or not aredirect
points to a different domain, and the number of redirection hops).
Since different URLs may lead to different numbers of redirection
hops, the raw feature vectors may not have the same number of fea-
tures. In order to facilitate analysis, we use a pre-processing step to
aggregate multiple-hop information into someartificial single-hop
information. Specifically, for numerical data, we aggregate them by
using their average instead; for boolean data, we aggregatethem
by taking theOR operation; for nominal data, we only consider
the final destination URL of the redirection chain. For example,
suppose the features of interest are: (Content-Length, “Does
JavaScript functioneval() exist in the code?",Country). Sup-
pose an input URL is redirected twice to reach the final destination
URL, and the raw feature vectors corresponding to the input,first
redirect, and second redirect URLs are (100,FALSE, US), (200,
FALSE, UK), and (300,TRUE, RUSSIA), respectively. We aggre-
gate the three raw features into a single feature (200,TRUE, RUS-
SIA). After the pre-processing step, the application-layer data have
105 features, some of which will be elaborated below.

Each input URL has an associated network-layer raw feature

vector. The features are extracted from the corresponding PCAP
(Packet CAPture) files that are recorded when the crawler accesses
the URLs. There are 19 network-layer features that are derived
from the IP, UDP/TCP or flow level, where a flow is uniquely iden-
tified by a tuple (source IP, source port number, destinationIP, des-
tination port number, protocol).

Each URL is also associated with a cross-layer feature vector,
which is simply the concatenation of its associated application-
layer and network-layer feature vectors.

2.3 Data Description
The resulting data has 105 application-layer features of 4 sub-

classes and 19 network-layer features of 3 sub-classes. Throughout
the paper, “average" means the average over the 37-day data.

2.3.1 Application-Layer Features

Feature based on the URL lexical information.
We defined 15 features based on the URL lexical information, 3

of which are elaborated below.
(A1): URL_Length. URL consist of serval parts: protocol, do-
main name or plain IP address, optional port, directory file,and
when using HTTP Get to request information from a server, a ques-
tion mark that is followed by a list of “key = value" pairs. In
order to make malicious URLs hard to blacklist, malicious URLs
often include automatically and dynamically generated long ran-
dom character strings. Our data showed that the average length of
benign URLs is 18.23 characters, whereas the average lengthof
malicious URLs is 25.11 characters.
(A2): Number_of_special_characters_in_URL. This is
the number of special characters (e.g., ?, -, _, =, %) that appear in
a URL. Our data showed that benign URLs used on average 2.93
special characters, whereas malicious URLs used on average3.36
special characters.
(A3): Presence_of_IP_address_in_URL. This feature in-
dicates whether an IP address is presented as the domain namein
a URL. Some websites use IP addresses instead of domain names
in URL often because the IP addresses represent the compromised
computers that actually do not have registered domain names. This
explains why this feature may be indicative of malicious URLs.
This feature has been used in [9].

Features based on the HTTP header information.
We defined 15 features based on the HTTP header information,

4 of which are elaborated below.
(A4): Charset. This is the encoding charset of URL in question
(e.g., iso-8859-1). It hints the language a website used andthe
ethnicity of the targeted users of the website. It is also indicative of
the nationality of the webpage.
(A5): HTTPHeader_server. This is the server field in the http
response head. It gives the software information at the server side,
such as the webserver type/name and its version. Our data showed
that the Top 3 webservers that were abused to host malicious web-
sites are Apache, Microsoft IIS, nginx, which respectivelycorre-
spond to 322, 97, 44 malicious websites on average. On the other
hand, Apache, Microsoft IIS, nginx were abused to host 879, 253,
357 benign websites on average.
(A6): HTTPHeader_cacheControl. Four cache control strate-
gies are identified in the websites of our data: no-cache, private,
public, and cache with max-age. The average numbers of benign
websites that use these strategies are respectively 444, 276, 67, and
397, whereas the average numbers of malicious websites thatuse
these strategies are respectively 99, 46, 0.5, and 23.



(A7): HTTPHeader_content_length. This feature indicates
the content-length field of a HTTP header in question. For mali-
cious URLs, the value of this field may be manipulated so that it
does not match the actual length of the content.

Features based on the host information (include DNS, Whois
data).

We defined 7 features based on the host information, 5 of which
are elaborated below.
(A8-A9): Whois_regDate andUpdated_date. These two
features are closely related to each other. They indicate the dates
the webserver was registered and updated with the Whois service,
respectively. Our data showed that on average, malicious websites
were registered in 2004, whereas benign websites were registered
in 2002. We also observed that on average, malicious websites
were updated in 2009, about one year earlier than the update dates
of 2010 for benign websites .
(A10-A11): Whois_country andWhois_stateProv. These
two features respectively indicate the counter and the location where
the website was registered. These two features, together with the
aforementionedcharset feature, can be indicative of the loca-
tions of websites. Our data showed that the average numbers of be-
nign websites registered in US, NL, and AU are respectively 618,
523, and 302; whereas the average numbers of malicious websites
registered in US, NL, and AU are respectively 152, 177, and 98.
(A12): Within_domain. This feature indicates whether or not
the destination URL and the original URL are in the same domain.
Redirection has been widely used by both benign and malicious
websites. From our data, we found that malicious websites are
more often redirected to exploit servers that reside in different do-
mains. Specifically, we found that 21.7% malicious websitesredi-
rect to different domains, whereas 16.1% benign websites redirect
to different domains.

Features based on web content information (includes HTML
and Script source code).

We defined 68 content-based features, 7 of which are described
as follows.
(A13): Number_of_Redirect. This is the total number of
redirects embedded into an input URL. It is indicative of malicious
URLs because our data showed that on average, malicious URLs
have 0.67 redirects whereas benign URLs have 0.43 redirects. Note
that this feature is unique at the application layer becauseit cannot
be precisely obtained at the network layer, which cannot tell a redi-
rect from a normal link.
(A14): Number_of_embedded_external_URLs. This fea-
ture counts the number of URLs that are embedded into the in-
put URL and use external resources (e.g., image, voice and video).
This feature can be indicative of malicious URLs because external
URLs are often abused by attackers to import malicious content to
hacked URLs.
(A15): Content_length_valid. This feature checks the con-
sistency between theHTTPHeader_content_Length feature
value (i.e., the value of the content length field in HTTP header) and
the actual length of web content. It is relevant because the content
length field could be a negative number, which may cause buffer
overflow attacks. This feature has been used in [11].
(A16): Number_of_long_strings. This feature counts the
number of long strings used in the JavaScript code that is embed-
ded into the input URL. A string is considered long if its length is
greater than 50. Because attackers try to encode some shell code
into a string and then use heap-overflow to execute that shellcode,
this feature can be indicative of malicious URLs as suggested in [9].

