THE UNIVERSITY OF TEXAS AT SAN ANTONIO, COLLEGE OF BUSINESS

Working Paper s«

WP # 0003MSS-432-2013
Date February 21, 2013

Cross-Layer Detection of Malicious Websites

Li Xu
Dept. of Computer Science
UNIVERSITY OF TEXAS AT SAN ANTONIO

Zhenxin Zhan
Dept. of Computer Science
UNIVERSITY OF TEXAS AT SAN ANTONIO

Shouhuai Xu
Dept. of Computer Science
UNIVERSITY OF TEXAS AT SAN ANTONIO

Keying Ye
Dept. of Statistics
UNIVERSITY OF TEXAS AT SAN ANTONIO

Keesook Han
Information Directorate
Air Force Research Laboratory

Frank Born
Information Directorate
Air Force Research Laboratory

Copyright © 2013, by the author(s). Please do not quote, cite, or reproduce without permission from the
author(s).

ONE UTSA CIRCLE

m . ‘j SAN ANTONIO, TEXAS 78249-0631

AC CAD A m[wwnm n 210 458-4317 | BUSINESS.UTSA.EDU

Hlllllli

UTSA [&

PALIERE AC DHCIMECC MM E

|

Cross-Layer Detection of Malicious Websites®

Li Xu
Dept. of Computer Science
UT San Antonio
IXu@cs.utsa.edu

Keying Ye
Dept. of Statistics
UT San Antonio
keying.ye@utsa.edu

ABSTRACT

Malicious websites have become a major attack tool of therdv
sary. There are two main approaches to detect maliciousit@sbs
static and dynamic The static approach is centered on the static
analysis of website contents and can scale up to a large mwhbe
websites in cyberspace. However, this approach has lirsitee
cess in dealing with sophisticated attacks that includesaztion.
The dynamic approach is centered on the analysis of welmsite ¢
tents via their run-time behaviors, and can cope with thepkhisti-
cated attacks. However, this approach is often expensiveamot
scale up to the magnitude of the number of websites in cybeesp
This research aims to achieve the best performance of twd mal
cious website detection approaches simultaneously. $npiper,
we propose an analysis of the corresponding network-lagéfict
between the browser and the web server by incorporatingatie s
analysis of website contents, which is conducted at theiagifn
layer. The insight of this approach is that the network-tagay ex-
pose useful information about malicious websites from gediht
perspective. Evaluation based on the data collected d@iirdays
shows that certain cross-layer detection methods can besains
effective as the dynamic approach. Performance expersstiaiv
that, when both approaches are deployed as a service, the cro
layer detection approach is about 50 times faster than thardic
approach.

Categories and Subject Descriptors

K.6.5 [MANAGEMENT OF COMPUTING AND INFORMA-
TION SYSTEMS]: Security and Protection+avasive software

General Terms
Security

*Approved for Public Release; Distribution Unlimited

Permission to make digital or hard copies of all or part o§ twork for
personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

CODASPY'13February 18-20, 2013, San Antonio, Texas, USA.
Copyright 2013 ACM 978-1-4503-1890-7/13/02 ...$15.00.

Zhenxin Zhan
Dept. of Computer Science
UT San Antonio
zzhan@cs.utsa.edu

Keesook Han
Information Directorate
Air Force Research Laboratory Air Force Research Laboratory

Keesook.Han@rl.af.mil

Shouhuai Xu
Dept. of Computer Science
UT San Antonio
shxu@cs.utsa.edu

Frank Born
Information Directorate

Frank.Born@rl.af.mil

Keywords

Malicious URL, Cross-layer detection, static analysis)aiyic anal-
ysis, hybrid analysis

1. INTRODUCTION

Malicious websites have become a severe cyber threat ecaus
they can cause the automatic download and execution of malwa
in browsers, and thus compromise vulnerable computers 38
phenomenon of malicious websites will persevere in theréube-
cause we cannot prevent websites from being compromisedalised.
For example, Sophos Corporation has identified the pergeraf
malicious code that is hosted on hacked sites as 90% [6].nOfte
the malicious code is implanted using SQL injection methaais
shows up in the form of an embedded file. In addition, stolpn ft
credentials allow hackers to have direct access to filesrenthey
can implant malicious code directly into the body of a webgrag
again as an embedded file reference. Yet another powerferadv
sarial technique is obfuscation [36], which is very difficial cope
with. These attacks are attractive to hackers because theisa
can exploit them to better hide the malicious nature of trese
bedded links from the defenders.

Existing approaches to detect malicious websites can Issiela
fied into two categories:

e The static approach aims to detect malicious websites by
analyzing their URLs [25, 26] or their contents [39]. This
approach is very efficient and can scale up to deal with the
huge population of websites in cyberspace. This approach
however has limited success in coping with the aforesaid so-
phisticated attacks, and can cause high false-negatigs rat
by classifying malicious websites as benign ones.

e Thedynamicapproach aims to detect malicious websites by
analyzing their run-time behaviors using Client Honeypots
or their like [38, 28, 40, 4, 3]. This approach is very effec-
tive. However, it is resource-consuming because it runs or
emulates the browser and possibly the operating system [9],
and thus cannot scale up to deal with the large number of
websites in cyberspace.

How can we achieve the best of the static and dynamic appesach
simultaneously? A simple solution is to run a front-endistanal-
ysis tool that aims to rapidly detect suspicious websitdsclvare
then examined by a back-end dynamic analysis tool. However,
the effectiveness of this approach is fundamentally lichtbg the
assumption that the front-end static analysis tool has g hsv
false-negative rate; otherwise, many malicious websii#siat be

examined by the back-end dynamic analysis tool. Unforelpat
static analysis tools often incur high false-negativesagspecially
when malicious websites are equipped with the aforesaibistp
cated techniques. In this paper, we propose a novel techrigu
which we can simultaneously achieve almost the same aféecti
ness of the dynamic approach and the efficiency of the stptic a
proach. The core idea is to exploit the network-layer or sHlager
information that somehow exposes the nature of malicioussites
from a different perspective.

1.1 Our Contributions

We propose an analysis of the corresponding network-lagér t
fic between the browser and the web server by incorporatiag th
static analysis of website contents. The insight of thiseggh is
that the network-layer may expose useful information alvoaii-
cious websites from a different perspective. The crossrldgtec-
tion is further coupled with the trick of statically tracimgdirects,
which are embedded into the websites to hide the actual tesbsi
that disseminate malwares. That is, the redirection URksnat
obtained via dynamic analysis, but obtained by slightlyeaging
the static analysis method. This allows us to consider nigtreai-
rection related features of the present website, but atsoetthirec-
tion website contents.

Evaluation of our approach is based on real data that isatetle

during the span of 37 days. We find that cross-layer detection

can be almost as effective as the dynamic approach and afmost
efficient as the static approach, where effectiveness isuned
via the vector of detection accuracyfalse-negative ratefalse-
positive ratg. For example, using the dynamic approach as effec-
tiveness base, our data-aggregation cross-layer classifigeves
(99.178%, 2.284%, 0.422%), while the application-layassifier
only achieves (96.394%, 6.096%, 2.933%). Moreover, X0R-
aggregation cross-layer classifier can achieve (99.986064,
0.003%), while resorting only 0.014% of the websites to tiie d
namic approach. We also discuss the deployment issues of th
cross-layer detection approach. Since performance erpats

in Section 4.4 show that the cross-layer detection can bédst
faster than the dynamic approach when processing a batcdRlo U
the cross-layer detection is very suitable for deploymena ser-
vice. Moreover, the cross-layer detection incurs no moaa th9
seconds for processing an individual URL, whereas the dijmam

approach takes 20 seconds to process a URL on average. Thit|

means that the cross-layer detection would be acceptabledb
time detection.

1.2 Related Work

Both the industry and academia are actively seeking effecti
solutions to the problem of malicious websites. The inquets
mainly offered their proprietary blacklists of maliciousbsites,
such as Google’s Safe Browsing [1] and Mcafee’s SiteAd\iSpr
Effectiveness of the blacklist approach is fundamentathjteéd by
the frequency the blacklists are updated and disseminatesljus-
tifies why we advocate pursuing light-weight real-time dét,
which is the goal of the present paper.

Researchers have used logistic regression to study pbishiiLs
[18], which does not consider the issue of redirection. @natier
hand, redirection has been used as an indicator of web s3a2, [
41, 33]. Kurt et al. [39] presented a system for scalably ctatg
spam contents. Ma et al. [25, 26] studied how to detect phgshi
and spams based on URLs themselves.

In terms of detecting malicious websites that may host malsja
Choi et al. [11] investigated the detection of malicious WRand
Canali et al. [9] presented the design and implementati@nstitic

detection tool called Prophiler. However, all these stsidiil not
consider the usefulness of cross-layer detection. On tier biand,
the back-end system for deeper analysis is also an actieanss
topic [13, 10, 42, 27], because attackers have been attegnfuti
circumvent dynamic analysis [23, 35].

The rest of the paper is organized as follows. Section 2 descr
our cross-layer data collection and analysis methodolSggtion 3
investigates two single-layer detection systems. Sedtipresents
our cross-layer detection systems. Section 5 exploreseplog
ment of cross-layer detection systems. Section 6 disctiseeisn-
itation of the present study and future research directi®estion
7 concludes the present paper.

