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Abstract

Likelihood ratio tests (LRTs) for separability of a covariance structure for doubly multivariate
data are widely studied in the literature. There are three types of LRT: biased tests based on
an asymptotic chi-square null distribution; unbiased/unmodified tests based on an empirical null
distribution; and unbiased/modified tests with a test statistic modified to follow a theoretical
chi-square null distribution. The Rao’s score test (RST) statistic, an alternative for both bi-
ased and unbiased/unmodified versions of the corresponding LRT test statistics are derived for
a common case. The separability of a covariance structure with the first component as a com-
pound symmetric correlation matrix under the assumption of multivariate normality is tested.
Simulation studies compare the biased LRT to biased RST, and unbiased/unmodified LRT to
unbiased/unmodified RST. The RSTs outperform their corresponding LRTs in general. Three ex-
amples are presented. Since the RST does not require estimation of a general variance-covariance
matrix (the alternative hypothesis), this test can be performed for small sample sizes, where the
variance-covariance matrix could not be estimated for the corresponding LRT, making the LRT
infeasible. In cases where both LRT and RST are feasible, the RST outperforms a comparable
LRT.
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1 Introduction

This article is concerned with a very important hypothesis testing problem of a 2−separable co-

variance structure (defined in Section 2) as found in two-level or doubly multivariate data. Modern

experimental techniques allow to collect and store multi-level multivariate data (Leiva and Roy, 2011)

in almost all fields such as agriculture, biology, biomedical, medical, environmental and engineering

research, where the observations are collected on more than one response variable (q) at different

locations (p) repeatedly over time (t) and at different depths (d) etc. These multi-level multivari-

ate observations may have variances that differ across locations, time and depths, and developing

efficient techniques for accounting these variations is of great importance for any statistical analysis.

In many practical problems, where the repeated measures occur, the covariance matrix of these

repeated measures is found to have some structure. For measurements of the same type made in

the same way it is usual to assume variance homogeneity too. Crowder and Hand (1990, p.60) say

“While it is robust not to assume knowledge of the covariance structure, this can result in rather

weak inference in the sense that too many degrees of freedom are used up in estimating the covariance

parameters, leaving too few for the parameters of interest.” The unstructured (UN) covariance matrix

does not require stationarity, but is overparametrized since correlation should decay as the space or

time points become more widely separated and estimating parameters which are close to zero only

adds extra variability due to estimation of excessive parameters and thus losing degrees of freedom.

Thus, for example, we assume stationarity as a consequence of the assumption of equicorrelated

covariance structure - compound symmetry (CS) - which may be appropriate where the repeated

measurements are all made at about the same time, as in the often used ‘split-plots’ set-up. The

CS structure is also plausible where the measurements are made at unequally spaced times over a

longer period. The advantages of using CS structure over repeated measures include flexibility in

using the structured covariance matrices for the repeated measures and savings in degrees of freedom

for testing of hypothesis. In other cases, there might be some strict temporal sequence where the

covariance matrix has AR(1) structure, as often seen in medical data.

For doubly multivariate data, separable structure can additionally be used to model data without

losing many degrees of freedom and still avoid an over-constrained model. Consider an example of a

medical data set where the detection of a cancerous region from surrounding tissues (skeletonization)

of patients suffering from breast cancer is the focus. Pinto Pereira et al. (2009) divided each breast

image into 48 regions and then estimated the percent density (PD) for each one of its regions.

However, they only used one marker, the PD, in their analysis. A better result with a high reliability
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may be achieved if joint analysis of the PD and a measure of microcalcifications, which are often the

only detectable sign of breast cancer, can be done together. These two measurements (q = 2), the

PD and a measure of microcalcifications, are not only correlated among themselves, but also exploit

the strong regional covariance over the 48 regions (p = 48). In this example equicorrelated covariance

structure could be one of the plausible structures over 48 regions. Besides CS, a few other plausible

correlation structures over repeated measures among many are autoregressive of order one
(
AR(1)

)
,

circular and Toeplitz. Non-stationary unstructured (UN) and antedependent variance-covariance

matrices are other possibilities. All structures on the repeated measures are tentative; so before

any statistical analysis of doubly multivariate data one needs to perform tests for the most suitable

separable structures with the first component (structure on repeated measurements) as one of the

above plausible structures, i.e., (CS ⊗ UN), or (AR(1) ⊗ UN) or (UN ⊗ UN) etc.

1.1 Existing Tests

The most common hypotheses testing procedures for large samples are the likelihood ratio (Wilks,

1938), the Wald (Wald, 1943), and the Rao’s score (Rao, 1948) tests. These were all developed

using one-level multivariate models. These tests have earned the status of default methods, with

a neat and unified asymptotic theory. They are widely used in almost all areas from agriculture

to engineering research among many others even for the smallest possible sample size (n). The

likelihood ratio test criterion Λ (Anderson, 1984) or a function of it, L = −2lnΛ (Wald, 1943), is

the most commonly used test statistic. The quantity L under the null hypothesis is asymptotically

distributed as a χ2 under normality assumption and is used as the test statistic with large sample

size. When the data are not large enough, χ2 distribution is generally an inadequate approximation

thus resulting in erroneous conclusions. When the sample size is small or moderate, Korin (1968)

studied the accuracy of the approximation and expressed the null distribution of L in the form of an

asymptotic series of central χ2 distribution and then derived the distribution of L using this series.

All the above-mentioned tests have been established for traditional multivariate data (say with

q response variables); in other words, just for ‘one-level multivariate data’ in a large sample setting.