Our data showed that the averageNumber_of_long_strings
is 0.88 for malicious URLs and 0.43 for benign URLs.
(A17-A18): Number_of_iframe and
number_of_small_size_iframe. These two features re-
spectively count how many iframe and small size iframes are present
in a webpage. If any iframe contains malicious code, the URL is
malicious. Small size iframe is even more harmful because itim-
ports malicious content that is invisible to the users.
(A19): Number_of_suspicious_JavaScript_functions. This fea-
ture indicates whether or not the JavaScript code is obfuscated. We
check suspicious JavaScript functions in both the script block and
the imported JavaScript files such aseval(), escape(), and
unescape(). These JavaScript functions are often used by at-
tackers to obfuscate their code and bypass statical analysis. For ex-
ample,eval() can be used to dynamically execute a long string
at runtime, where the string can be the concatenation of manydy-
namic pieces of obfuscated substrings at runtime. This willmake
them hardly detected by statical analysis. This feature hasbeen
used in [21]

2.3.2 Network-Layer Features

Features based on remote server attributes.
(N1): Tcp_conversation_exchange. This is the total num-
ber of TCP packets sent to the remote server by the crawler. Mali-
cious websites often use rich web resources that may cause multi-
ple HTTP requests sent to webserver. Our data showed the average
Tcp_conversation_exchange is 73.72 for malicious web-
sites and 693.38 for benign websites.
(N2): Dist_remote_TCP_port. This is the total number of
distinct TCP ports that the remote webserver used during thecon-
versation with the crawler. Our data showed that benign websites
often use the standard http port 80, whereas malicious websites
often use some of the other ports. Our data showed the average
Dist_remote_TCP_port is 1.98 for malicious websites and
1.99 for benign websites.
(N3): Remote_ips. This is the number of distinct remote IP ad-
dresses connected by the crawler, not including the DNS server IP
addresses. Multiple remote IP addresses can be caused by redi-
rection, internal and external resources that are embeddedinto the
webpage corresponding to the input URL. Our data showed the av-
erageRemote_ips is 2.15 for malicious websites and 2.40 for
benign websites.

Features based on crawler-server communication.
(N4): App_bytes. This is the number of Bytes of the application-
layer data sent by the crawler to the remote webserver, not in-
cluding the data sent to the DNS servers. Malicious URLs often
cause the crawler to initiate multiple requests to remote servers,
such as multiple redirections, iframes, external links to other do-
main names. Our data showed the averageApp_bytes is 36818
bytes for malicious websites and 53959 bytes for benign websites.
(N5): UDP_packets. This is the number of UDP packets gener-
ated during the entire lifecycle when the crawler visits an URL, not
including the DNS packets. Benign websites with online streaming
application (such as video, audio and internet phone) will generate
lots of UDP packets, whereas malicious websites often incurlots
of TCP packets. Our data showed the averageUDP_packets for
both benign and malicious URLs are 0 because the crawler does
not download any video/audio stream from the sever.
(N6): TCP_urg_packets. This is the number of urgent TCP
packets with the URG (urgent) flag set. Some attacks abuse this flag
to bypass the IDS or firewall systems that are not properly setup. If



a packet has the URGENT POINTER field set, but the URG flag is
not set, this constitutes a protocol anomaly and usually indicates a
malicious activity that involves transmission of malformed TCP/IP
datagrams. Our data showed the average is 0.0003 for malicious
websites and 0.001 for benign websites.
(N7): Source_app_packets. This the number of packets send
by the crawler to remote servers. Our data showed the average
source_app_packets is 130.65 for malicious websites and
35.44 for benign websites.
(N8): Remote_app_packets. This the number of packets send
by the the remote webserver(s) to the crawler. This feature is unique
to the network layer. Our data showed the average value of this fea-
ture is 100.47 for malicious websites and 38.28 for benign websites.
(N9): Source_app_bytes. This is the volume (bytes) of the
crawler-to-webserver communications. Our data showed that the
average application payload volumes of benign websites andmali-
cious websites are about 146 Bytes and 269 Bytes, respectively.
(N10): Remote_app_bytes. This is the volume (bytes) of data
from the webserver(s) to the crawler, which is similar to feature
Source_app_byte. Our data showed the average value of this
feature is 36527 bytes for malicious websites and 49761 bytes for
benign websites.
(N11): Duration. This is the the duration of time, starting from
the point the crawler was fed with an input URL to the point the
webpage was successfully obtained by the crawler or an errorre-
turned by the webserver. This feature is indicative of malicious
websites because visiting malicious URLs may cause the crawler
to send multiple DNS queries and multiple connections to multiple
web servers, which could lead to a high volume of communica-
tions. Our data showed that visiting benign websites causes0.793
seconds duration time on average, whereas visiting malicious web-
sites causes 2.05 seconds duration time on average.
(N12): Avg_local_pkt_rate. This is the average rate of IP
packets (packets per second) that are sent from the crawler to the
remote webserver(s) with respect to an input URL, which equals to
source_app_packets/duration. This feature measures the
packet sending speed of the crawler, which is related to the richness
of webpage resources. Webpages containing rich resources often
cause the crawler to send large volume of data to the server. Our
data showed the averageAvg_local_pkt_rate is 63.73 for
malicious websites and 44.69 for benign websites.
(N13): Avg_remote_pkt_rate. This is the average IP packets
rate (packets per second) sent from the remote server to the crawler.
When multiple remote IP addresses are involved (e.g., because of
redirection or because of the webpage using external links), we
amortize the number of packets to them, despite that some remote
IP addresses may send more packets than others back to the crawler.
Websites containing malicious code or contents can cause large vol-
ume communications between the remote server(s) and the crawler.
Our data showed the averageAvg_remote_pkt_rate rate is
63.73 for malicious websites and is 48.27 for benign websites.
(N14): App_packets. This is the total number of IP packets
generated for obtaining the content corresponding to an input URL,
including redirects and DNS queries. It measures the data exchange
volume between the crawler and the remote webserver(s). Ourdata
showed the average value of this feature is 63.73 for malicious web-
sites and 48.27 for benign websites.