2. METHODOLOGY

We now describe the methodology underlying our study, ihclu
ing data collection, data pre-processing, evaluationiosand data
analysis methods. The methodology is general enough taracco
modate single-layer analyses, but will be extended skigatlac-
commodate extra ideas that are specific to cross-layersamly

2.1 Data Collection

In order to facilitate cross-layer analysis and detectwe&need
an automated system to collect both the application-laysysite
contents and the corresponding network-layer traffic. Tichia
tecture of our automated data collection system is depict&ig-
ure 1. At a high level, the data collection system is centered
crawler. The crawler takes a list of URLSs as input, autonadiiic

fetches the website contents by launching HTTP/HTTPS gque

and tracks the redirects that are identified from the websitéents
(elaborated below). The crawler also uses the URLs, inctuthe
input URL and the detected redirection URLs, to query the DNS

Whois, and Geographic services. This collects informa#ibaut

the registration dates of websites and the geographicitosaof

olhe URL owners/registrants. The application-layer websitn-

tents and theorrespondingnetwork-layer IP packets are recorded
separately (where the IP packets are caused by the appfidatier
activities), but are indexed by the input URLs to facilitatess-
layer analysis.

Input URLs
pm———————fp--——m————————pzzzzzcssmsrsosoconan e oo
URL-based | !
features | !
Crawler | DNS Whois Geographic |
,,,,,,,,,,,,,,,,,,,,,,, i
Application-layer web) - o
HTTP/HTTPS Request ’¢
content recorder > ‘,v_“
o
Network-layer Content-based Features “t
traffic recorder E
Remote web

Data pre-processing servers

P

Feature vectors
Application- & network-
layer data for analysis

<

Application-layer data (including
URL- and content-based features)

Network-layer data

Figure 1: Data collection system architecture.

As mentioned above, the data collection system proacttvatks
redirects by analyzing the website contents in a statiddastSpecif-

ically, it considers the following four types of redirect§he first vector. The features are extracted from the correspond@gAP
type is the server side redirects, which are initiated eitlyeserver (Packet CAPture) files that are recorded when the crawlersses
rules (i.e.,. ht access file) or by server side page code such as the URLs. There are 19 network-layer features that are eleriv
PHP. These redirects often utilize HTTP 300 level status codes. from the IP, UDP/TCP or flow level, where a flow is uniquely iden
The second type is JavaScript-based redirects. The thiel ity tified by a tuple (source IP, source port number, destindBpdes-
the refresh Meta tag and the HTTP refresh header, which ablow tination port number, protocol).

specify the URLs of the redirection pages. The fourth typenés Each URL is also associated with a cross-layer feature kecto
embedded file redirects. Some examples of this type are the fo which is simply the concatenation of its associated aptitina
lowing: <scri pt src='badsite. php > </script>, layer and network-layer feature vectors.

<i frame src='badsite.php’' />, Lo

and<i ng src="badsi te. php’ / >. 2.3 Data Description

The input URLs may consist of malicious and benign websites. The resulting data has 105 application-layer features afb4 s
A URL is malicious if the corresponding website content idima classes and 19 network-layer features of 3 sub-classesudhout
cious or any of its redirects leads to a URL that correspoaatset- the paper, “average" means the average over the 37-day data.
licious content; otherwise, it is benign. In this paper, térensma-
licious URLsandmalicious websiteare used interchangeably. In ~ 2.3.1 Application-Layer Features
our experimental system for training and testing deteatioalels,
malicious URLSs are initially obtained from the followingdaklists:
conpuweb. contf ur| - domai n- bl . t xt ,nal war e. com br,
mal war edonmi nl i st. comzeustracker. abuse. chand
spyeyet racker. abuse. ch. Since some of the blacklisted
URLSs are not accessible or malicious any more, we use the high
interactive client honeypot called Capture-HPC versidh [38]
to identify the subset of URLs that are still accessible aradi-m

cious. To be concrete, our experiments were based on Capture , e to make malicious URLs hard to blacklist, maliciousLiSR
HPC, which is assumed to offer the ground truth. This is atprac fen include automatically and dynamically generated;lcan-

cal choice because we cannot manually analyze the largeeumb qom character strings. Our data showed that the averaghlehg

of websites. Even if we can, manual _analysis might be stitirer benign URLS is 18.23 characters, whereas the average lefigth
prone. Note that any dynamic analysis system (e.g., anotiset malicious URLs is 25.11 characters.

honeypot system) can be used instead in a plug-and-plajofash (A2): Number _of _speci al _characters_i n_URL.Thisis
Pursuing a client honeypot that truly offers the groundhtiistan the number of_speEiaI characters .., ? - - :_%) thatarip
orthogonal research problem. The benign URLs are obtaied f 5 RL. Our data showed that benign URLSs used on average 2.93

al exa. com which lists the top 2,088 websites that are supposed special characters, whereas malicious URLS used on avérage
to be well protected. The data was collected for a period afe8/& special characters.

between 12/07/2011 and 01/12/2012, with the input URLs tﬂnﬂa (A3) Presence of |P address in URL.This feature in-

daily. dicates whether an IP address is presented as the domainimame
. a URL. Some websites use IP addresses instead of domain names

2.2 Data Pre-Processing in URL often because the IP addresses represent the congammi

Each input URL has an associated application-layer raw fea- computers that actually do not have registered domain nafigs
ture vector. The features record information such as HTTeléle ~ explains why this feature may be indicative of malicious WRL
fields, information returned by DNS, Whois and Geographie se This feature has been used in [9].
vices, information about JavaScript functions that ar&edah the
JavaScript code embedded into the website content, infama Features based on the HTTP header information

Feature based on the URL lexical information

We defined 15 features based on the URL lexical information, 3
of which are elaborated below.
(Al): URL_Lengt h. URL consist of serval parts: protocol, do-
main name or plain IP address, optional port, directory filed
when using HTTP Get to request information from a serveresgu
tion mark that is followed by a list of ey = value" pairs. In

about redirects (e.g., redirection method, whether or metlaect We defined 15 features based on the HTTP header information,
points to a different domain, and the number of redirectiopd). 4 of which are elaborated below.

Since different URLs may lead to different numbers of rection (A4): Char set . This is the encoding charset of URL in question
hops, the raw feature vectors may not have the same numbea-of f (e.g., is0-8859-1). It hints the language a website usedtlaad
tures. In order to facilitate analysis, we use a pre-prongsgep to ethnicity of the targeted users of the website. It is alsécitile of

aggregate multiple-hop information into somificial single-hop the nationality of the webpage.

information. Specifically, for numerical data, we aggregaem by (A5): HTTPHeader _ser ver. This is the server field in the http
using their average instead; for boolean data, we aggréigene response head. It gives the software information at theeseide,
by taking theOR operation; for nominal data, we only consider such as the webserver type/name and its version. Our datedho
the final destination URL of the redirection chain. For extanp that the Top 3 webservers that were abused to host maliciebs w

suppose the features of interest ar€orft ent - Lengt h, “Does sites are Apache, Microsoft IS, nginx, which respectivetyre-
JavaScript functiorval () existinthe code?'Count ry). Sup- spond to 322, 97, 44 malicious websites on average. On tle oth
pose an input URL is redirected twice to reach the final dagtin hand, Apache, Microsoft IIS, nginx were abused to host 838, 2
URL, and the raw feature vectors corresponding to the irfirst, 357 benign websites on average.

redirect, and second redirect URLs are (1B8LSE, US), (200, (A6): HTTPHeader _cacheCont r ol . Four cache control strate-
FALSE, UK), and (300,TRUE, RUSSIA), respectively. We aggre- gies are identified in the websites of our data: no-cacheafa;

gate the three raw features into a single feature (ZRUE, RUS- public, and cache with max-age. The average numbers of tenig
SIA). After the pre-processing step, the application-tajeta have websites that use these strategies are respectively 484627and
105 features, some of which will be elaborated below. 397, whereas the average numbers of malicious websitesishat

Each input URL has an associated network-layer raw feature these strategies are respectively 99, 46, 0.5, and 23.

(A7): HTTPHeader _cont ent _I| engt h. This feature indicates
the content-length field of a HTTP header in question. Foii-mal
cious URLs, the value of this field may be manipulated so that i
does not match the actual length of the content.

Features based on the host information (include DNS, Whois
data).

We defined 7 features based on the host information, 5 of which
are elaborated below.
(A8-A9): Whoi s_r egDat e andUpdat ed_dat e. These two
features are closely related to each other. They indicateldtes
the webserver was registered and updated with the Whoigserv
respectively. Our data showed that on average, maliciobsives
were registered in 2004, whereas benign websites werdaesgis
in 2002. We also observed that on average, malicious weabsite
were updated in 2009, about one year earlier than the updéte d
of 2010 for benign websites .
(A10-A11): Whoi s_count ry andWhoi s_st at ePr ov. These
two features respectively indicate the counter and theilmtavhere
the website was registered. These two features, togethiertig
aforementionedhar set feature, can be indicative of the loca-
tions of websites. Our data showed that the average numblees o
nign websites registered in US, NL, and AU are respectivéy, 6
523, and 302; whereas the average numbers of malicious tegbsi
registered in US, NL, and AU are respectively 152, 177, and 98
(A12): Wt hi n_donai n. This feature indicates whether or not
the destination URL and the original URL are in the same damai
Redirection has been widely used by both benign and masciou
websites. From our data, we found that malicious websites ar
more often redirected to exploit servers that reside iredtifit do-
mains. Specifically, we found that 21.7% malicious websiéek-
rect to different domains, whereas 16.1% benign websitdiser
to different domains.