Hypothesis testing of a 2−separable covariance structure with both unstructured components has

been widely studied by many authors
(
Dutilleul, 1999; Roy and Khattree, 2003; Lu and Zimmer-

man, 2005; Roy, 2007; Srivastava et al., 2008; Werner et al., 2008
)
. Roy and Khattree (2005a, b)

have also studied this 2−separable covariance structure by assuming a compound symmetry (CS)

or autoregressive of order one
(
AR(1)

)
correlation structures on the first component just to avoid

the identifiability problem. Roy and Khattree (2007a) have shown that the choice of appropriate
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covariance structure is crucial for two-level multivariate data in the context of classification, and it

almost always affects the misclassification error rate, in a major way. Thus, it is vital to test the

appropriate covariance structure on the multi-level multivariate observations before any statistical

analysis. Roy and Leiva (2008) further studied the 2−separable covariance structure by assuming

both the components as structured
(
CS or AR(1)

)
which is useful for spatio-temporal repeated mea-

surements. For example, for modeling the covariance of multivariate environmental monitoring data

obtained repeatedly over time and space, or for modeling covariance structure of glucose measure-

ment at 15 different regions (p = 15) in both the hemispheres (q = 2) of the brain (Worsley et al.,

1991). All these authors used likelihood ratio test (LRT) statistic for testing various permutations

of patterns of 2−separable covariance structures. Among these authors Lu and Zimmerman (2005)

and Roy and Leiva (2008) have used unbiased/unmodified LRT, and simulations are used to build

its sampling distribution and find quantiles. Others worked on biased LRT, based on the theoretical

chi-square null distribution; in this case the rejection rate of null hypothesis is not equal to the

nominal Type I error when the null hypothesis is true. It is worthwhile to mention here that using

biased LRT, MIXED procedure of SAS Software (SAS Institute Inc., 2009) can test the hypotheses

for 2−separable covariance structure with the first component as CS or AR(1) correlation or un-

structured covariance structures. Therefore, we see that hypotheses tests for separable structures

are a well developed area, and biased and unbiased/unmodified LRTs are available.

Several authors also proposed unbiased/modified LRT statistic in which the test statistic is mod-

ified in order to match the theoretical chi-square distribution to test the separability of variance-

covariance structure. Mitchell et al. (2006) derived a modified LRT statistic to test the separability

of a covariance matrix using the ratio of the mean of the LRT to the asymptotic mean to estimate

the critical value of the distribution of the LRT statistic for two-level data. Simpson (2010) proposed

an adjusted likelihood ratio test of separability for unbalanced two-level multivariate data using the

technique proposed by Mitchell et al. (2006). He also suggested another less conservative and more

straightforward adjustment in his paper. Simpson (2010) as well addressed the particular case where

the within subject correlation decreases exponentially in both levels. Very recently Manceur and

Dutilleul (2013) presented an unbiased/modified LRT, based on penalty-based homothetic trans-

formation of the LRT statistic, for separability of a variance-covariance structure, by multiplying

the test statistic by a constant. This constant is estimated by simulation so that the distribution

of the test statistic approaches chi-square even for small samples. At the core of their work was

the finding that a simple homothetic transformation based on an optimal penalty was sufficient to

modify the biased LRT statistics for separability, so the distributions of LRT statistics thus modified
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are χ2 already for moderate sample sizes. Manceur and Dutilleul (2013) also calculated standardized

empirical bias. However, since the estimation of unstructured Ω is necessary in all these modified

tests, the sample size n bigger than pq is required.

The LRT statistic is reliable with very large samples. Nevertheless, in the real-life applications

we have only finite samples; small sample sizes are the norm because of limited measurement oppor-

tunities. One way of overcoming the problem of the accuracy of the asymptotic approximation under

the null distribution of the unmodifed LRT statistic for testing 2-separable covariance structure for

small or moderate sample sizes is to exploit the empirical null distribution (END) of the LRT statis-

tic. Lu and Zimmerman (2005) and Roy and Leiva (2008) derived ENDs of the LRT statistics for

testing 2−separable covariance structure with both unstructured components and both structured

components respectively. One can clearly see from these two articles that the ENDs of the LRT

statistics are quite different from their limiting χ2 distributions for small sample size with n > pq.

Therefore, the LRT fails as a matter of practical use because its distribution is very different from

its limiting χ2 distribution for small samples; in addition, the LRT cannot be used for n ≤ pq for the

general unstructured variance-covariance matrix as alternative hypothesis, a common problem for

LRT. Nevertheless, researchers still use the theoretical chi square distribution even for small samples

as exact tests are not available in such cases.

In many two-level multivariate data applications it is possible to model a dataset with n ≤ pq

without testing for separability of the variance-covariance matrix by postulating the separability.

For example, MIXED procedure of SAS can fit linear models, and Roy and Khattree’s (2007a, b)

classification rules can classify individuals with separable covariance structure when n ≤ pq. It

is commonly done in practice. However, before applying MIXED procedure of SAS, or Roy and

Khattree’s classification rules one must test whether the data have separable covariance structure.

Unfortunately, all the above mentioned available unmodified LRT based tests or the modified LRT

based tests need the assumption n > pq, which is often not possible in applied setting given the

limitations on data collection. So, even if the methods are available for modeling data using separable

structure when n ≤ pq, the testing is not, which is the limiting factor of any statistical analysis for

two-level data. However, Simpson et al. (2014) very recently provides a method in this context

which avoids this limitation. We propose a different approach.

1.2 Proposed Tests

Rao’s score test (RST) is an alternative or competitor to LRT; in this article we propose a new

approach, an unmodified RST procedure, to test a 2−separable covariance structure with the first
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component as a CS correlation matrix, which essentially means that all measurements for any char-

acteristic within the same subject are equicorrelated. The biggest advantage of RST is that it only

exploits the null hypothesis, and thus does not need the assumption n > pq as LRT does. We

compare the performances of this new RST procedure with unmodifed LRT procedure. When both

components of the 2−separable covariance structure are unstructured, the RST requires a sample

size n > max (p, q), which can be large for many repeated measures (p). However, when the first

separable component is the CS correlation structure, RST only requires a sample size n > q, which is

independent of the number of repeated measures. Given the increasing collection of multi-level data

on which separability could be assessed, we develop a new method of testing separability of a covari-

ance structure using RST when n is just greater than q, which is a substantial improvement over

the LRT. This method will give the opportunity to many statistical practitioners and researchers

to test the separability in small sample situation before applying the separability structure to their

applications.