Features based on crawler-DNS flows.
(N15): DNS_query_times. This is the number of DNS queries
sent by the crawler. Because of redirection, visiting malicious URLs
often causes the crawler to send multiple DNS queries and to con-
nect multiple remote webservers. Our data showed the average

value of this feature is 13.30 for malicious websites and 7.36 for
benign websites.
(N16): DNS_response_time. This is the response time of DNS
servers. Benign URLs often have longer life-times and theirdo-
main names are more likely cached at local DNS servers. As a
result, the average value of this feature of benign URLs may be
shorter. Our data showed the average value of this feature is13.29
ms for malicious websites and are 7.36 ms for benign websites.

Features based on aggregated values.
(N17): Iat_flow. This is the accumulated inter-arrival time be-
tween consecutive flows. Given two consecutive flows, the inter-
arrival time is the difference between the timestamp of the first
packet in each flow. Our data showed the averageIat_flow is
1358.4 for malicious websites and 512.99 for benign websites.
(N18): Flow_number. This is the number of flows generated
during the entire lifecycle for the crawler to download the web con-
tent corresponding to an input URL, including the recursivequeries
to DNS and recursive access to redirects. It includes both TCP
flows and UDP flows, and is a more general way to measure the
communications between the crawler and the remote webservers.
Each resource in the webpage may generate a new flow. This fea-
ture is also unique to the network layer. Our data showed the av-
erageFlow_number is 19.48 for malicious websites and 4.91 for
benign websites.
(N19): Flow_duration. This is the accumulated duration of
each basic flow. Different from featureDuration, this feature in-
dicates the linear process time of visiting an URL. Our data showed
the averageFlow_duration is 22285.43 for malicious websites
and 13191 for benign websites.

2.4 Effectiveness Metrics
In order to compare different detection models (or methods,al-

gorithms), we consider three effectiveness metrics:detection accu-
racy, false-negative rate, andfalse-positive rate. Suppose we are
given a detection model (e.g., J48 classifier or decision tree), which
may be learned from the training data. Suppose we are given a
test data that consists ofd1 malicious URLs andd2 benign URLs.
Suppose further that the detection model correctly detectsd′1 out
of thed1 malicious URLs andd′2 out of thed2 benign URLs. The

detection accuracy is defined asd
′

1
+d

′

2

d1+d2
. The false-negative rate is

defined asd1−d
′

1

d1
. The false-positive rate is defined asd2−d

′

2

d2
. A

good detection model achieves high effectiveness (i.e., high detec-
tion accuracy, low false-positive and false-negative rate).

2.5 Data Analysis Methods
In order to identify the better detection model, we considerfour

popular machine learning algorithms: Naive Bayes, Logistic re-
gression, Support Vector Machine (SVM) and J48. Naive Bayes
classifier is a probabilistic classifier based on Bayes’ rule[22]. Lo-
gistic regression classifier [24] is one kind of linear classification,
where the domain of the target variable is0, 1. SVM classifier
aims to find an maximum-margin hyperplane for separating differ-
ent classes in the training data [12]. We use the SMO (Sequential
Minimal-Optimization) algorithm in our experiment with polyno-
mial kernel function [31]. J48 classifier is an implementation of
C4.5 decision trees [34] for binary classification. These algorithms
have been implemented in the Weka toolbox [19], which also re-
solves issues such as missing feature data and conversion ofstrings
to numbers.

In order to know whether using a few features is as powerful as
using all features and which features are more indicative ofma-



licious websites, we consider the following three feature selection
methods. The first method is Principle Component Analysis (PCA),
which transforms a set of feature vectors to a set of shorter fea-
ture vectors [19]. The second feature selection method is called
“CfsSubsetEval with best-first search method" in the Weka
toolbox [19], orSubset for short. It essentially computes the
features’ prediction power according to their contributions [20].
It outputs a subset of features, which are substantially correlated
with the class but have low inter-feature correlations. Thethird
feature selection method is called “InfoGainAttributeEval
with ranker search method" in the Weka toolbox [19], orInfoGain
for short. Its evaluation algorithm essentially computes the infor-
mation gain ratio (or more intuitively the importance of each fea-
ture) with respect to the class. Its selection algorithm ranks features
based on their information gains [14]. It outputs the ranks of all
features in the order of decreasing importance.

3. SINGLE-LAYER DETECTION OF MALI-
CIOUS WEBSITES

In this section, we investigate two kinds of single-layer detec-
tion systems. One uses the application-layer information only, and
corresponds to the traditional static approach. The other uses the
network-layer information only, which is newly introducedin the
present paper. The latter was motivated by our insight that the net-
work layer may expose useful information about malicious web-
sites from a different perspective. At each layer, we reportthe re-
sults obtained by using the methodology described in Section 2.

The application-layer and network-layer effectiveness results av-
eraged over the 37 days are described in Table 1. For application-
layer detection, we make two observations.

• J48 classifier is significantly more effective than the other
three detection models, whether feature selection is used or
not. However, J48 classifiers may incur somewhat high false-
negative rates.

• Feature selection will significantly hurt detection effective-
ness, which is true even for J48 classifiers. This means that
conducting feature selection at the application layer doesnot
appear to be a good choice.

For network-layer detection, we observe the following:

• J48 classifier is significantly more effective than the other
three detection models, whether feature selection is used or
not. Note that although Naive Bayes incurs a lower false-
negative rate, it has a very low detection accuracy. Similarto
what we observed at the application layer, J48 classifier also
incurs pretty high false-negative rates, meaning that network-
layer alone is not competent.

• Overall, feature selection hurts detection effectiveness. This
also means that conducting feature selection at the network
layer is not a good idea.

By comparing the application layer and the network layer, we
observed two interesting phenomena. First, each single-layer de-
tection method has some inherent limitation. Specifically,since
we were somewhat surprised by the high false-negative and false-
positive rates of the single-layer detection methods, we want to
know whether they are caused by some outliers (extremely high
rates for some days), or are persistent over the 37 days. By looking
into the data in detail, we found that the false-negative andfalse-
positive rates are reasonably persistent. This means that single-
layer detection has some inherent weakness.

Second, we observe that network-layer detection is only slightly
less effective than application-layer detection. This confirms our
original insight that the network-layer traffic data can expose use-
ful information about malicious websites. Although network-layer
detection alone is not good enough, this paved the way for explor-
ing the utility of cross-layer detection of malicious websites, which
is explored in Section 4.

4. CROSS-LAYER DETECTION OF MALI-
CIOUS WEBSITE

Having showed that network-layer traffic information can give
approximately the same detection effectiveness of the application
layer, now we show how cross-layer detection can achieve much
better detection effectiveness. Given the pre-processed feature vec-
tors at the application and network layers, we extend the preceding
methodology slightly to accommodate extra ideas that are specific
to cross-layer detection.