Features based on web content information (includes HTML
and Script source code)

We defined 68 content-based features, 7 of which are dedcribe
as follows.
(A13): Nunber _of _Redirect. This is the total number of
redirects embedded into an input URL. It is indicative of itialis

Our data showed that the averdgenber _of | ong_stri ngs

is 0.88 for malicious URLs and 0.43 for benign URLSs.

(A17-A18): Nunber _of _i frame and

nunber _of _smal |l _si ze_i franme. These two features re-
spectively count how many iframe and small size iframes sregnt

in a webpage. If any iframe contains malicious code, the URL i
malicious. Small size iframe is even more harmful becausa-it
ports malicious content that is invisible to the users.

(A19): Nunber _of _suspi ci ous_JavaScri pt_functions. This fea-
ture indicates whether or not the JavaScript code is obfedcaVe
check suspicious JavaScript functions in both the scriptkobnd
the imported JavaScript files such egal (), escape(), and
unescape() . These JavaScript functions are often used by at-
tackers to obfuscate their code and bypass statical anaRsi ex-
ample,eval () can be used to dynamically execute a long string
at runtime, where the string can be the concatenation of rdgny
namic pieces of obfuscated substrings at runtime. Thismalke
them hardly detected by statical analysis. This featurebess
used in [21]

2.3.2 Network-Layer Features

Features based on remote server attributes

(N1): Tcp_conver sati on_exchange. This is the total num-

ber of TCP packets sent to the remote server by the crawldi- Ma
cious websites often use rich web resources that may causie mu
ple HTTP requests sent to webserver. Our data showed thagaver
Tcp_conver sati on_exchange is 73.72 for malicious web-
sites and 693.38 for benign websites.

(N2): Di st _renote_TCP_port. This is the total number of
distinct TCP ports that the remote webserver used duringdahe
versation with the crawler. Our data showed that benign itets
often use the standard http port 80, whereas malicious tesbsi
often use some of the other ports. Our data showed the average
Di st _renote_TCP_port is 1.98 for malicious websites and
1.99 for benign websites.

(N3): Renot e_i ps. This is the number of distinct remote IP ad-
dresses connected by the crawler, not including the DNSes&Pv
addresses. Multiple remote IP addresses can be caused iby red
rection, internal and external resources that are embedtzthe

URLs because our data showed that on average, malicious URLswebpage corresponding to the input URL. Our data showedthe a

have 0.67 redirects whereas benign URLs have 0.43 redifdots
that this feature is unique at the application layer bec#usmnot
be precisely obtained at the network layer, which cannbateddi-
rect from a normal link.

(A14): Nunber _of _enbedded_ext er nal _URLs. This fea-
ture counts the number of URLs that are embedded into the in-
put URL and use external resources (e.g., image, voice alew)i
This feature can be indicative of malicious URLs becauserazt
URLs are often abused by attackers to import malicious cxrite
hacked URLs.

(A15): Cont ent _I engt h_val i d. This feature checks the con-
sistency between thdTTPHeader _cont ent _Lengt h feature
value (i.e., the value of the content length field in HTTP lezaend
the actual length of web content. It is relevant because dhesat
length field could be a negative number, which may cause buffe
overflow attacks. This feature has been used in [11].

(A16): Nunber _of _| ong_strings. This feature counts the
number of long strings used in the JavaScript code that issdmb
ded into the input URL. A string is considered long if its I&mgs
greater than 50. Because attackers try to encode some shell ¢
into a string and then use heap-overflow to execute that ched,
this feature can be indicative of malicious URLSs as suggestg9].

erageRenot e_i ps is 2.15 for malicious websites and 2.40 for
benign websites.

Features based on crawler-server communication

(N4): App_byt es. Thisis the number of Bytes of the application-
layer data sent by the crawler to the remote webserver, Rot in
cluding the data sent to the DNS servers. Malicious URLsnofte
cause the crawler to initiate multiple requests to remoteess,
such as multiple redirections, iframes, external links tteeo do-
main names. Our data showed the averdgp_byt es is 36818
bytes for malicious websites and 53959 bytes for benign iteshs
(N5): UDP_packet s. This is the number of UDP packets gener-
ated during the entire lifecycle when the crawler visits &lL{Jnot
including the DNS packets. Benign websites with onlineastrimg
application (such as video, audio and internet phone) witlegate
lots of UDP packets, whereas malicious websites often ifatsr

of TCP packets. Our data showed the averdDP_packet s for
both benign and malicious URLs are 0 because the crawler does
not download any video/audio stream from the sever.

(N6): TCP_ur g_packets. This is the number of urgent TCP
packets with the URG (urgent) flag set. Some attacks abusabi

to bypass the IDS or firewall systems that are not properlyzelf

a packet has the URGENT POINTER field set, but the URG flag is value of this feature is 13.30 for malicious websites and 73

not set, this constitutes a protocol anomaly and usuallicatds a
malicious activity that involves transmission of malforiECP/IP
datagrams. Our data showed the average is 0.0003 for madicio
websites and 0.001 for benign websites.

(N7): Sour ce_app_packet s. This the number of packets send

benign websites.

(N16): DNS_r esponse_t i ne. Thisisthe response time of DNS
servers. Benign URLs often have longer life-times and thei
main names are more likely cached at local DNS servers. As a
result, the average value of this feature of benign URLs n&y b

by the crawler to remote servers. Our data showed the averageshorter. Our data showed the average value of this featl/2 29

sour ce_app_packet s is 130.65 for malicious websites and
35.44 for benign websites.

(N8): Renpt e_app_packet s. This the number of packets send
by the the remote webserver(s) to the crawler. This feasumigue
to the network layer. Our data showed the average valueofahi
ture is 100.47 for malicious websites and 38.28 for benigbsites.
(N9): Sour ce_app_byt es. This is the volume (bytes) of the
crawler-to-webserver communications. Our data showedtkiza
average application payload volumes of benign websitesraid
cious websites are about 146 Bytes and 269 Bytes, respgctive
(N10): Renot e_app_byt es. This is the volume (bytes) of data
from the webserver(s) to the crawler, which is similar totdiea
Sour ce_app_byt e. Our data showed the average value of this
feature is 36527 bytes for malicious websites and 49761skigie
benign websites.

(N11): Dur ati on. This is the the duration of time, starting from
the point the crawler was fed with an input URL to the point the
webpage was successfully obtained by the crawler or an egror
turned by the webserver. This feature is indicative of nialis
websites because visiting malicious URLs may cause theleraw
to send multiple DNS queries and multiple connections tatipiel
web servers, which could lead to a high volume of communica-
tions. Our data showed that visiting benign websites caQs#3
seconds duration time on average, whereas visiting makoieb-
sites causes 2.05 seconds duration time on average.

(N12): Avg_| ocal _pkt _rate. This is the average rate of IP
packets (packets per second) that are sent from the crawthet
remote webserver(s) with respect to an input URL, which ksfioa
sour ce_app_packet s/dur at i on. This feature measures the
packet sending speed of the crawler, which is related td¢heess
of webpage resources. Webpages containing rich resoufies o
cause the crawler to send large volume of data to the seruar. O
data showed the averageg | ocal _pkt _rate is 63.73 for
malicious websites and 44.69 for benign websites.

(N13): Avg_renot e_pkt _rat e. Thisis the average IP packets
rate (packets per second) sent from the remote server toaiwee.
When multiple remote IP addresses are involved (e.g., Isecall
redirection or because of the webpage using external links)
amortize the number of packets to them, despite that someteem
IP addresses may send more packets than others back towhercra
Websites containing malicious code or contents can catpeVal-
ume communications between the remote server(s) and tivkecra
Our data showed the averageg_renot e_pkt _rat e rate is
63.73 for malicious websites and is 48.27 for benign website
(N14): App_packets. This is the total number of IP packets
generated for obtaining the content corresponding to aut ldRL,
including redirects and DNS queries. It measures the datsesmge
volume between the crawler and the remote webserver(s)d&ar
showed the average value of this feature is 63.73 for mailtoieeb-
sites and 48.27 for benign websites.

Features based on crawler-DNS flows

(N15): DNS_query_ti nes. This is the number of DNS queries
sent by the crawler. Because of redirection, visiting malis URLs
often causes the crawler to send multiple DNS queries andrto ¢

ms for malicious websites and are 7.36 ms for benign websites

Features based on aggregated values

(N17): I at _f | ow. This is the accumulated inter-arrival time be-
tween consecutive flows. Given two consecutive flows, therint
arrival time is the difference between the timestamp of th&t fi
packet in each flow. Our data showed the average_f | owis
1358.4 for malicious websites and 512.99 for benign wessite
(N18): Fl ow_nunber. This is the number of flows generated
during the entire lifecycle for the crawler to download thebaxcon-
tent corresponding to an input URL, including the recursjueries

to DNS and recursive access to redirects. It includes botR TC
flows and UDP flows, and is a more general way to measure the
communications between the crawler and the remote webserve
Each resource in the webpage may generate a new flow. This fea-
ture is also unique to the network layer. Our data showedthe a
erageFl ow_nunber is 19.48 for malicious websites and 4.91 for
benign websites.