We perform simulation experiments to check the finite sample performance of both the RST and

the LRT statistics, comparing a biased LRT to a biased RST, and an unbiased/unmodified LRT to an

unbiased/unmodified RST. Both LRT and RST are equivalent to the first order of asymptotics, but

differ to some extent in the second order properties; neither is uniformly superior to the other. Thus,

empirical type I error is determined for both LRT and RST statistics to show that the biasedness

of RST is much smaller than LRT for nominal significance level 0.01 as well as 0.05. Moreover,

we derive the ENDs of the RST and LRT statistics, compare an unbiased/unmodified LRT to an

unbiased/unmodified RST, and show that for small samples the END of the RST statistic gives

much more reliable inference than the END of the LRT statistic. In other words, we show that the

difference between the END of RST statistic and its limiting χ2 distribution is much smaller than

the difference between the END of LRT statistic and its limiting χ2 distribution for any small or

moderate sample size. We also derive ENDs of RST statistics for q < n ≤ pq, the computation of

which is not even possible for LRT statistics. The simplicity of the standard χ2 test is convenient,

but comes at potentially considerable cost because it differs substantially from the END especially

for large number of repeated measurements (p). To show the performance of the ENDs for both

RST and LRT statistics we perform simulation studies up to 15 repeated measurements with the

number of variables as two and three.

This article is organized as follows. In Section 2 separability hypothesis of a covariance matrix for

two-level data is introduced, and the formulation of the test statistics is presented. RST is defined

in Section 3. Simulation studies are performed in Section 4 to calculate the observed Type I error
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rates, the ENDs of RST and LRT statistics and the power of the tests. Three real data examples to

show the performance of our new proposed method, comparing the biased LRT to the biased RST

and the unbiased/unmodified LRT to the unbiased/unmodified RST, are given in Section 5, and

finally Section 6 summarizes with several comments along with the scope for the future research.

Proofs of some basic results of matrix algebra which are needed in deriving the maximum likelihood

estimates (MLEs) of the matrix parameters and the RST statistic in Section 3 are presented in A.

Empirical percentiles of the null distributions of LRT and RST statistics for several combinations of

p, q and n are presented in B.

2 Separability hypothesis of a covariance matrix

Let Xi for i = 1, . . . , n be the independent and identically distributed (q × p)−dimensional obser-

vation matrices, measurements on q characteristics at p time points on ith individual. We assume

Xi ∼ Nq,p(M ,Ω), i.e., vecXi ∼ Npq (vecM ,Ω), where vecM ∈ Rpq, vec(·) is the operator stacking

the columns of a q×p matrix into pq×1 dimensional vector, and Ω is assumed to be a pq×pq positive

definite matrix. We denote vecXi = xi and vecM = µ. We define the vector of unknown parameters

θ =
(
µ′, vech′Ω

)′
, where vech(·) is the operator stacking the columns of a pq× pq dimensional sym-

metric matrix into (pq(pq+ 1)/2−dimensional vector by eliminating all the supradiagonal elements.

The number of unknown parameters to be estimated in Ω is pq(pq + 1)/2, which increases very

rapidly with the increase of the dimension of either the number of characteristics q, or the number

of time points p. Estimation of Ω is impossible when the sample size n ≤ pq. So, researchers usually

rely on structured covariance matrices which depend on a smaller set of unknown parameters. The

problem, though, is knowing what the structure is. A form of the covariance matrix Ω suitable for

doubly multivariate data or two-level data is a 2−separable variance-covariance structure as follows:

Ω
pq×pq

= Ψ
p×p
⊗ Σ
q×q

, (1)

where both Ψ and Σ are unstructured positive definite matrices and ⊗ represents the Kronecker

product. The q×q matrix Σ represents the variance-covariance matrix of the q response variables at

any given time point. We assume Σ does not depend on time and it is the same for all time points.

The p × p matrix Ψ represents the variance-covariance matrix of the repeated measurements on a

given characteristic and it is assumed to be the same for all characteristics as well. The number of

unknown parameters to be estimated in the separable structure (1) is only p(p+1)/2+q(q+1)/2−1

(with the first diagonal element of Ψ as one to circumvent the over-identifiability problem of Ψ

and Σ in Ψ ⊗Σ, that is why the total number of parameters gets reduced by one) which is much
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less than pq(pq + 1)/2 in an unstructured variance-covariance matrix Ω. Several authors, e.g., Boik

(1991), Galecki (1994), Naik and Rao (2001), Chaganty and Naik (2002), and Roy and Khattree

(2007a, b) have observed many advantages of using the separable covariance structure over the usual

unstructured variance-covariance matrix for analyzing two-level multivariate data. In this article we

consider CS correlation structure on Ψ, so that the number of unknown parameters to be estimated

further reduces to 1 + q(q + 1)/2.

We consider the RST and LRT for testing the separability of the variance-covariance matrix Ω

with half structured and half unstructured matrices, i.e.,

H0 : Ω = Ψ⊗Σ, Ψ CS against HA : Ω unstructured. (2)

The matrices Ψ , Σ and Ω are positive definite matrices. The variance-covariance matrix Σ is

assumed to be unstructured. Given that Ψ has a CS correlation structure, it can be written as

Ψ = (1 − ρ)Ip + ρ1p1
′
p. Since Ψ is a positive definite matrix, we should have −1/(p − 1) < ρ < 1.

Note that Ψ is a CS correlation structure with only one unknown correlation parameter ρ. We

choose Ψ a correlation matrix with all p diagonal elements as one, not a covariance matrix just to

circumvent the identifiability problem of the p × p matrix Ψ and the q × q matrix Σ. Thus, the

(p × p)−dimensional CS correlation matrix Ψ has only one parameter, and (q × q)−dimensional

unstructured variance-covariance matrix Σ has q(q + 1)/2 parameters. Recently, there has been a

discussion by Dutilleul and Roy in Lee et al. (2010) on the definition of ML estimators and their

identifiability for 2−separable variance-covariance structure. This problem is circumvented in this

paper by choosing Ψ as a correlation matrix.