• Data-aggregation cross-layer detection: For a given URL,
we obtain its cross-layer feature vector by concatenating its
application-layer feature vector and its network-layer feature
vector. The resultant feature vectors are then treated as the
pre-processed data in the methodology described in Section
2 for further analysis.

• OR-aggregation cross-layer detection: For a given URL, if
either the application-layer detection model or the network-
layer detection model says the URL is malicious, then the
cross-layer detection model says the URL is malicious; oth-
erwise, the cross-layer detection model says the URL is be-
nign. This explains why we call itOR-aggregation.

• AND-aggregation cross-layer detection: For a given URL, if
both the application-layer detection model and the network-
layer detection model say the URL is malicious, then the
cross-layer detection model says the URL is malicious; oth-
erwise, the cross-layer detection model says the URL is be-
nign. This explains why we call itAND-aggregation.

• XOR-aggregation cross-layer detection: For a given URL, if
both the application-layer detection model and the network-
layer detection model say the URL is malicious, then the
cross-layer detection model says the URL is malicious; if
both the application-layer detection model and the network-
layer detection model say the URL is benign, then the cross-
layer detection model says the URL is benign. Otherwise, the
cross-layer detection model resorts to the dynamic approach.
That is, if the dynamic approach says the URL is malicious,
then the cross-layer detection model says the URL is ma-
licious; otherwise, the cross-layer detection model says the
URL is benign. We call itXOR-aggregation because it is in
the spirit of the XOR operation.

We stress that theXOR-aggregation cross-layer detection model re-
sides in between the above three cross-layer detection models and
the dynamic approach because it partly relies on the dynamicap-
proach. XOR-aggregation cross-layer detection is practicalonly
whenit rarely invokes the dynamic approach.

4.1 Overall Effectiveness of Cross-Layer De-
tection

The effectiveness of cross-layer detection models, averaged over
the 37 days, is described in Table 2, from which we observe the



Feature Naive Bayes Logistic SVM J48
selection? Acc (%) FN (%) FP (%) Acc (%) FN (%) FP (%) Acc (%) FN (%) FP (%) Acc (%) FN (%) FP (%)

application-layer average detection effectiveness
none 51.260 11.029 59.275 90.551 22.990 5.692 85.659 55.504 3.068 96.394 6.096 2.933
PCA 67.757 9.998 38.477 91.495 20.526 5.166 89.460 30.031 5.189 95.668 9.537 2.896
Subset 77.962 35.311 18.162 86.864 37.895 6.283 84.688 51.671 5.279 93.581 15.075 3.999
InfoGain 71.702 19.675 30.664 84.895 43.857 7.097 83.733 52.071 6.363 94.737 12.148 3.390

network-layer average detection effectiveness
none 51.767 0.796 61.645 90.126 21.531 6.630 86.919 24.449 9.986 95.161 9.127 3.676
PCA 67.766 4.017 40.278 87.454 30.651 7.520 85.851 32.957 9.346 89.907 22.587 6.604
Subset 70.188 0.625 38.035 88.141 25.629 8.061 86.534 25.397 10.188 92.415 14.580 5.658
InfoGain 55.533 0.824 56.801 86.756 29.783 8.647 82.822 40.875 10.560 92.853 15.442 4.852

Table 1: Single-layer average effectiveness (Acc: detection accuracy; FN: false negative rate; FP: false positive rate)

following. First, data-aggregation cross-layer J48 classifier with-
out using feature selection achieves (99.178%, 2.284%, 0.422%)-
effectiveness, which is significantly better than the application-layer
J48 classifier that achieves (96.394%, 6.096%, 2.933%)-effectiveness,
and is significantly better than the network-layer J48 classifier that
achieves (95.161%, 9.127%, 3.676%)-effectiveness. In other words,
cross-layer detection can achieve significantly higher effectiveness
than the single-layer detection models. This further confirms our
motivational insight that network-layer can expose usefulinforma-
tion about malicious websites from a different perspective. This
phenomenon can be explained by the low correlation between the
application-layer feature vectors and the network-layer feature vec-
tors of the respective URLs. We plot the correlation coefficients in
Figure 2, which shows the absence of any correlation becausethe
correlation coefficients fall into the interval of(−0.4, 0.16]. This
implies that the application layer and the network layer expose dif-
ferent kinds of perspectives of malicious websites, and canbe ex-
ploited to construct more effective detection models.
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Figure 2: The max and min correlation coefficients between
application-layer and network-layer feature vectors.

Second, J48 classifier is significantly better than the otherthree
classifiers, with or without feature selection alike. Sincethe above
comparison is based on the average over 37 days, we want to know
whether or not J48 classifier is consistently more effectivethan the
other three classifiers. For this purpose, we looked into thedata
and found that J48 classifier is almost always more effectivethan
the other three classifiers. Therefore, we recommend to use J48
classifier and will focus on J48 classifier in the rest of the paper.

Third, because the preceding discussion is based on the average
of the 37 days, it is interesting to know whether the effect offea-
ture selection is persistent over the 37 days. For this purpose, we
considered both feature selection algorithms and found that they
exhibit similar phenomenon. Specifically, we looked into the day-
by-day effectiveness of cross-layer detection models withrespect
to theInfoGain feature selection algorithm. We found that the
effect of feature selection is persistent over the 37 days, especially

for theXOR-aggregation cross-layer detection model. This further
confirms that feature selection can be adopted in practice.

Fourth, theOR-aggregation cross-layer J48 classifier can achieve
significantly lower false-negative rate than the data-aggregation cross-
layer J48 classifier, at the price of a lower detection accuracy and
a higher false-positive rate; whereas, theAND-aggregation cross-
layer J48 classifier can achieve a significantly lower false-negative
rate than the data-aggregation cross-layer J48 classifier,at the price
of a lower detection accuracy and a higher false-negative rate. This
phenomenon can be explained by using the definitions of the effec-
tiveness metrics as follows. For fixed population ofd1 malicious

URLs andd2 benign URLs, a lower false-negative rated1−d
′

1

d1
im-

plies a higherd′1. Since the detection accuracyd
′

1
+d

′

2

d1+d2
slightly de-

creases when compared with the data-aggregation cross-layer de-
tection,d′2 must decrease. This means that the false-positive rate
d2−d

′

2

d2
increases. In a similar fashion, we can deduce that an in-

crease in false-positive rate can lead to a decrease in the false-
negative rate. The above phenomenon has a useful implication:
cross-layer classifiers offer a spectrum of deployment possibili-
ties, depending on the security needs (e.g., preferring lower false-
negative rate or lower false-positive rate). In Section 5, we will
explore the deployment issues of the cross-layer detectionmodels.