(N19): Fl ow_dur ati on. This is the accumulated duration of
each basic flow. Different from featufir at i on, this feature in-
dicates the linear process time of visiting an URL. Our dataned
the averag&l ow_dur at i onis 22285.43 for malicious websites
and 13191 for benign websites.

2.4 Effectiveness Metrics

In order to compare different detection models (or methads,
gorithms), we consider three effectiveness metrietection accu-
racy, false-negative rateandfalse-positive rate Suppose we are
given a detection model (e.g., J48 classifier or decisia) teghich
may be learned from the training data. Suppose we are given a
test data that consists df malicious URLs andi; benign URLs.
Suppose further that the detection model correctly dei#cisut
of the d, malicious URLs andl5 out of thed> benign URLs. The

detection accuracy is defined %;%i% The false-negative rate is

defined as‘%. The false-positive rate is defined g%dgi/?. A
good detection model achieves high effectiveness (i.gh tetec-

tion accuracy, low false-positive and false-negative)rate

2.5 Data Analysis Methods

In order to identify the better detection model, we consider
popular machine learning algorithms: Naive Bayes, Logist-
gression, Support Vector Machine (SVM) and J48. Naive Bayes
classifier is a probabilistic classifier based on Bayes' [288. Lo-
gistic regression classifier [24] is one kind of linear cifisation,
where the domain of the target variableGisl. SVM classifier
aims to find an maximum-margin hyperplane for separatinfgdif
ent classes in the training data [12]. We use the SMO (Seiglient
Minimal-Optimization) algorithm in our experiment with jyoo-
mial kernel function [31]. J48 classifier is an implemertatof
C4.5 decision trees [34] for binary classification. Theg@athms
have been implemented in the Weka toolbox [19], which also re
solves issues such as missing feature data and conversstings
to numbers.

In order to know whether using a few features is as powerful as

nect multiple remote webservers. Our data showed the a¥erag \ging all features and which features are more indicativenaf

licious websites, we consider the following three featwledtion
methods. The first method is Principle Component AnalyR&A),
which transforms a set of feature vectors to a set of shoer f
ture vectors [19]. The second feature selection methodlisdca
“Cf sSubset Eval with best-first search method" in the Weka
toolbox [19], orSubset for short. It essentially computes the
features’ prediction power according to their contribn§g20].

It outputs a subset of features, which are substantiallyetated
with the class but have low inter-feature correlations. Thied
feature selection method is calledrif oGai nAt t ri but eEval
with ranker search method" in the Weka toolbox [19], of oGai n
for short. Its evaluation algorithm essentially computes infor-
mation gain ratio (or more intuitively the importance of kedea-
ture) with respect to the class. Its selection algorithnksdaatures
based on their information gains [14]. It outputs the rankalb
features in the order of decreasing importance.

3. SINGLE-LAYER DETECTION OF MALI-
CIOUS WEBSITES

In this section, we investigate two kinds of single-layetede
tion systems. One uses the application-layer informatidy, @and
corresponds to the traditional static approach. The otkes the
network-layer information only, which is newly introducédthe
present paper. The latter was motivated by our insight trenet-
work layer may expose useful information about malicioudwe
sites from a different perspective. At each layer, we repiatre-
sults obtained by using the methodology described in Seétio

The application-layer and network-layer effectivenessiits av-
eraged over the 37 days are described in Table 1. For appfieat
layer detection, we make two observations.

e J48 classifier is significantly more effective than the other
three detection models, whether feature selection is used o
not. However, J48 classifiers may incur somewhat high false-
negative rates.

Feature selection will significantly hurt detection effeet
ness, which is true even for J48 classifiers. This means that
conducting feature selection at the application layer doés
appear to be a good choice.

For network-layer detection, we observe the following:

e J48 classifier is significantly more effective than the other
three detection models, whether feature selection is used o
not. Note that although Naive Bayes incurs a lower false-
negative rate, it has a very low detection accuracy. Sirtdlar
what we observed at the application layer, J48 classifier als
incurs pretty high false-negative rates, meaning that oréw
layer alone is not competent.

Overall, feature selection hurts detection effectivenés$ss
also means that conducting feature selection at the network
layer is not a good idea.

By comparing the application layer and the network layer, we
observed two interesting phenomena. First, each singks-lde-
tection method has some inherent limitation. Specificaiyce
we were somewhat surprised by the high false-negative dse-fa
positive rates of the single-layer detection methods, watwa
know whether they are caused by some outliers (extremely hig
rates for some days), or are persistent over the 37 days.dginip
into the data in detail, we found that the false-negative fafgke-
positive rates are reasonably persistent. This means itigles
layer detection has some inherent weakness.

Second, we observe that network-layer detection is onghsli
less effective than application-layer detection. Thisfecors our
original insight that the network-layer traffic data can es@ use-
ful information about malicious websites. Although netiwtayer
detection alone is not good enough, this paved the way fdoexp
ing the utility of cross-layer detection of malicious websi which
is explored in Section 4.

4. CROSS-LAYER DETECTION OF MALI-
CIOUS WEBSITE

Having showed that network-layer traffic information camegi
approximately the same detection effectiveness of theicgijn
layer, now we show how cross-layer detection can achievehmuc
better detection effectiveness. Given the pre-processsdrie vec-
tors at the application and network layers, we extend thegoliag
methodology slightly to accommodate extra ideas that ageifip
to cross-layer detection.

e Data-aggregation cross-layer detection: For a given URL,
we obtain its cross-layer feature vector by concatenatimg i
application-layer feature vector and its network-layettee
vector. The resultant feature vectors are then treatedeas th
pre-processed data in the methodology described in Section
2 for further analysis.

e OR-aggregation cross-layer detection: For a given URL, if
either the application-layer detection model or the nekwor
layer detection model says the URL is malicious, then the
cross-layer detection model says the URL is malicious; oth-
erwise, the cross-layer detection model says the URL is be-

nign. This explains why we call tR-aggregation.

e AND-aggregation cross-layer detection: For a given URL, if
both the application-layer detection model and the network
layer detection model say the URL is malicious, then the
cross-layer detection model says the URL is malicious; oth-
erwise, the cross-layer detection model says the URL is be-

nign. This explains why we call AND-aggregation.

XOR-aggregation cross-layer detection: For a given URL, if
both the application-layer detection model and the network
layer detection model say the URL is malicious, then the
cross-layer detection model says the URL is malicious; if
both the application-layer detection model and the network
layer detection model say the URL is benign, then the cross-
layer detection model says the URL is benign. Otherwise, the
cross-layer detection model resorts to the dynamic approac
That is, if the dynamic approach says the URL is malicious,
then the cross-layer detection model says the URL is ma-
licious; otherwise, the cross-layer detection model shgs t
URL is benign. We call itXOR-aggregation because it is in
the spirit of the XOR operation.

We stress that th€OR-aggregation cross-layer detection model re-
sides in between the above three cross-layer detectionlsade
the dynamic approach because it partly relies on the dynaptic
proach. XOR-aggregation cross-layer detection is practicaly
whenit rarely invokes the dynamic approach.

4.1 Overall Effectiveness of Cross-Layer De-
tection

The effectiveness of cross-layer detection models, aeerager
the 37 days, is described in Table 2, from which we observe the

Feature Naive Bayes Logistic SVM J48
selection? cc (% 0 0 cc (% 0 0 cc (% 0 0 cc (% 0 0
application-layer average detection effectiveness
none 51.260 11.029 59.27§ 90.551 22.990 5.694 85.659 55.504 3.06§ 96.394 6.096 2.933
PCA 67.757 9.998 38.470 91.495 20.526 5.166 89.460 30.031 5.189 95.668 9.537 2.896
Subset 77.962 35.311 18.163 86.864 37.895 6.289 84.688 51.671 5.279 93.581 15.075 3.999
I nfoGain 71.702 19.675 30.664 84.895 43.857 7.091 83.733 52.071 6.363 94.737 12.148 3.39¢
network-layer average detection effectiveness

none 51.767 0.796 61.649 90.126 21.531 6.630 86.919 24.449 9.98§ 95.161 9.127 3.676
PCA 67.766 4.017 40.274 87.454 30.651 7.520 85.851 32.957 9.34 89.907 22.587 6.604
Subset 70.188 0.625 38.03§ 88.141 25.629 8.06] 86.534 25.397 10.18§4 92.415 14.580 5.654
I nfoGain 55.533 0.824 56.801] 86.756 29.783 8.64] 82.822 40.875 10.56Q0 92.853 15.442 4.857

Table 1: Single-layer average effectiveness (Acc: deteati accuracy; FN: false negative rate; FP: false positive ra)

following. First, data-aggregation cross-layer J48 dfesswith-
out using feature selection achieves (99.178%, 2.2849%2200}-
effectiveness, which is significantly better than the aygtion-layer
J48 classifier that achieves (96.394%, 6.096%, 2.933%js@fEness,
and is significantly better than the network-layer J48 dizsghat
achieves (95.161%, 9.127%, 3.676%)-effectiveness. krotbrds,
cross-layer detection can achieve significantly highexatffeness
than the single-layer detection models. This further cordiour
motivational insight that network-layer can expose usifidrma-
tion about malicious websites from a different perspectiféis
phenomenon can be explained by the low correlation betwesn t
application-layer feature vectors and the network-lagature vec-
tors of the respective URLs. We plot the correlation coedfits in
Figure 2, which shows the absence of any correlation bedhese
correlation coefficients fall into the interval ¢f-0.4,0.16]. This
implies that the application layer and the network layerosendif-
ferent kinds of perspectives of malicious websites, andbeaax-
ploited to construct more effective detection models.