When the log-likelihood function is a smooth curve well approximated by a quadratic function,

RST and LRT are identical under null hypothesis
(
see Lemma 1 in Engle (1984), p. 782

)
. Rao (1984,

p. 418; 2005) also mentioned that under the normality assumption RST and LRT statistics have

the same asymptotic distribution χ2
ν where the degrees of freedom (df) ν is equal to the number of

parameters estimated under HA minus the number of parameters estimated under H0. Thus, in our

separable structure set up (2) we have

ν =
pq(pq + 1)

2
− q(q + 1)

2
− 1. (3)

One may see the testing of the H0 in (2) as a following sequence of two hypotheses:

H01 : Ω = V ⊗Σ, V UN against HA1 : Ω unstructured, (4)

assuming V as positive definite with df ν1 as

ν1 =
pq(pq + 1)

2
− q(q + 1)

2
− p(p+ 1)

2
+ 1,
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and then, assuming the general separable structure H01 in (4) has been accepted, testing separability

with one CS factor matrix against general separability as follows:

H02 : Ω = Ψ⊗Σ, Ψ CS against HA2 : V ⊗Σ, V UN, (5)

with df ν2 as

ν2 =
p(p+ 1)

2
− 2.

In other words, H0 in (2), is equivalent to the test sequence

H0 ≡ H02oH01,

where ‘o’ means ‘after’. Thus, we see that H01 is the null hypothesis corresponding to the test of

general separability and H02 is the null hypothesis corresponding to the test of separability with the

first component as CS correlation structure. Now, the minimum sample size required to test H01

in (4) using LRT is n1 = pq + 1 and the same for H02 in (5) using LRT is n2 = max (p, q) + 1,

whereas, using RST the minimum sample sizes required to test the H01 in (4) and H02 in (5) are

n1 = max (p, q) + 1 and n2 = q+ 1 respectively. Therefore, the minimum sample size needed to test

H02oH01 using LRT is pq + 1 and the minimum sample size needed to test H02oH01 using RST is(
max (p, q) + 1

)
. Nevertheless, the minimum sample size needed to test H0 using LRT is pq+ 1 and

the minimum sample size needed to test H0 using RST is q + 1. Hence, instead of going straight to

H0, if we test the sequence H02oH01, the required sample size for RST is
(

max (p, q) + 1
)
. So, if

the number of repeated measurements p is large as in the examples in the Introduction and n < p,

then the sequence of H02oH01 cannot be tested. However, if n > p, one can test the sequence of

H02oH01 in those examples. So, when the sample size is small, testing the sequence H02oH01 may

not be possible. H02 in (5) is likely to be used in applications when it is known apriori that the data

already has the general separable structure.

The proposed RST in this paper is for the Hypothesis (2), and not for the equivalent test sequence

H02oH01. Testing the equivalent test sequence H02oH01 would need new theoretical calculations and

simulations. Thus, we discuss only the testing of Hypothesis (2) in the following sections.

3 Rao’s score test statistic

Let us assume that the log-likelihood function lnL(µ,Ω;X) with the data matrix X, where X =

[x1,x2, . . . ,xn] ∈ Rpq,n, is partially differentiable with respect to each coordinate of the parameter

vector (µ′, vech′Ω)′ for every data matrix X. Now we derive the expressions of the LRT and the

RST statistics for testing the Hypothesis (2).
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The LRT is based upon the difference between the maximum of the log-likelihood under the null

and under the alternative hypotheses. The likelihood ratio Λ can be written as

Λ =
maxH0 L

maxHA L
.

It is well known that, for large sample size and under normality assumption, the LRT statistic −2lnΛ

is approximately distributed as χ2
ν under H0. The degrees of freedom ν is given in (3). It is to be

noted that if any of the covariance parameters fall on the boundary of their parameter space then

the asymptotic distribution of −2lnΛ becomes a mixture of χ2 distributions as discussed in Self and

Liang (1987). The Hypothesis (2) using LRT is discussed thoroughly in Roy and Khattree (2005a).

In this paper we will derive and discuss the same Hypothesis (2) using RST.

Let s(θ) = (s1(θ)′, s2(θ)′)′ =

(
∂lnL

∂µ′
,
∂lnL

∂vech′Ω

)′
be the score vector. Then the Fisher informa-

tion matrix can be defined as

F(θ) = −E

[
∂s(θ)

∂θ′

]
df
=

(
F11 F12

F ′12 F22

)
, (6)

where F11, F12 and F22 are pq × pq, pq × pq(pq + 1)/2 and pq(pq + 1)/2 × pq(pq + 1)/2 matrices

respectively. Let the Fisher information matrix exist and be invertible. The Rao’s score (RS)

s(θ̂)′F−1(θ̂)s(θ̂), (7)

where θ̂ =
(
µ̂′, vech′(Ψ̂⊗ Σ̂)

)′
is the MLE of θ under the null hypothesis H0, is defined as the RST

statistic. This statistic is also approximately distributed as χ2
ν with the same degrees of freedom ν

given in (3). We now obtain the expression of the RST statistic to test the null hypothesis H0 in

the following section.

Let us define the centered form of the data matrix Y (µ) as Y (µ) = X − 1′n ⊗ µ. Then

Y (µ) ∼ Npq,n(0,Ω, In),

which means

vecY (µ) ∼ Nnpq(0, In ⊗Ω).

The log-likelihood function in terms of this centered data matrix Y (µ) can be written as

lnL(µ,Ω;X) = −npq
2

ln(2π)− n

2
ln|Ω| − 1

2
vec′Y (µ)(In ⊗Ω−1)vecY (µ). (8)

In order to determine the score vector, we first differentiate the above log-likelihood function lnL
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with respect to µ. We get

∂lnL

∂µ′
= −1

2
· ∂vec′Y (µ)(In ⊗Ω−1)vecY (µ)

∂µ′

= −1

2
· ∂vec′Y (µ)(In ⊗Ω−1)vecY (µ)

∂vec′Y (µ)
· ∂vecY (µ)

∂µ′

= −1

2
· 2 · vec′Y (µ)(In ⊗Ω−1) ·

(
−∂vec(1′n ⊗ µ)

∂µ′

)
= vec′Y (µ)(1n ⊗Ω−1), (9)

which is a pq−dimensional row vector. Now, we differentiate lnL given in (8) with respect to vechΩ.