Fifth, feature selection still hurts the cross-layer detection effec-
tiveness, but at a much lesser degree. Moreover, the data-aggregation
cross-layer J48 classifier with feature selection is still significantly
better than the single-layer J48 classifiers without using feature
selection. Indeed, the data-aggregation cross-layer J48 classifier
with feature selection offers very high detection accuracyand very
low false-positive rate, theOR-aggregation cross-layer J48 classi-
fier with feature selection offers reasonably high detection accuracy
and reasonably low false-negative rate, and theAND-aggregation
cross-layer J48 classifier with feature selection offers reasonably
high detection accuracy and extremely low false-positive rate. When
compared with the data-aggregation cross-layer detection, theOR-
aggregation cross-layer detection has a lower false-negative rate,
but a lower detection accuracy and a higher false-positive rate. This
can be explained as before.

Sixth, theXOR-aggregation cross-layer detection can achieve al-
most the same effectiveness as the dynamic approach. For exam-
ple, it achieves (99.986%, 0.054%, 0.003%) effectiveness without
using feature selection, while only losing 0.014%(1-99.086%) ac-
curacy to the dynamic approach. This means that J48 classifier is
extremely appropriate forXOR-aggregation, which can be deployed
in real-life whenever possible. Note that the false-negative rate of
theXOR-aggregation J48 classifier equals the false-negative rateof
the OR-aggregation J48 classifier. This is because all of the ma-
licious websites which are mistakenly classified as benign by the
OR-aggregation J48 classifier are necessarily mistakenly classified
as benign by theXOR-aggregation J48 classifier. For a similar rea-



Layer Feature Naive Bayes Logistic SVM J48
selection? Acc (%) FN (%) FP (%) Acc (%) FN (%) FP (%) Acc (%) FN (%) FP (%) Acc (%) FN (%) FP (%)

Cross-layer none 55.245 7.961 55.104 96.861 7.945 1.781 94.568 21.227 1.112 99.178 2.284 0.422
(data-aggregation) PCA 72.084 4.124 34.659 97.582 5.740 1.481 96.014 9.330 2.492 98.807 3.007 0.692

Subset 80.396 1.402 24.729 94.568 13.662 3.129 93.296 15.575 4.244 98.335 4.245 0.945
InfoGain 73.146 1.342 34.069 90.703 22.267 5.693 88.297 26.562 7.571 97.365 6.052 1.685

Cross-layer none 40.286 0.162 76.437 91.565 6.116 9.104 88.517 7.858 12.542 97.101 0.054 3.708
(OR-aggregation) PCA 41.582 0.212 74.707 90.039 7.992 10.529 88.342 19.301 9.919 94.251 1.279 7.010

Subset 57.666 0.065 54.162 88.493 11.460 11.554 86.958 14.154 12.770 94.263 2.615 6.622
InfoGain 45.276 0.150 70.051 87.342 12.075 12.851 85.266 18.144 13.802 95.129 1.621 5.794

Cross-layer none 79.097 8.262 24.502 92.528 33.536 0.202 90.335 44.216 0.142 97.888 9.781 0.003
(AND-aggregation) PCA 79.918 12.428 22.355 90.437 43.244 0.192 85.642 66.755 0.005 94.524 24.998 0.037

Subset 88.188 17.355 10.246 88.984 49.660 0.300 86.738 60.510 0.205 95.448 20.508 0.111
InfoGain 83.719 14.269 16.888 87.625 55.774 0.293 84.313 71.175 0.265 95.496 20.685 0.023

Cross-layer none 80.861 0.162 24.502 98.510 6.116 0.202 98.186 7.858 0.142 99.986 0.054 0.003
(XOR-aggregation) PCA 82.552 0.212 22.355 98.103 7.992 0.192 96.052 19.301 0.005 99.693 1.279 0.037

Subset 91.990 0.065 10.246 97.275 11.460 0.300 96.754 14.154 0.205 99.346 2.615 0.111
InfoGain 86.803 0.150 16.888 97.140 12.075 0.293 95.822 18.144 0.265 99.630 1.621 0.023

Table 2: Cross-layer average effectiveness (Acc: detection accuracy; FN: false-negative rate; FP: false-positive rate). In the XOR-
aggregation cross-layer detection, the portions of websites were queried to the dynamic approach (i.e., the websites for which the
application-layer and cross-layer detection models have different opinions) with respect to the four machine learning algorithms are
respectively: without using feature selection: (19.139%,1.49%, 1.814%, 0.014%); usingPCA feature selection: (17.448%, 1.897%,
3.948%, 0.307%); usingSubset feature selection: (8.01%, 2.725%, 3.246%, 0.654%); usingInfoGain feature section: (13.197%,
2.86%, 4.178%, 0.37%). Therefore, J48 classifier is extremely appropriate for XOR-aggregation.

son, we see why the false-positive rate of theXOR-aggregation J48
classifier equals the false-positive rate of theAND-aggregation J48
classifier.

4.2 Which Features Are Indicative?
Identifying the features that are most indicative of malicious web-

sites is important because it can deepen our understanding of ma-
licious websites. Principal Components Analysis (PCA) hasbeen
widely applied to obtain unspervised feature selections byusing
linear dimensionality reduction technique. However, PCA-based
feature selection method is not appropriate to discover indicative
of malicious websites. Therefore, this research has focused on
Subset andInfoGain.

The Subset feature selection algorithm.
This algorithm selects a subset of features with low correlation

while achieving high detection accuracy. Over the 37 days, this
algorithm selected 15 to 16 (median: 16) features for thedata-
aggregation cross-layer detection, and 15 to 21 (median: 18) fea-
tures for both theOR-aggregation and theAND-aggregation. Since
this algorithm selects at least 15 features daily, space limitation
does not allow us to discuss the features in detail. Nevertheless,
we will identify the few features that are also most commonlyse-
lected by theInfoGain algorithm.