Max ——
08 Min -]
c
0
2 04
@
8
c 0
i)
T X T K 2K x 209086 50 - Do
©-04
S
o
-0.8
5 10 15 20 25 30 35

day

Figure 2: The max and min correlation coefficients between
application-layer and network-layer feature vectors.

Second, J48 classifier is significantly better than the dtirere
classifiers, with or without feature selection alike. Sitioe above
comparison is based on the average over 37 days, we wantwo kno
whether or not J48 classifier is consistently more effedtiaa the
other three classifiers. For this purpose, we looked intodéita
and found that J48 classifier is almost always more effecttiaa
the other three classifiers. Therefore, we recommend to 48e J
classifier and will focus on J48 classifier in the rest of thegoa

Third, because the preceding discussion is based on thagever
of the 37 days, it is interesting to know whether the effecteaf
ture selection is persistent over the 37 days. For this pepae
considered both feature selection algorithms and fountthey
exhibit similar phenomenon. Specifically, we looked inte thay-
by-day effectiveness of cross-layer detection models vasipect
to thel nf oGai n feature selection algorithm. We found that the
effect of feature selection is persistent over the 37 dsgpedally

for the XOR-aggregation cross-layer detection model. This further
confirms that feature selection can be adopted in practice.

Fourth, theOR-aggregation cross-layer J48 classifier can achieve
significantly lower false-negative rate than the data-agation cross-
layer J48 classifier, at the price of a lower detection aayueand
a higher false-positive rate; whereas, #WdD-aggregation cross-
layer J48 classifier can achieve a significantly lower falsgative
rate than the data-aggregation cross-layer J48 classifitie price
of a lower detection accuracy and a higher false-negatiee Tdnis
phenomenon can be explained by using the definitions of fhe-ef
tiveness metrics as follows. For fixed populationdefmalicious

URLSs andd; benign URLs, a lower false-negative ré’tg:il im-
plies a higherl;. Since the detection accura /132 slightly de-
creases when compared with the data-aggregation crossday

tection, d, must decrease. This means that the false-positive rate

% increases. In a similar fashion, we can deduce that an in-
crease in false-positive rate can lead to a decrease in e fa
negative rate. The above phenomenon has a useful implicatio
cross-layer classifiers offer a spectrum of deployment ipibiss
ties, depending on the security needs (e.g., preferringrdalse-
negative rate or lower false-positive rate). In Section &, will
explore the deployment issues of the cross-layer deteniimatels.

Fifth, feature selection still hurts the cross-layer deteceffec-
tiveness, but ata much lesser degree. Moreover, the dgtagagion
cross-layer J48 classifier with feature selection is dtithgicantly
better than the single-layer J48 classifiers without usefure
selection. Indeed, the data-aggregation cross-layer |&48ifier
with feature selection offers very high detection accuraay very
low false-positive rate, th®R-aggregation cross-layer J48 classi-
fier with feature selection offers reasonably high detectioccuracy
and reasonably low false-negative rate, and ANB-aggregation
cross-layer J48 classifier with feature selection offeesoaably
high detection accuracy and extremely low false-posite.rWhen
compared with the data-aggregation cross-layer detedtierOR-
aggregation cross-layer detection has a lower false-ivegedte,
but a lower detection accuracy and a higher false-positite iThis
can be explained as before.

Sixth, theXOR-aggregation cross-layer detection can achieve al-
most the same effectiveness as the dynamic approach. For exa
ple, it achieves (99.986%, 0.054%, 0.003%) effectivenatsowt
using feature selection, while only losing 0.014%(1-98%8 ac-
curacy to the dynamic approach. This means that J48 cladsifie
extremely appropriate fofOR-aggregation, which can be deployed
in real-life whenever possible. Note that the false-negatate of
the XOR-aggregation J48 classifier equals the false-negativeofate
the OR-aggregation J48 classifier. This is because all of the ma-
licious websites which are mistakenly classified as benigithk
OR-aggregation J48 classifier are necessarily mistakengsitiad
as benign by thXOR-aggregation J48 classifier. For a similar rea-

Layer Feature Naive Bayes Logistic SVM J48
selection? [Acc (%) FN (%) FP(%)[Acc(%) FN (%) FP ()] Acc(%) FN (@) FP (%)[Acc(®) FN (%) FP (%)
Cross-layer none 55.245 7.961 55.104 96.861 7.945 1.781 94.568 21.227 1.114 99.178 2.284 0.422
(data-aggregation)| PCA 72.084 4.124 34.659 97.582 5.740 1.481 96.014 9.330 2.492 98.807 3.007 0.692
Subset 80.396 1.402 24.729 94568 13.662 3.129 93.296 15.575 4.244 98.335 4.245 0.945
I nfoGai n 73.146 1.342 34.069 90.703 22.267 5.693 88.297 26.562 7.571 97.365 6.052 1.689
Cross-layer none 40.286 0.162 76.437 91.565 6.116 9.104 88.517 7.858 12.547 97.101 0.054 3.704
(OR-aggregation) | PCA 41.582 0.212 74.707 90.039 7.992 10.529 88.342 19.301 9.919 94.251 1.279 7.01q
Subset 57.666 0.065 54.164 88.493 11.460 11.554 86.958 14.154 12.77Q 94.263 2.615 6.622
I nfoGain 45.276 0.150 70.051] 87.342 12.075 12.85] 85.266 18.144 13.803 95.129 1.621 5.794
Cross-layer none 79.097 8.262 24504 92.528 33.536 0.204 90.335 44.216 0.144 97.888 9.781 0.003
(AND-aggregation)| PCA 79.918 12.428 22.355 90.437 43.244 0.1924 85.642 66.755 0.004 94.524 24.998 0.037
Subset 88.188 17.355 10.246 88.984 49.660 0.300 86.738 60.510 0.204 95.448 20.508 0.111
I nfoGain 83.719 14.269 16.88§ 87.625 55.774 0.293 84.313 71.175 0.264 95.496 20.685 0.023
Cross-layer none 80.861 0.162 24504 98.510 6.116 0.202 98.186 7.858 0.1424 99.986 0.054 0.003
(XOR-aggregation)| PCA 82.552 0.212 22.355 98.103 7.992 0.192 96.052 19.301 0.004 99.693 1.279 0.037
Subset 91.990 0.065 10.24q 97.275 11.460 0.300 96.754 14.154 0.204 99.346 2.615 0.111
I nfoGain 86.803 0.150 16.884 97.140 12.075 0.293 95.822 18.144 0.264 99.630 1.621 0.023

Table 2: Cross-layer average effectiveness (Acc: deteati@ccuracy; FN: false-negative rate; FP: false-positive re). In the XOR-
aggregation cross-layer detection, the portions of webgt were queried to the dynamic approach (i.e., the websitesrfwhich the
application-layer and cross-layer detection models haveifferent opinions) with respect to the four machine learning algorithms are
respectively: without using feature selection: (19.139%1.49%, 1.814%, 0.014%); using”CA feature selection: (17.448%, 1.897%,
3.948%, 0.307%); usingSubset feature selection: (8.01%, 2.725%, 3.246%, 0.654%); usingnf oGai n feature section: (13.197%,
2.86%, 4.178%, 0.37%). Therefore, J48 classifier is extrenheappropriate for XOR-aggregation.

son, we see why the false-positive rate of ®@R-aggregation J48
classifier equals the false-positive rate of AidD-aggregation J48
classifier.

4.2 Which Features Are Indicative?

Identifying the features that are most indicative of malis web-
sites is important because it can deepen our understantlimg-o
licious websites. Principal Components Analysis (PCA) besn
widely applied to obtain unspervised feature selectionsiging
linear dimensionality reduction technique. However, Pased
feature selection method is not appropriate to discovecatide
of malicious websites. Therefore, this research has fatuse
Subset andl nf oGai n.

The Subset feature selection algorithm

This algorithm selects a subset of features with low cotiata
while achieving high detection accuracy. Over the 37 ddyis, t
algorithm selected 15 to 16 (median: 16) features fordhea-
aggregation cross-layer detection, and 15 to 21 (medianfel8
tures for both théOR-aggregation and thaND-aggregation. Since
this algorithm selects at least 15 features daily, spacéaliion
does not allow us to discuss the features in detail. Nevedhe
we will identify the few features that are also most commasgy
lected by thd nf oGai n algorithm.