Using Proposition 3 (ii), Proposition 1 (iii) in A and the symmetricity of Ω we get

∂lnL

∂vech′Ω
=

∂lnL

∂vec′Ω
· ∂vec′Ω

∂vech′Ω
=

∂lnL

∂vec′Ω
·Dpq

= −n
2

∂ln|Ω|
∂|Ω|

· ∂|Ω|
∂vec′Ω

·Dpq

−1

2

∂vec′Y (µ)(In ⊗Ω−1)vecY (µ)

∂vec′(In ⊗Ω−1)
· ∂vec(In ⊗Ω−1)

∂vec′Ω−1
· ∂vecΩ−1

∂vec′Ω
·Dpq

= −n
2

vec′Ω−1Dpq

+
1

2
(vec′Y (µ)⊗ vec′Y (µ))(In ⊗Kpq,n ⊗ Ipq)(vecIn ⊗ Ip2q2)(Ω−1 ⊗Ω−1)Dpq

= −n
2

vec′Ω−1Dpq +
1

2
vec′(Y (µ)Y ′(µ))(Ω−1 ⊗Ω−1)Dpq, (10)

which is a pq(pq + 1)/2−dimensional row vector. Now, the log-likelihood lnL is maximized at a

value θ̂ when
∂lnL

∂θ′
= 0. It is easy to see from (9) that the MLE of µ is

µ̂ =
1

n
X1n.

Now, substituting the value of µ̂ in Y (µ) we get

vecY (µ̂) = vec

(
X − 1′n ⊗

1

n
X1n

)
= vecX −

(
1n ⊗

(
1

n
1′n ⊗ Ipq

)
vecX

)
= (Q1n ⊗ Ipq)vecX = vec

(
XQ1n

)
.

We now derive the expression of the RST statistic for H0. We start with the calculations of the four
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component matrices in the Fisher information matrix F(θ) in (6). We have

F11 = −E

[
∂

∂µ′

(
∂lnL

∂µ′

)]
= −E

[
∂(1′n ⊗Ω−1)vecY (µ)

∂µ′

]
= −E

[
∂(1′n ⊗Ω−1)vecY (µ)

∂vec′Y (µ)
· ∂vecY (µ)

∂µ′

]
= −(1′n ⊗Ω−1)E

[
∂vec(X − 1′n ⊗ µ)

∂µ′

]
= (1′n ⊗Ω−1)(In ⊗K1,1 ⊗ Ipq)(1n ⊗ Iqp)

= nΩ−1, (11)

and F12 = F ′12 = −E

[
∂

∂vech′Ω

(
∂lnL

∂µ′

)]
= −E

[
∂(1′n ⊗Ω−1)vecY (µ)

∂vech′Ω

]
= −E

[
∂(1′n ⊗Ω−1)vecY (µ)

∂vec′(1′n ⊗Ω−1)
· ∂vec(1′n ⊗Ω−1)

∂vec′Ω−1
· ∂vecΩ−1

∂vec′Ω
·Dpq

]
= E

[(
vec′Y (µ)⊗ Ipq

)
(In ⊗Kpq,1 ⊗ Ipq)(1n ⊗ Ip2q2)(Ω−1 ⊗Ω−1)

]
Dpq

= 0. (12)

Now by denoting H = vec
(
Y (µ)Y ′(µ)

)
and then using the expression (6.5) of Ghazal and

Neudecker (2000, p. 81): E[ZZ ′] = tr[V ]U +MM ′ for vecZ ∼ Nkl(vecM ,V ⊗U), we get

E[H] =
(
tr[In]

)
(vecΩ) = n(vecΩ).

Using this result, the Equation (10) and the Lemma 1 in A we can write

F22 = −E

[
∂

∂vech′Ω

(
∂lnL

∂vech′Ω

)]
=

n

2
D′pq ·

∂vecΩ−1

∂vec′Ω
·Dpq −

1

2
E

[
∂D′pq(Ω

−1 ⊗Ω−1)H

∂vec′Ω

]
Dpq

= −n
2
D′pq(Ω

−1 ⊗Ω−1)Dpq

+
1

2
(E[H]⊗Dpq)

′(Ipq ⊗Kpq,pq ⊗ Ipq)(Ip2q2 ⊗ vecΩ−1 + vecΩ−1 ⊗ Ip2q2)(Ω−1 ⊗Ω−1)Dpq

=
n

2
D′pq(Ω

−1 ⊗Ω−1)Dpq. (13)

Now, substituting the values of F11, F12 and F22 from (11), (12) and (13) in (6) we get the Fisher

information matrix as

F(θ) =

(
nΩ−1 0

0 n
2D
′
qp(Ω

−1 ⊗Ω−1)Dqp

)
.

Then, applying the Proposition 1.3.3. of Kollo and von Rosen (2005) and the Proposition 1 (iv) in

12



A we get the inverse of the Fisher information matrix as follows:

F−1(θ) =

(
nΩ−1 0

0 n
2D
′
qp(Ω

−1 ⊗Ω−1)Dqp

)−1
=

( 1
nΩ 0

0
(
n
2D
′
qp(Ω

−1 ⊗Ω−1)Dqp

)−1)

=

( 1
nΩ 0

0 2
nD

+
qp(Ω⊗Ω)D+′

qp

)
. (14)

Since the hypothesis we are interested in this article involves only the variance-covariance matrix,

we derive the RST statistic corresponding to vechΩ. Now, the component of the score vector

corresponding to vechΩ is

s2(θ) = −n
2
D′pqvecΩ−1 +

1

2
D′pq(Ω

−1 ⊗Ω−1)vec(Y (µ)Y ′(µ))

df
= s21(θ) + s22(θ),

where

s21(θ) = −n
2
D′pq(vecΩ−1),

and s22(θ) =
1

2
D′pq(Ω

−1 ⊗Ω−1)vec(Y (µ)Y ′(µ)).

Let µ̂, Ψ̂ and Σ̂ be the ML estimators under the null hypothesis. Therefore, the estimator θ̂ under

the null hypothesis H0 is

θ̂ =

(
µ̂

vech(Ψ̂⊗ Σ̂)

)
.