The InfoGain feature selection algorithm.
This algorithm ranks the contributions of individual features. For

each of the three specific cross-layer J48 classifiers and foreach of
the 37 days, we used this algorithm to select the 5 most contribu-
tive application-layer features and the 4 most contributive network-
layer features, which together led to the detection effectiveness de-
scribed in Table 2. The five most contributive application-layer
features are (in descedent order): (A1): URL_Length;
(A5): HTTPHead_server; (A8): Whois_regDate;
(A6): HTTPHead_cacheControl; (A11): Whois_stateProv.
The four most contributive network-layer features are (also in de-
scendent order): (N11): Duration; (N9): Source_app_byte;
(N13): Avg_remote_pkt_rate;
(N2): Dist_remote_TCP_port.

Intuitively, these features are indicative of malicious websites be-

cause during the compromise of browsers, extra communications
may be incurred for connecting to the redirection websites while
involving more remote TCP ports. We observed that most of the
HTTP connections with large (N11): Duration time are caused
by slow HTTP responses. This is seemingly because malicious
websites usually employ dynamic DNS and Fast-Flush servicenet-
work techniques to better hide from detection. This would also ex-
plain why malicious websites often lead to larger values of (N2):
Dist_remote_TCP_port. We also observed that malicious
websites often have longer DNS query time (1.33 seconds on aver-
age) than benign websites (0.28 seconds on average). This can be
because the DNS information of benign websites are often cached
in local DNS servers, meaning there is no need to launch recur-
sive or iterative DNS queries. Moreover, we observe that malicious
websites often incur smaller (N13): Avg_remote_pkt_rate
because the average volume of malicious website contents isoften
smaller than the average volume of benign website contents.Our
datasets show that the average volume of malicious website con-
tents is about 36.6% of the length of benign website contents.

The most commonly selected features.
Now we discuss the features that are most commonly selected

by both feature selection algorithms. On each of the 37 days,the
Subset feature selection algorithm selected the aforesaid 15-21
features of the 124 features. Overall, many more features are se-
lected by this algorithm over the 37 days. However, only 5 features
were constantly selected everyday, where 4 features are from the
application layer and 1 feature is from the network layer. Specifi-
cally, they are: (A1): URL_Length; (A5): HTTPHead_server;
(A2): Number_of_special_characters_in_URL; (A13):
Number_of_redirects; (N1): Duration. These features
are indicative of malicious websites because visiting malicious URLs
may cause the crawler to send multiple DNS queries and connect
to multiple web servers, which could lead to a high volume of com-
munications.

TheInfoGain feature selection algorithm selected the afore-
said 15-16 features out of the 124 application-layer and network-
layer features. Overall, only 17 out of the 124 features wereever
selected, where 6 features are from the application layer and the
other 11 features are from the network layer. Three of the afore-
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Figure 3: Selected features during the 37 days (features 1-19
correspond to the network-layer features, and features 20-124
correspond to the application-layer features).

said features were selected every day: (A1): URL_Length, (N1):
Duration, (N9): Source_app_byte. As mentioned in the
description of theInfoGain feature selection algorithm, (N1):
Duration represents one important feature of malicious web page.
As for (N9): Source_app_byte feature, intuitively, malicious
web pages that contain rich content (usually phishing contents) can
cause multiple HTTP requests.

Overall, the features most commonly selected by the two feature
selection algorithms are the aforementioned (A1): URL_Length,
(A5): HTTPHead_server and (N1): Duration. This further
confirms the power of cross-layer detection. These featuresare
indicative of malicious websites as explained before.

4.3 How Did the Network Layer Help Out?
In the above we observed the overall effectiveness of cross-layer

detection, which at a high level can be attributed to the factthat
the network-layer data has a low correlation with the application-
layer data (i.e., the network-layer data does expose extra informa-
tion about websites). Now we give a deeper characterizationof the
specific contributions of the network-layer information that leads
to the correct classification of URLs.

Cross-layer aggre-
gation method

Average correc-
tion of FN

Average correc-
tion of FP

Data-aggregation 79.59 13.91
OR-aggregation 126.16 N/A
AND-aggregation N/A 16.23
XOR-aggregation 126.16 16.32

Table 3: Breakdown of the average mis-classifications that were
corrected by the network-layer classifiers, where N/A means
that the network-layer cannot help (see text for explanation).

Table 3 summarizes the average number of “corrections" made
through the network-layer classifiers, where average is taken over
the 37 days. The mis-classifications by the application-layer clas-
sifiers are either false-negative (i.e., the application-layer classifiers
missed some malicious URLs) or false-positive (i.e., the application-
layer classifiers wrongly accused some benign URLs). Note that for
OR-aggregation, the network-layer classifiers cannot help correct
the FP mistakes made by the application-layer classifiers because
the benign URLs are always classified as malicious as long as one
classifiers (in this case, the application-layer one) says they are ma-
licious. Similarly, forAND-aggregation, the network-layer classi-
fiers cannot help correct the FN mistakes made by the application-
layer classifiers because (i) the malicious URLs are always classi-
fied as benign unless both kinds of classifiers think they are mali-
cious and (2) the application-layer classifier already saysthey are

benign. We observe that the contributions of the network-layer
classifiers forXOR-aggregation in terms of correcting both FP and
FN (126.16 and 16.32, respectively) are strictly more significant
than the contributions of the network-layer information for data-
aggregation (79.59 and 13.91, correspondingly). This explains why
XOR-aggregation is more effective thandata-aggregation.
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Figure 4: Portions of the application-layer and network-layer
classifiers corresponding to the two URLs.

In what follows we examine two example URLs that were mis-
classified by the application-layer classifier but corrected through
the network-layer classifier. The two examples are among theURLs
on the first day data, where one example corresponds to the FP mis-
take (i.e., the application-layer classifier mis-classified a benign
URL as malicious) and the other example corresponds to the FN
mistake (i.e., the application-layer classifier mis-classified a mali-
cious URL as benign). The portion of the application-layer clas-
sifier corresponding to the two example URLs are highlightedin
Figure 4(a), which involves the following features (in the order of
their appearances on the paths):

(A2) Number_of_special_char
(A18) Number_of_small_size_iframe
(A1) URL_length

(A19) Number_of_suspicious_JavaScript_functions
(A17) Number_iframe
(A13) number_of_redirect
(A16) Number_of_long_strings
(A8) register_date

The portions of the network-layer classified correspondingto the
two URLs are highlighted in Figure 4(b), which involves the fol-
lowing features (in the order of their appearances on the paths):

(N11) Duration
(N14) App_packets
(N2) Dist_remote_TCP_port

(N16) DNS_response_time
(N9) Avg_local_pkt_rate

(N15) DNS_query_times
(N3) Remote_ips

(N12) Source_app_bytes
Note that some features can, and indeed often, appear multiple
times on a single path.