The | nf oGai n feature selection algorithm

This algorithm ranks the contributions of individual fesgs. For
each of the three specific cross-layer J48 classifiers arehfdr of
the 37 days, we used this algorithm to select the 5 most tontri
tive application-layer features and the 4 most contrileutigtwork-
layer features, which together led to the detection effeatss de-
scribed in Table 2. The five most contributive applicatiager
features are (in descedent ordeA1}: URL_Lengt h;
(A5): HTTPHead_ser ver ; (A8): Whoi s_r egDat e;

(A6): HTTPHead_cacheCont r ol ; (A11): Whoi s_st at ePr ov.

The four most contributive network-layer features aredatsde-
scendent order)N11): Dur at i on; (N9): Sour ce_app_byt e;
(N13): Avg_renote_pkt _rate;
(N2): Di st _renote_TCP_port.

Intuitively, these features are indicative of malicioushsi¢es be-

cause during the compromise of browsers, extra commuaitsati
may be incurred for connecting to the redirection websitbden
involving more remote TCP ports. We observed that most of the
HTTP connections with largeN(L1): Dur at i on time are caused
by slow HTTP responses. This is seemingly because malicious
websites usually employ dynamic DNS and Fast-Flush sengte
work techniques to better hide from detection. This woutb ax-
plain why malicious websites often lead to larger valuesNf)(

Di st _renote_TCP_port. We also observed that malicious
websites often have longer DNS query time (1.33 seconds@mn av
age) than benign websites (0.28 seconds on average). Thiseca
because the DNS information of benign websites are oftehechc

in local DNS servers, meaning there is no need to launch +ecur
sive or iterative DNS queries. Moreover, we observe thataioais
websites often incur smalleN(@3): Avg_renpte_pkt _rate
because the average volume of malicious website conteonfteis
smaller than the average volume of benign website contés.
datasets show that the average volume of malicious wehsite ¢
tents is about 36.6% of the length of benign website contents

The most commonly selected features

Now we discuss the features that are most commonly selected
by both feature selection algorithms. On each of the 37 dags,
Subset feature selection algorithm selected the aforesaid 15-21
features of the 124 features. Overall, many more featuesey
lected by this algorithm over the 37 days. However, only 5uiess
were constantly selected everyday, where 4 features amne tfie
application layer and 1 feature is from the network layere&ip
cally, they are: A1): URL_Lengt h; (A5): HTTPHead_ser ver;
(A2): Nunber _of _speci al _characters_i n_URL;(A13):
Nurmber _of _redirects; (N1): Duration. These features
are indicative of malicious websites because visiting aalis URLs
may cause the crawler to send multiple DNS queries and connec
to multiple web servers, which could lead to a high volumearhe
munications.

Thel nf oGai n feature selection algorithm selected the afore-
said 15-16 features out of the 124 application-layer and/om-
layer features. Overall, only 17 out of the 124 features veswes
selected, where 6 features are from the application layertlae
other 11 features are from the network layer. Three of thesafo

=

1
0O 20 40 60 80 100 120 0O 10 20 30 40 50 60
Feature Index Feature Index

(a) Subset feature selection (b) | nf oGai n feature selection

Figure 3: Selected features during the 37 days (features 191
correspond to the network-layer features, and features 2024
correspond to the application-layer features).

said features were selected every dayl)(URL_Lengt h, (N1):
Dur ati on, (N9): Source_app_byte. As mentioned in the
description of the nf oGai n feature selection algorithmNQ):

Dur at i on represents one important feature of malicious web page.

As for (N9): Sour ce_app_byt e feature, intuitively, malicious
web pages that contain rich content (usually phishing casjean
cause multiple HTTP requests.

Overall, the features most commonly selected by the twaifeat
selection algorithms are the aforementionad){ URL_Lengt h,
(A5): HTTPHead_ser ver and (N1): Dur ati on. This further
confirms the power of cross-layer detection. These featares
indicative of malicious websites as explained before.

4.3 How Did the Network Layer Help Out?

In the above we observed the overall effectiveness of deyss-
detection, which at a high level can be attributed to the fhaat
the network-layer data has a low correlation with the apypidn-
layer data (i.e., the network-layer data does expose eximana-
tion about websites). Now we give a deeper characterizatitime
specific contributions of the network-layer informatioratheads
to the correct classification of URLs.

Cross-layer aggret Average correc{ Average correcH
gation method tion of FN tion of FP
Data-aggregation | 79.59 13.91
OR-aggregation 126.16 N/A
AND-aggregation | N/A 16.23
XOR-aggregation | 126.16 16.32

Table 3: Breakdown of the average mis-classifications that @re
corrected by the network-layer classifiers, where N/A means
that the network-layer cannot help (see text for explanatia).

benign. We observe that the contributions of the netwoykila
classifiers forxXOR-aggregation in terms of correcting both FP and
FN (126.16 and 16.32, respectively) are strictly more $igamnt
than the contributions of the network-layer information dat a-
aggregation (79.59 and 13.91, correspondingly). Thisaerpwhy
XOR-aggregation is more effective thdat a-aggregation.

>26 >1 <1
&
%
>5

<2010 >167
&
(@ Two mis-classification (b) Network-layer corrections

examples by application-layerof the two application-layer mis-
classifier classifications

Figure 4: Portions of the application-layer and network-layer
classifiers corresponding to the two URLSs.

In what follows we examine two example URLSs that were mis-
classified by the application-layer classifier but corrédtaough
the network-layer classifier. The two examples are amonbg/Rles
on the first day data, where one example corresponds to thes=P m
take (i.e., the application-layer classifier mis-clasdifae benign
URL as malicious) and the other example corresponds to the FN
mistake (i.e., the application-layer classifier mis-dfésd a mali-
cious URL as benign). The portion of the application-layise
sifier corresponding to the two example URLs are highlighited
Figure 4(a), which involves the following features (in theler of
their appearances on the paths):

(A2) | Nunber _of _speci al _char
(A18) | Nunber _of _snal | _size_ifrane
(A1) [URL_l ength
(A19) | Number _of _suspi ci ous_JavaScri pt _functi ons
(A17) | Nunber _i frane
(A13) | nunmber _of _redirect
(A16) | Nunmber _of | ong_strings
(A8) | regi ster_date

The portions of the network-layer classified correspondmthe

Table 3 summarizes the average number of “corrections” madetwo URLs are highlighted in Figure 4(b), which involves tr-f

through the network-layer classifiers, where average istaker
the 37 days. The mis-classifications by the applicatioedayjas-
sifiers are either false-negative (i.e., the applicatayet classifiers
missed some malicious URLS) or false-positive (i.e., th@iagation-
layer classifiers wrongly accused some benign URLS). Natieftin
OR-aggregation, the network-layer classifiers cannot hefpeco
the FP mistakes made by the application-layer classifiezause
the benign URLSs are always classified as malicious as long@s o
classifiers (in this case, the application-layer one) dag are ma-
licious. Similarly, for AND-aggregation, the network-layer classi-
fiers cannot help correct the FN mistakes made by the apiplicat
layer classifiers because (i) the malicious URLs are alwissiz
fied as benign unless both kinds of classifiers think they ak-m
cious and (2) the application-layer classifier already shgg are

lowing features (in the order of their appearances on thiespat

(N11) | Durati on
(N14) | App_packets
(N2) | Di st _renmote_TCP_port
(N16) | DNS_response_ti ne
(N9) | Avg_l ocal _pkt _rate
(N15) | DNS_query_ti nes
(N3) | Renpte_i ps
(N12) | Sour ce_app_bytes

Note that some features can, and indeed often, appear Haultip
times on a single path.

For the FP mistake made by the application-layer classtfier,
feature values ard2=0 (no special characters in URLA18=2
(two small iframes)A1=61 (medium URL length) an819=4 (four

suspicious JavaScript functions), which lead to the leftchpath
in Figure 4(a). The application-layer mis-classificatiomynbe
attributed toA18=2 and A19=4, while noting that benign web-
sites also use theval () function to dynamically generate code
according to certain information about the browser/uset ase
obfuscation to hide/protect JavaScript source code. Orotther
hand, the relevant network-layer feature valueshit&=0.89 sec-
onds (close to 0.793 second, the average of benign URL<)79
(close to 63.73, the average of malicious URLNP=5 (not in-
dicative because it is almost equally close to the averafjbstb
benign URLs and malicious URLS)16=13.11ms (close to 13.29,
the average of malicious URLIN9=113 (close to 146, the aver-
age of benign URLs)YN15=6 (close to 7.36, the average of benign
URLSs). We observe that the three network-layer featuresieha
N11, N9 andN15, played a more important role in correctly clas-
sifying the URL.