For MLEs Σ̂, and Ψ̂ or ρ̂ see Equations (3) and (6) in Roy and Khattree (2005a). These two equations

in Roy and Khattree (2005a) are analytically intractable, and should be solved simultaneously and

iteratively to get the MLEs Σ̂ and Ψ̂; see Roy and Khattree (2005a, p. 301) for the algorithm to

solve the Equations (3) and (6) in their paper. The SAS code for the algorithm is available from

Roy’s website. Now substituting the expression F−1(θ) from (14) in (7) we write the RST statistic

or Rao’s score (RS) for the null hypothesis H0 as the sum of four components due to s21(θ̂), s22(θ̂)

and F−122 as

RS =
2

n
s′2(θ̂)D+

pq(Ω̂⊗ Ω̂)D+′
pq s2(θ̂)

= RS11 + RS12 + RS21 + RS22, (15)

where the notation Ω̂ is used to represent Ψ̂ ⊗ Σ̂. Now, from the symmetry of the quadratic form

we have RS21 = RS12. We will now evaluate the components in (15) one by one using Proposition 2

13



in A to get an expression of RS in terms of Ψ̂ and Σ̂. We have

RS11 =
2

n
s′21(θ̂)D+

pq(Ω̂⊗ Ω̂)D+′
pq s21(θ̂)

=
n

2
vec′Ω̂

−1
Npq(Ω̂⊗ Ω̂)Npq(vecΩ̂

−1
)

=
n

2
vec′Ω̂

−1
(Ω̂⊗ Ω̂)vecΩ̂

−1

=
npq

2
, (16)

RS12 =
2

n
s′21(θ̂)D+

pq(Ω̂⊗ Ω̂)D+′
pq s22(θ̂)

= −1

2
vec′Ω̂

−1
Npq(Ω̂⊗ Ω̂)Npq(Ω̂

−1
⊗ Ω̂

−1
)vec(Y (µ̂)Y ′(µ̂))

= −1

2
vec′Ω̂

−1
vec(XQ1nX

′)

= −1

2
tr
[
Ω̂
−1
XQ1nX

′
]

= −1

2
tr
[
(Ψ̂
−1
⊗ Σ̂

−1
)XQ1nX

′
]
, (17)

and

RS22 =
2

n
s′22(θ̂)D+

pq(Ω̂⊗ Ω̂)D+′
pq s22(θ̂)

=
1

2n
vec′(Y (µ̂)Y ′(µ̂))(Ω̂

−1
⊗ Ω̂

−1
)Npq(Ω̂⊗ Ω̂)Npq(Ω̂

−1
⊗ Ω̂

−1
)vec(Y (µ̂)Y ′(µ̂))

= vec′(XQ1nX
′)(Ω̂

−1
⊗ Ω̂

−1
)vec(XQ1nX

′)

=
1

2n
tr
[
(Ψ̂
−1
⊗ Σ̂

−1
)XQ1nX

′(Ψ̂
−1
⊗ Σ̂

−1
)XQ1nX

′
]
. (18)

Now, after substituting the values of RS11,RS12,RS21 and RS22 from (16), (17) and (18) in (15), we

get the RST statistic or RS to test the null hypothesis H0 as

RS =
nqp

2
− tr

[
(Ψ̂
−1
⊗ Σ̂

−1
)XQ1nX

′
]

+

+
1

2n
tr
[
(Ψ̂
−1
⊗ Σ̂

−1
)XQ1nX

′(Ψ̂
−1
⊗ Σ̂

−1
)XQ1nX

′
]
,

which has an asymptotic χ2 distribution with ν degrees of freedom, where ν is given in (3).

Remark 1. Observe that the above RST statistic depends only on the data matrix X, the ML

estimate of Ψ with an explicit expression in ρ, and the ML estimate of the q×q dimensional variance-

covariance matrix Σ. The RST statistic does not need the ML estimate of the pq × pq dimensional

unstructured variance covariance matrix Ω, as does the LRT statistic. Thus, the minimum number

of observations needed to calculate the RST statistic is only q + 1, a quantity independent of p,

whereas the minimum number of observations needed to calculate the LRT statistic is pq + 1, as it
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depends on the ML estimate of the pq× pq dimensional unstructured variance-covariance matrix Ω,

which can grow very fast with the increase in p. Thus, the RST is an huge improvement over the

LRT: one can test the null hypothesis H0 with only q + 1 observations using RST.

4 Simulation Study

We perform simulation studies to compare the LRT and RST for the biased and unbiased/unmodified

approaches. These simulations use two-level multivariate data assuming the 2−separable covariance

structure Ψ⊗Σ on each subject, where Ψ has a CS correlation structure with correlation coefficient ρ

on the repeated measurements for each characteristic. First, to compare the biased LRT with biased

RST, we compute the observed Type I error rates, α̂ to measure their biasedness. In other words,

we would like to see for which n the observed α̂ approaches the nominal α level for different values

of p, the number of repeated measurements, and for different values of ρ, when the nominal Type I

error rate α = 0.01. Second, we compare the unbiased/unmodified LRT and RST using empirical

null distributions (ENDs). Suppose the RST to contrast the Hypothesis (2) has the rejection region

{RST > κα}, and κα is chosen so that the test has significance level α = 0.01 or 0.05. The

significance level (or Type I error) for the RST for Hypothesis (2) is defined as

α = P (reject H0 when H0 is true) = PΨ⊗Σ
ΨC.S.

(RST statistic > κα), (19)

so, κα is the 100(1 − α)% quantile of the RST under null hypothesis. Note that the distribution

of RST is not known either under H0 or any model under HA. But we can compute this test (i.e.,

compute κα) and its properties using Monte Carlo simulation (Rizzo, 2008). To reduce the Monte

Carlo error one needs to increase the simulation size. Let κ̂α is an estimate of κα. We denote the

observed Type I error rates for LRT and RST statistics as α̂LRT and α̂RST respectively, and calculate

them when the nominal significance level α = 0.01 as well as α = 0.05, for different values of n, p

and ρ in the following section.