For the FP mistake made by the application-layer classifier,the
feature values areA2=0 (no special characters in URL),A18=2
(two small iframes),A1=61 (medium URL length) andA19=4 (four



suspicious JavaScript functions), which lead to the left-hand path
in Figure 4(a). The application-layer mis-classification may be
attributed toA18=2 andA19=4, while noting that benign web-
sites also use theeval() function to dynamically generate code
according to certain information about the browser/user and use
obfuscation to hide/protect JavaScript source code. On theother
hand, the relevant network-layer feature values areN11=0.89 sec-
onds (close to 0.793 second, the average of benign URLs),N14=79
(close to 63.73, the average of malicious URLs),N2=5 (not in-
dicative because it is almost equally close to the averages of both
benign URLs and malicious URLs),N16=13.11ms (close to 13.29,
the average of malicious URLs),N9=113 (close to 146, the aver-
age of benign URLs),N15=6 (close to 7.36, the average of benign
URLs). We observe that the three network-layer features, namely
N11, N9 andN15, played a more important role in correctly clas-
sifying the URL.

For the FN mistake made by the application-layer classifier,A2=7
(close to 3.36, the average of malicious URLs),A17=0 (indicating
benign URL because there are no iframes),A13=0 (indicating be-
nign URL because there are no redirects),A1=22 (close to 18.23,
the average of malicious URLs),A16=2 (close to 0.88, the aver-
age of malicious URLs), andA8=2007 (indicating benign URL
because the domain name has been registered for multiple years).
The above suggests thatA17, A13 andA8 played a bigger role that
caused the mis-classification. On the other hand, the relevant net-
work feature values areN11=2.13 (close to 2.05, the average of ma-
licious URLs),N14=342 (close to 63.73, the average of malicious
URLs), N2=7 (not very indicative because the respective averages
of benign URLs and malicious URLs are about the same),N3=3
(close to 2.40, the average of benign URLs),N12=289 bytes (rela-
tively close to 63.73, the average of malicious URLs), andN9=423
(relatively close to 269, the average of malicious URLs). The above
suggests that the network-layer classifier can correct the mistake
made by the application-layer classified because of features N11,
N14, N12 andN9.

4.4 Performance Evaluation
As discussed in the Introduction, we aim to make our system

as fast and scalable as the static approach while achieving as high
of effectiveness as the dynamic approach. In the preceding,we
have demonstrated that cross-layer J48 classifiers (indeed, all of
the cross-layer detection models we investigated) are almost as ef-
fective as the dynamic approach. In what follows we report that
the cross-layer J48 classifiers are much faster than the dynamic ap-
proach and almost as efficient as the static approach.

The time spent on running our system consists of three parts:
the time spent for collecting application-layer and network-layer
data, the time spent for training the cross-layer J48 classifiers, and
the time spent for using the J48 classifiers to classify websites.
Since the training of cross-layer J48 classifiers is conducted pe-
riodically (e.g., once a day in our experiments), this time is not a
significant factor and can be omitted. Nevertheless, we report that
the time spent for learning data-aggregation cross-layer J48 classi-
fiers is typically less than 10 seconds on a modest computer when
the training dataset has thousands of feature vectors. The training
time spent for learningOR-aggregation,AND-aggregation, orXOR-
aggregation cross-layer J48 classifiers is about the same. There-
fore, we will focus on the time spent for collecting the application-
layer and network-layer data corresponding to a given URL and
the time spent for classifying the given URL. These two metrics
are the most important because they ultimately determine whether
the cross-layer J48 classifiers can be deployed for the purpose of
real-time detection.

In the afore-reported effectiveness experiments, the cross-layer
J48 classifiers and the Capture-HPC client honeypot (as example
of the dynamic approach) ran on different computers with different
hardware configurations. Therefore, we cannot simply measure and
compare their respective time complexities. In order to have a fair
comparison, we conducted extra experiments by using two comput-
ers with the same configuration. One computer ran our cross-layer
J48 classifiers and the other computer ran the Capture-HPC client
honeypot. The hardware of the two computers is Intel Xeon X3320
4 cores CPU and 8GB memory. We use Capture-HPC version
3.0.0 and VMWare Server version 1.0.6. The Host OS is Windows
Server 2008 and the Guest OS is Windows XP sp3. Our crawler
was written in JAVA 1.6 and ran on top of Debian 6.0. We used
IPTABLES [2] and a modified version of TCPDUMP [7] to paral-
lelize the data collection system. The application-layer features are
directly obtained by each crawler instance, but the network-layer
features are extracted from the network traffic that is collected by
the TCPDUMP software on the local host. IPTABLES are con-
figured to log network flow information with respect to different
processes, which correspond to different crawler instances. Since
our crawler is light-weight, we ran 50 instances concurrently in our
experiments; whereas we ran 5 guest Operating Systems to paral-
lelize the Capture-HPC. Experimental results indicated that more
guest Operating Systems make the system unstable. Both comput-
ers use network cards with 100Mbps network cable.

Data-aggregation cross-layer J48 classifier
Total data collection time 4 min
Total classification time 302 ms
Total time ≈ 4 min

Capture-HPC
Total time 199min

Table 4: Measured performance comparison between the data-
aggregation cross-layer J48 classifier and the dynamic ap-
proach (the Capture-HPC client honeypot) with 3,062 input
URLs (1,562 malicious URLs + 1,500 Benign URLs)

Table 4 describes the performance of the cross-layer J48 clas-
sifier and of the Capture-HPC client honeypot. It took the data-
aggregation cross-layer J48 classifier about 4 minutes to process the
3,062 input URLs, whereas it took the Capture-HPC 199 minutes
to process the same 3,062 URLs. In order words, the cross-layer
detection approach can be about 50 times faster than the dynamic
approach, while achieving about the same detection effectiveness.