For the FN mistake made by the application-layer class#i2s,7
(close to 3.36, the average of malicious URLA),7=0 (indicating
benign URL because there are no iframés)3=0 (indicating be-
nigh URL because there are no redirecfs)=22 (close to 18.23,
the average of malicious URLS)\16=2 (close to 0.88, the aver-
age of malicious URLs), and8=2007 (indicating benign URL
because the domain name has been registered for multipig)yea
The above suggests that7, A13 andA8 played a bigger role that
caused the mis-classification. On the other hand, the melewt-
work feature values afd11=2.13 (close to 2.05, the average of ma-
licious URLS),N14=342 (close to 63.73, the average of malicious
URLSs), N2=7 (not very indicative because the respective averages
of benign URLs and malicious URLs are about the sa@r3
(close to 2.40, the average of benign URLN),2=289 bytes (rela-
tively close to 63.73, the average of malicious URLS), BiS¢423
(relatively close to 269, the average of malicious URLs)e @hove
suggests that the network-layer classifier can correct tistake
made by the application-layer classified because of featutd,
N14, N12 andNo9.

4.4 Performance Evaluation

As discussed in the Introduction, we aim to make our system
as fast and scalable as the static approach while achiesihggha
of effectiveness as the dynamic approach. In the preceding,
have demonstrated that cross-layer J48 classifiers (inagledf
the cross-layer detection models we investigated) arestlamef-
fective as the dynamic approach. In what follows we repaat th
the cross-layer J48 classifiers are much faster than thexdgragp-
proach and almost as efficient as the static approach.

The time spent on running our system consists of three parts:
the time spent for collecting application-layer and netwiaryer
data, the time spent for training the cross-layer J48 dlassi and
the time spent for using the J48 classifiers to classify viesi
Since the training of cross-layer J48 classifiers is coratligte-
riodically (e.g., once a day in our experiments), this tim@ot a
significant factor and can be omitted. Nevertheless, wertepat
the time spent for learning data-aggregation cross-la4@chssi-
fiers is typically less than 10 seconds on a modest computenwh
the training dataset has thousands of feature vectors. raimeng
time spent for learnin@R-aggregationAND-aggregation, oXOR-
aggregation cross-layer J48 classifiers is about the sarhereT
fore, we will focus on the time spent for collecting the apation-
layer and network-layer data corresponding to a given URdL an
the time spent for classifying the given URL. These two nestri
are the most important because they ultimately determiretiven
the cross-layer J48 classifiers can be deployed for the parpb
real-time detection.

In the afore-reported effectiveness experiments, thesdeyser
J48 classifiers and the Capture-HPC client honeypot (as gram
of the dynamic approach) ran on different computers witfedst
hardware configurations. Therefore, we cannot simply nreasud
compare their respective time complexities. In order tceha¥air
comparison, we conducted extra experiments by using twgabtm
ers with the same configuration. One computer ran our ciayss-|
J48 classifiers and the other computer ran the Capture-Hef cl
honeypot. The hardware of the two computers is Intel Xeon2033
4 cores CPU and 8GB memory. We use Capture-HPC version
3.0.0 and VMWare Server version 1.0.6. The Host OS is Windows
Server 2008 and the Guest OS is Windows XP sp3. Our crawler
was written in JAVA 1.6 and ran on top of Debian 6.0. We used
IPTABLES [2] and a modified version of TCPDUMP [7] to paral-
lelize the data collection system. The application-lapatdres are
directly obtained by each crawler instance, but the netviaykr
features are extracted from the network traffic that is ctdlé by
the TCPDUMP software on the local host. IPTABLES are con-
figured to log network flow information with respect to diféeit
processes, which correspond to different crawler ins&an&nce
our crawler is light-weight, we ran 50 instances conculygantour
experiments; whereas we ran 5 guest Operating Systemsab par
lelize the Capture-HPC. Experimental results indicated thore
guest Operating Systems make the system unstable. Bothutomp
ers use network cards with 100Mbps network cable.

Data-aggregation cross-layer J48 classifier
Total data collection time 4 min
Total classification time 302 ms
Total time ~ 4 min
Capture-HPC
Total time 199min

Table 4: Measured performance comparison between the data-
aggregation cross-layer J48 classifier and the dynamic ap-
proach (the Capture-HPC client honeypot) with 3,062 input
URLSs (1,562 malicious URLs + 1,500 Benign URLS)

Table 4 describes the performance of the cross-layer J48 cla
sifier and of the Capture-HPC client honeypot. It took theadat
aggregation cross-layer J48 classifier about 4 minute®tegs the
3,062 input URLSs, whereas it took the Capture-HPC 199 mute
to process the same 3,062 URLs. In order words, the cross-lay
detection approach can be about 50 times faster than theniyna
approach, while achieving about the same detection effawis.

The preceding conclusion that the cross-layer detectiproagh
can be about 50 times faster than the dynamic approach wed bas
on the batch processing of 3,062 URLs. In order to get a clue
on the performance comparison in terms of the processing tim
for individual URLs, we can approximately break down the mea
sure performance as follows, wheapproximationis caused by
the concurrent executions of the respective systems. fRadiy,
the time for the data-aggregation cross-layer J48 classifiele-
termine whether a given website is malicious or not may be cal
culated as240/(3062/50) =~ 3.92 seconds because each crawler
actually processed 3062/50 URLs on average. Among the 892 s
onds, on average 2.73 seconds were actually spent for dadmlo
ing the website content, which means that 1.19 seconds \perg s
for feature extractions etc. Similarly, the time for CaptiPC
to determine whether a given website malicious or natli#9 x
60)/(3062/5) = 19.5 seconds because 5 Capture-HPC instances
run concurrently. The reason why Capture-HPC is slow is lieea
Capture-HPC spent much time on receiving all the diagnastic

sults caused by visiting URLSs in virtual machine and reveytiir-

The cross-layer data correlator relates the applicatgetl web-

tual machine back to clean snapshot whenever a URL is deesned a site contents to the corresponding network-layer traffectiie in-

malicious. Moreover, thXOR-aggregation cross-layer J48 classi-
fier without using feature selection would only incur the dyric
approach to analyze, on average, alio0t% x 3062 ~ 154 web-
site. This means that even fiOR-aggregation, the processing
time per URL is no more thaf.92 + 19.5 x 154/3062 ~ 4.9
seconds. Therefore, we conclude that even if the cross-tisre
tection system runs within each individual computer, rathan a
third-party server, it is about 4 times faster than the dyinaap-
proach. In any case, 4 seconds waiting time is arguably taioiep
especially, we can let the browser start displaying theigast of
website content that have no security concerns. This i9nedie
because the same idea has been used to give users the ithesion
website contents are displayed almost instantly, but Hgtiitakes

a few seconds to display the entire website contents. Onttiez o
hand, waiting for 19.5 seconds for the dynamic approachdgb te
whether a website is malicious or not is not usable, whichaes
explains why the dynamic approach, while powerful, is nadus
for real-time detection in practice.

5. DEPLOYMENT

Cross-layer detection offers a spectrum of deploymeniapti
On one hand, it can be deployed as a stand-alone solutiondgeita
is highly effective as analyzed before. Moreover, it candeloyed
as a light-weight front-end detection system of a biggeutsmh
(see Figure 5), which aims at detecting as many maliciousite=h
as possible while scaling up to a large population of websit@r
this purpose, the data-aggregation and@Reaggregation method
would be competent. Moreover, théOR-aggregation is particu-
larly effective and should be deployed when it only incuesiiack-
end dynamic approach occasionally.

Input URL

collection Our data collection system

Cross-layer information
of webpages

Fast & Cross-layer detection of
scalable malicious websites
front-end

analysis Suspicious URLs

Optional back-

end deeper Client Honeypot-like
(slower) behavior-based detection &
analysis possibly binary analysis

Figure 5. Example deployment of the cross-layer detection
system as the front-end of a bigger solution becaus®OR-
aggregation J48 classifiers achieve extremely high deteati ac-
curacy, extremely low false-negative and false-positiveates.

put URLs. These components may or may not be deployed on the
same physical computer, as the following scenarios denmaiast

First, we can deploy the stand-alone cross-layer detesyistem
as a web browser plug-in. In this case, the detection systentest
whether the website is malicious or not before the browsteradly
displays the website content. If it is malicious, the browsan
take appropriate actions according to a pre-determinadyp@.g.,
warning the user that the website is malicious). The plughiould
collect the network-layer traffic corresponding to the &gilon-
layer website content of the given URL. The plug-in also mety a
as the network-layer traffic collector and the cross-laymraia-
tor. Moreover, network-traffic could be collected at someteos
or gateways, from which the plug-in can get the traffic cqoesl-
ing to the application-layer website content.

Second, we can deploy the cross-layer detection system as an
online service. This service may be accessed by web browkers
the proxy or gateway technique. Specifically, when a usex$eo
points to a URL, the corresponding website will be analyzgthle
cross-layer detection service, which will inform the out@back
to the browser. The browser can take appropriate actioredbzs
its pre-determined policy (e.g., displaying the websiteat).

Third, we can deploy the cross-layer detection system by the
website hosting server itself. The website hosting servaredor
might have the incentive for proactively examining whetkie
websites it hosts have been compromised, because this emght
hance the reputation of the vendor. In this case, the venalor c
deploy it as a front-end to a bigger detection system, orayeipbs
a stand-alone system.