4.1 Observed Type I error rates for biased LRT and RST statistics

Samples of various sizes from small to large, e.g., n = 10, 15, 20, 25, 30, 50, 75 and 100 are generated

from a pq−variate normal population Npq(0,Ψ ⊗ Σ). The number of repeated measurements p

is chosen as 3, 4, 5 and 7, and the number of characteristics q as 3. The (3 × 3)−dimensional

variance-covariance matrix Σ is taken as

Σ =

2 1 2
1 4 3
2 3 5

,
15



and the correlation coefficient ρ of repeated measurements in the CS correlation structure Ψ is

chosen as -0.4, -0.2, -0.1, 0.3, 0.5, 0.7 and 0.9 for each p such that − 1
p− 1 < ρ < 1. We generate

50,000 samples for each combination of the parameters under H0. Table 1 shows the empirical Type

I error rates for both LRT and RST statistics, with all combinations of n, p and ρ for the nominal

Type I error rate α = 0.01 for 50,000 simulations. For p = 3, 4, 5 and 7 both LRT and RST statistics

are approximately distributed as χ2
ν under H0, with degrees of freedom ν = 38, 71, 113 and 224

respectively using (3). The observed Type I error rates for all the statistics appear to increase with

p for a fixed ρ, which is manifested by the uniformly larger Type I error rates for p = 7. We also

notice that Type I errors do not substantially change with ρ for LRT as well as for RST statistics

and it does not depend on Σ.

As expected the Type I error rates do decrease with the sample size n. Notice that RST performs

much better for small and moderate n than its counterpart LRT. For p = 4 the Type I error rate

0.01 is achieved only for sample size 25 in the case of RST. For each combination of n, p and ρ we

see that α̂RST is always much less than α̂LRT. It is clear from Table 1 that α̂RST is approximately

equal to the nominal significance level 0.01 for small and moderate sample sizes, which is not the

case for α̂LRT. A sample size of about 75 is required for p = 5 so that the empirical Type I error rate

is approximately equal to the nominal significance level 0.01 in the case of RST, but a sample size

of about 200 is required for p = 5 in the case of LRT for the same scenario. For p = 7, the empirical

significance level decreases very slowly and even at n = 200 it is not close to the nominal significance

level α = 0.01 in the case of LRT; see Roy and Khattree (2005a) for detail. This suggests that LRT

may not perform well when p is large, even for the large sample sizes. In contrast, a sample size of

about 100 is required for p = 7, so that the empirical Type I error rate is approximately equal to

the nominal significance level 0.01 in the case of RST. Thus, we see that RST performs much better

than LRT in the small to moderate sample cases.

Since Type I errors do not substantially change with ρ for LRT as well as for RST statistics as

noticed in Table 1, we also calculate α̂LRT and α̂RST when the nominal significance level α = 0.05,

for ρ = 0.05 and for various values of n and p for 50,000 simulations. The results are presented in

Table 2.
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Table 1: Observed Type I error rates α̂LRT and α̂RST when the nominal significance level α = 0.01
for different values of n, p, and ρ based on 50,000 simulations

p → 3 4 5 7

n ρ ↓ α̂LRT α̂RST α̂LRT α̂RST α̂LRT α̂RST α̂LRT α̂RST

10 -0.4 0.913 0.021 — — — — — —
-0.2 0.914 0.021 — — — — — —
-0.1 0.914 0.021 — — — — — —
0.1 0.913 0.021 — — — — — —
0.3 0.913 0.021 — — — — — —
0.5 0.913 0.021 — — — — — —
0.7 0.913 0.021 — — — — — —
0.9 0.913 0.021 — — — — — —

15 -0.4 0.365 0.016 — — — — — —
-0.2 0.365 0.016 0.876 0.023 — — — —
-0.1 0.364 0.016 0.876 0.023 — — — —
0.1 0.364 0.016 0.876 0.023 — — — —
0.3 0.365 0.016 0.876 0.023 — — — —
0.5 0.365 0.016 0.876 0.023 — — — —
0.7 0.365 0.016 0.876 0.023 — — — —
0.9 0.364 0.015 0.876 0.023 — — — —

20 -0.4 0.174 0.014 — — — — — —
-0.2 0.174 0.014 0.500 0.018 0.902 0.024 — —
-0.1 0.174 0.014 0.500 0.018 0.901 0.024 — —
0.1 0.174 0.014 0.500 0.018 0.901 0.025 — —
0.3 0.174 0.014 0.500 0.018 0.901 0.024 — —
0.5 0.174 0.014 0.500 0.018 0.901 0.024 — —
0.7 0.174 0.014 0.500 0.018 0.901 0.024 — —
0.9 0.174 0.014 0.500 0.019 0.901 0.024 — —

25 -0.4 0.104 0.014 — — — — — —
-0.2 0.104 0.014 0.283 0.018 0.634 0.021 — —
-0.1 0.105 0.014 0.283 0.018 0.634 0.021 0.999 0.029
0.1 0.104 0.014 0.284 0.018 0.633 0.021 0.999 0.029
0.3 0.104 0.014 0.284 0.018 0.633 0.021 0.999 0.029
0.5 0.104 0.014 0.284 0.017 0.634 0.021 0.999 0.029
0.7 0.105 0.014 0.283 0.017 0.634 0.021 0.999 0.029
0.9 0.105 0.014 0.283 0.017 0.634 0.021 0.999 0.029
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p → 3 4 5 7

n ρ ↓ α̂LRT α̂RST α̂LRT α̂RST α̂LRT α̂RST α̂LRT α̂RST

30 -0.4 0.076 0.012 — — — — — —
-0.2 0.075 0.012 0.181 0.016 0.420 0.019 — —
-0.1 0.075 0.012 0.181 0.016 0.419 0.019 0.965 0.025
0.1 0.075 0.013 0.181 0.016 0.419 0.018 0.965 0.025
0.3 0.076 0.012 0.181 0.016 0.419 0.019 0.965 0.025
0.5 0.076 0.012 0.182 0.016 0.420 0.019 0.965 0.025
0.7 0.076 0.012 0.181 0.016 0.419 0.019 0.965 0.025
0.9 0.075 0.013 0.181 0.016 0.420 0.019 0.965 0.025