The preceding conclusion that the cross-layer detection approach
can be about 50 times faster than the dynamic approach was based
on the batch processing of 3,062 URLs. In order to get a clue
on the performance comparison in terms of the processing time
for individual URLs, we can approximately break down the mea-
sure performance as follows, whereapproximationis caused by
the concurrent executions of the respective systems. Specifically,
the time for the data-aggregation cross-layer J48 classifier to de-
termine whether a given website is malicious or not may be cal-
culated as:240/(3062/50) ≈ 3.92 seconds because each crawler
actually processed 3062/50 URLs on average. Among the 3.92 sec-
onds, on average 2.73 seconds were actually spent for download-
ing the website content, which means that 1.19 seconds were spent
for feature extractions etc. Similarly, the time for Capture-HPC
to determine whether a given website malicious or not is(199 ×

60)/(3062/5) = 19.5 seconds because 5 Capture-HPC instances
run concurrently. The reason why Capture-HPC is slow is because
Capture-HPC spent much time on receiving all the diagnosticre-



sults caused by visiting URLs in virtual machine and reverting vir-
tual machine back to clean snapshot whenever a URL is deemed as
malicious. Moreover, theXOR-aggregation cross-layer J48 classi-
fier without using feature selection would only incur the dynamic
approach to analyze, on average, about5.04%×3062 ≈ 154 web-
site. This means that even forXOR-aggregation, the processing
time per URL is no more than3.92 + 19.5 × 154/3062 ≈ 4.9
seconds. Therefore, we conclude that even if the cross-layer de-
tection system runs within each individual computer, rather than a
third-party server, it is about 4 times faster than the dynamic ap-
proach. In any case, 4 seconds waiting time is arguably acceptable,
especially, we can let the browser start displaying the portions of
website content that have no security concerns. This is reasonable
because the same idea has been used to give users the illusionthat
website contents are displayed almost instantly, but actually it takes
a few seconds to display the entire website contents. On the other
hand, waiting for 19.5 seconds for the dynamic approach to test
whether a website is malicious or not is not usable, which perhaps
explains why the dynamic approach, while powerful, is not used
for real-time detection in practice.

5. DEPLOYMENT
Cross-layer detection offers a spectrum of deployment options.

On one hand, it can be deployed as a stand-alone solution because it
is highly effective as analyzed before. Moreover, it can be deployed
as a light-weight front-end detection system of a bigger solution
(see Figure 5), which aims at detecting as many malicious websites
as possible while scaling up to a large population of websites. For
this purpose, the data-aggregation and theOR-aggregation method
would be competent. Moreover, theXOR-aggregation is particu-
larly effective and should be deployed when it only incurs the back-
end dynamic approach occasionally.

Our data collection system

Suspicious URLs

Client Honeypot-like 

behavior-based detection & 

possibly binary analysis

Input URL

Cross-layer detection of 

malicious websites

Optional back-

end deeper 

(slower) 

analysis

Fast & 

scalable 

front-end 

analysis

Data  

collection

Cross-layer information

of webpages

Figure 5: Example deployment of the cross-layer detection
system as the front-end of a bigger solution becauseXOR-
aggregation J48 classifiers achieve extremely high detection ac-
curacy, extremely low false-negative and false-positive rates.

On the other hand, there are several ways to deploy the phys-
ical components of the cross-layer detection service. Recall that
our system has three components: application-layer data collec-
tor (i.e., crawler), network-layer traffic recorder, and cross-layer
data correlator. The crawler takes URLs as input, fetches the cor-
responding website contents, and conducts a light-weight analysis
to identify the redirects that are embedded into the websitecon-
tents. The traffic recorder collects the network traffic correspond-
ing to the crawler’s activities for fetching the website contents.

The cross-layer data correlator relates the application-layer web-
site contents to the corresponding network-layer traffic via the in-
put URLs. These components may or may not be deployed on the
same physical computer, as the following scenarios demonstrate.

First, we can deploy the stand-alone cross-layer detectionsystem
as a web browser plug-in. In this case, the detection system can test
whether the website is malicious or not before the browser actually
displays the website content. If it is malicious, the browser can
take appropriate actions according to a pre-determined policy (e.g.,
warning the user that the website is malicious). The plug-inshould
collect the network-layer traffic corresponding to the application-
layer website content of the given URL. The plug-in also may act
as the network-layer traffic collector and the cross-layer correla-
tor. Moreover, network-traffic could be collected at some routers
or gateways, from which the plug-in can get the traffic correspond-
ing to the application-layer website content.

Second, we can deploy the cross-layer detection system as an
online service. This service may be accessed by web browsersvia
the proxy or gateway technique. Specifically, when a user browser
points to a URL, the corresponding website will be analyzed by the
cross-layer detection service, which will inform the outcome back
to the browser. The browser can take appropriate actions based on
its pre-determined policy (e.g., displaying the website ornot).

Third, we can deploy the cross-layer detection system by the
website hosting server itself. The website hosting servicevendor
might have the incentive for proactively examining whetherthe
websites it hosts have been compromised, because this mighten-
hance the reputation of the vendor. In this case, the vendor can
deploy it as a front-end to a bigger detection system, or deploy it as
a stand-alone system.

6. LIMITATION AND FUTURE WORK
First, a key limitation of the study is that the (back-end) dynamic

approach itself may have its own non-zero false-negative and false-
positive rates. This issue has been noticed by few studies except
[23, 35], but more systematic studies are needed before making
firm conclusions. While studying the dynamic approach is an or-
thogonal issue, we plan to study the impact of the false-negative
and false-positive of the dynamic approach, with an emphasis on
the Capture-HPC that is used in the present paper.

Second, it is interesting to know to what extent we can improve
the effectiveness of cross-layer detection systems by incorporating
new techniques such as those described in [13, 37, 30, 15].

Third, our cross-layer detection system provides some simple
best-effort capability by statistically tracking the redirects that are
embedded into the website contents. It is notoriously difficult to
statistically detect obfuscated JavaScript-based redirects [17, 16].
Even though the effectiveness of our cross-layer detectionsystem
is almost as good as the dynamic approach, it is very interesting to
know the impact of any progress made in the direction of detecting
obfuscated JavaScript-based redirects. This is importantbecause,
although our collected data hints that JavaScript-based redirection
is widely used by malicious websites, it appears that JavaScript ob-
fuscation may not have been widely used because our system can
effectively detect the malicious URLs (almost as effectiveas the
dynamic approach which is capable of dealing with directs).How-
ever, this may not be true in the future because in the future such
redirects may be exploited by the adversary much more widely.
Fortunately, any progress in dealing with obfuscated directs can be
adopted by our system in a plug-and-play fashion.

7. CONCLUSION



We presented a novel approach to detecting malicious websites
based on the insight that network-layer traffic data may expose use-
ful information about websites, which may be exploited to attain
cross-layer detection of malicious websites. Experimental results
showed that cross-layer detection can achieve almost the same de-
tection effectiveness, but about 50 times faster than, the dynamic
approach based on client honeypot systems. Moreover, the cross-
layer detection systems can also be deployed to detect malicious
website in real time because the average time for processinga web-
site is approximately 4.9 seconds, which could be improved with
some engineering optimization.
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