6. LIMITATION AND FUTURE WORK

First, a key limitation of the study is that the (back-endhamic
approach itself may have its own non-zero false-negatiddane-
positive rates. This issue has been noticed by few studiespéex
[23, 35], but more systematic studies are needed beforengaki
firm conclusions. While studying the dynamic approach is@an o
thogonal issue, we plan to study the impact of the falsethaga
and false-positive of the dynamic approach, with an emghasi
the Capture-HPC that is used in the present paper.

Second, it is interesting to know to what extent we can imgrov
the effectiveness of cross-layer detection systems by acating
new techniques such as those described in [13, 37, 30, 15].

Third, our cross-layer detection system provides some lsimp
best-effort capability by statistically tracking the reslits that are
embedded into the website contents. It is notoriously dilffito
statistically detect obfuscated JavaScript-based redifd7, 16].
Even though the effectiveness of our cross-layer detestystem
is almost as good as the dynamic approach, it is very iniagesi
know the impact of any progress made in the direction of dietgc
obfuscated JavaScript-based redirects. This is impobacause,
although our collected data hints that JavaScript-basgidetion
is widely used by malicious websites, it appears that JaystSubh-
fuscation may not have been widely used because our system ca

On the other hand, there are several ways to deploy the phys-effectively detect the malicious URLs (almost as effectagethe

ical components of the cross-layer detection service. IReG
our system has three components: application-layer ddlaceo
tor (i.e., crawler), network-layer traffic recorder, aness-layer
data correlator. The crawler takes URLs as input, fetchestin-
responding website contents, and conducts a light-weigglyais
to identify the redirects that are embedded into the weltsite
tents. The traffic recorder collects the network traffic espond-
ing to the crawler’s activities for fetching the website tants.

dynamic approach which is capable of dealing with dired#ew-
ever, this may not be true in the future because in the futuch s
redirects may be exploited by the adversary much more widely
Fortunately, any progress in dealing with obfuscated trean be
adopted by our system in a plug-and-play fashion.

7. CONCLUSION

We presented a novel approach to detecting malicious vesbsit
based on the insight that network-layer traffic data may sepse-
ful information about websites, which may be exploited tiat
cross-layer detection of malicious websites. Experimaeisults
showed that cross-layer detection can achieve almost the da-
tection effectiveness, but about 50 times faster than, yimardic
approach based on client honeypot systems. Moreover, tiss-cr
layer detection systems can also be deployed to detectimadic
website in real time because the average time for proceasiep-
site is approximately 4.9 seconds, which could be improvéad w
some engineering optimization.

8. ACKNOWLEDGMENTS

We thank the anonymous reviewers for their constructive-com

ments, and our shepherd, Ninghui Li, for his guidance.

9. REFERENCES

[1] Google safe browing,
http://code. googl e. coni api s/
saf ebr owsi ng/ devel opers_gui de_v2. htm .

[2] iptables 1.4.12.1
www. netfilter.org/projects/iptables.

[3] Know your enemy: Behind the scenes of malicious web
serversht t p: / / ww. honeynet . org.

[4] Know your enemy: Malicious web servers.
http://ww. honeynet. org.

[5] Mcafee siteadvisoht t p: // wwv. si t eadvi sor. com

[6] Sophos corporation. security threat report update @¥32
http:

/ I sophos. coni sophos/ docs/ eng/ paper s/
sophos- security-report-jul 08-srna. pdf.

[7] tcpdump 4.2.0mwwv. t cpdunp. or g.

[8] A. A. Benczur, K. Csalogany, T. Sarlos, and M. Uher.
Spamrank - fully automatic link spam detection. In
AIRWeb'05 2005.

[9] D. Canali, M. Cova, G. Vigna, and C. Kruegel. Prophiler: a
fast filter for the large-scale detection of malicious web
pages. WWW’11, pages 197-206. ACM, 2011.

[10] K. Z. Chen, G. Gu, J. Nazario, X. Han, and J. Zhuge.
WebPatrol: Automated collection and replay of web-based
malware scenarios. IASIACCS’112011.

[11] H. Choi, B. B. Zhu, and H. Lee. Detecting malicious web
links and identifying their attack types. WebApps'11
pages 11-11, 2011.

[12] C. Cortes and V. Vapnik. Support-vector networks. In
Machine Learningpages 273-297, 1995.

[13] M. Cova, C. Kruegel, and G. Vigna. Detection and analysi
of drive-by-download attacks and malicious javascriptecod
In WWW’1Q 2010.

[14] T. M. Cover and J. A. Thomag&lements of Information
Theory Wiley-Interscience, New York, NY, USA, 1991.

[15] C. Curtsinger, B. Livshits, B. Zorn, and C. Seifert. Ztez
Fast and precise in-browser javascript malware detedition.
USENIX Security2011.

[16] A. Dewald, T. Holz, and F. C. Freiling. Adsandbox:

Sandboxing javascript to fight malicious websites. In

SAC’1Q pages 1859-1864, 2010.

B. Feinstein and D. Peck. Caffeine monkey: Automated

collection, detection and analysis of malicious javadctip

Black Hat'07, 2007.

[17]

[18] S. Garera, N. Provos, M. Chew, and A. D. Rubin. A
framework for detection and measurement of phishing
attacks. I'WORM’07 pages 1-8, 2007.

[19] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reuteman

and I. H. Witten. The weka data mining software: an update.

SIGKDD Explor. News| pages 10-18, 2009.

M. A. Hall. Correlation-based Feature Subset Selection for

Machine LearningPhD thesis, University of Waikato,

Hamilton, New Zealand, 1998.

Y.-T. Hou, Y. Chang, T. Chen, C.-S. Laih, and C.-M. Chen.

Malicious web content detection by machine learning.

Expert Syst. Applpages 55-60, 2010.

G. H. John and P. Langley. Estimating continuous

distributions in Bayesian classifietdAl, pages 338—345,

1995.

A. Kapravelos, M. Cova, C. Kruegel, and G. Vigna. Escape

from monkey island: Evading high-interaction honeyclgent

In DIMVA'11, Amsterdam, The Netherlands, July 2011.

[24] S.le Cessie and J. van Houwelingen. Ridge estimators in
logistic regressionApplied Statisticspages 191-201, 1992.

[25] J. Ma, L. K. Saul, S. Savage, and G. M. Voelker. Beyond
blacklists: Learning to detect malicious web sites from
suspicious urls. IKDD’09, pages 1245-1254, 2009.

[26] J. Ma, L. K. Saul, S. Savage, and G. M. Voelker. Identifyi
suspicious urls: an application of large-scale onlinerlzay.
In ICML’09, pages 681-688, 2009.

[27] T. F. Mario Heiderich and T. Holz. Iceshield: Detectiand
mitigation of malicious websites with a frozen dom. In
RAID'11, 2011.

[28] J. Nazario. Phoneyc: A virtual client honeypot, 2009.

[29] Y. Niu, Y. min Wang, H. Chen, M. Ma, and F. Hsu. A

quantitative study of forum spamming using contextbased

analysis. IlNDSS’07 2007.

W. Palant. Javascript deobfuscator 1.5.8.

https://addons. nozi |l | a. or g/ en- US/

firefox/addon/javascri pt-deobfuscator/,

2010.

J. Platt. Fast training of support vector machinesgisin

sequential minimal optimization. lAdvances in Kernel

Methods — Support Vector Learningages 42—65. 1998.

N. Provos, P. Mavrommatis, M. A. Rajab, and F. Monrose.

All your iframes point to us. IVSENIX Security2008.

[33] Z. Qian, Z. M. Mao, Y. Xie, and F. Yu. On network-level
clusters for spam detection. NDSS’10 2010.

[34] R. Quinlan.C4.5: Programs for Machine Learnin@an
Mateo, CA, 1993.

[35] M. Rajab, L. Ballard, N. Jagpal, P. Mavrommatis, D. Nigji
N. Provos, and L. Schmidt. Trends in circumventing
web-malware detection. Technical report, Google, 2011.

[36] K. Rieck, T. Krueger, and A. Dewald. Cujo: efficient
detection and prevention of drive-by-download attacks. In
ACSAC’'1Qpages 31-39, 2010.

[37] C. S. The ultimate deobfuscator.
http://securityl abs. websense. com
cont ent / Bl ogs/ 3198. aspx.

[38] C. Seifert and R. Steenson. Capture - Honeypot Client
(Capture-HPC)ht t ps:

/| proj ects. honeynet. org/ capt ure- hpc, 2006.

[39] K. Thomas, C. Grier, J. Ma, V. Paxson, and D. Song. Design
and evaluation of a real-time url spam filtering service. In
S&P’11, 2011.

[20]

[21]

[22]

(23]

[30]

[31]

[32]

[40] Y.-M. Wang, D. Beck, X. Jiang, and R. Roussev. Automated
web patrol with strider honeymonkeys: Finding web sites
that exploit browser vulnerabilities. NDSS’'06 2006.

[41] C. Whittaker, B. Ryner, and M. Nazif. Large-scale au&hit
classification of phishing pages. NDSS'10 2010.

[42] J. Zhang, C. Seifert, J. W. Stokes, and W. Lee. Arrow:
Generating signatures to detect drive-by downloads. In
WWW'’11 pages 187-196, 2011.

	Cover Sheet -0003MSS-KEYINGYE-2013
	YeWorkingPaper2013