50 -0.4 0.034 0.011 — — — — — —
-0.2 0.034 0.011 0.063 0.013 0.127 0.016 — —
-0.1 0.034 0.011 0.063 0.013 0.127 0.015 0.446 0.018
0.1 0.034 0.011 0.063 0.013 0.127 0.015 0.445 0.018
0.3 0.035 0.011 0.063 0.013 0.127 0.015 0.445 0.017
0.5 0.034 0.011 0.063 0.013 0.126 0.015 0.446 0.018
0.7 0.034 0.011 0.063 0.013 0.126 0.015 0.446 0.018
0.9 0.035 0.011 0.063 0.013 0.126 0.015 0.445 0.018

75 -0.4 0.024 0.011 — — — — — —
-0.2 0.024 0.011 0.035 0.012 0.059 0.014 — —
-0.1 0.024 0.011 0.035 0.012 0.059 0.014 0.172 0.014
0.1 0.024 0.011 0.035 0.012 0.060 0.014 0.172 0.014
0.3 0.024 0.011 0.035 0.012 0.060 0.013 0.172 0.014
0.5 0.024 0.011 0.035 0.012 0.060 0.013 0.172 0.014
0.7 0.024 0.011 0.035 0.012 0.060 0.013 0.172 0.014
0.9 0.024 0.011 0.035 0.012 0.060 0.013 0.172 0.014

100 -0.4 0.019 0.011 — — — — — —
-0.2 0.019 0.011 0.026 0.012 0.040 0.013 — —
-0.1 0.019 0.011 0.025 0.011 0.039 0.013 0.096 0.014
0.1 0.018 0.011 0.025 0.012 0.039 0.013 0.096 0.014
0.3 0.018 0.011 0.026 0.012 0.039 0.013 0.096 0.014
0.5 0.019 0.011 0.026 0.012 0.039 0.013 0.096 0.014
0.7 0.019 0.011 0.026 0.012 0.039 0.013 0.096 0.014
0.9 0.019 0.011 0.026 0.012 0.039 0.013 0.096 0.014

It is to be noted that the standard error of a statistic is important in evaluating the accuracy of

an estimate. Since the empirical Type I error rate, which is a proportion, estimates the nominal

significance level α, the standard error of an empirical Type I error rate is
√(

α(1− α)
)
/50000. So,

Table 2: Observed Type I error rates α̂LRT and α̂RST when the nominal significance level α = 0.05
for different values of n, p, with ρ = 0.5 based on 50,000 simulations

p → 3 4 5 7

n α̂LRT α̂RST α̂LRT α̂RST α̂LRT α̂RST α̂LRT α̂RST

10 0.965 0.083 — — — — — —
15 0.593 0.068 0.952 0.088 — — — —
20 0.372 0.062 0.719 0.076 0.967 0.090 — —
25 0.269 0.061 0.519 0.073 0.826 0.081 1.000 0.103
30 0.208 0.060 0.389 0.067 0.658 0.076 0.992 0.093
50 0.122 0.054 0.192 0.057 0.308 0.065 0.689 0.071
75 0.093 0.054 0.127 0.056 0.184 0.060 0.386 0.065

100 0.078 0.052 0.100 0.054 0.135 0.057 0.258 0.063

18



in case of nominal significance level 0.01, the standard error of an empirical Type I error rate is

4.45 × 10−4 and in case of nominal significance level 0.05, the standard error of an empirical Type

I error rate is 9.75 × 10−4. The maximum standard errors for α̂LRT and α̂RST for each p of the

simulated type I rates are presented in Table 3. These results give a better sense of how different

the simulated type I error distributions are between the LRT and the RST.

Table 3: Maximal empirical standard errors of α̂LRT and α̂RST when the nominal significance level
α = 0.05 for different values of p, with ρ = 0.5 based on 50,000 simulations

p → 3 4 5 7

α̂LRT α̂RST α̂LRT α̂RST α̂LRT α̂RST α̂LRT α̂RST

0.00215 0.00064 0.00224 0.00067 0.00221 0.00068 0.00222 0.00075

Therefore, we see that when the number of repeated measurements (p) is not small, our proposed

test may have little power for small samples, especially when the repeated measures are correlated,

however performance of RST is much better than LRT. This simulation study allows us to assess

the relative performance of these two testing procedures by comparing the empirical Type I error

rate under various settings. We see that when the number of repeated measurements increases, both

the tests lose power for having higher degrees of freedom. Also, as mentioned before, the empirical

significance level decreases very slowly with the increased sample size (n) to the nominal significance

level, for both α = 0.01 and α = 0.05 for a fixed p.

Plots of the Type I error rate as a function of the sample size for RST and LRT statistics for

several repeated measures p, q = 3, ρ = 0.5 and α = 0.01 are given in Figure 1. Clearly, as the

number of repeated measures, p, increases, empirical Type I error increases. Also, Type I error rate

decreases as the sample size (n) increases for each combination of p, q = 3, and ρ = 0.5 for LRT,

however, Type I error rate is always very low, almost equal to α = 0.01 for all sample sizes for RST.

This finding motivated us to compute the empirical percentiles of the null distribution of RST as

well as LRT statistics for various values of n, p, q and ρ = 0.5 in the following section as we have

only finite samples in real data applications. We use these empirical percentiles tables to conduct

power analysis in Section 4.3.
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Figure 1: Plots of the Type I error rate as a function of the sample size for RST and LRT statistics
for several repeated measures p, q = 3, ρ = 0.5 and for α = 0.01. Plot lines: Dashed – LRT; Solid –
RST.

4.2 Empirical 90th, 95th and 99th percentiles of the null distribution of unbi-
ased/unmodified LRT and RST statistics

In this section we conduct some simulation experiments to study the finite sample performance by

estimating the percentiles of the END of RST as well as LRT statistics. The number of repeated

measurements p is chosen as 2, 3, 4, 5, 7, 10 and 15, and the number of characteristic q is taken

as 2 and 3. Samples of various sizes are drawn from Npq(0,Ψ ⊗ Σ). We assume Ψ has CS cor-

relation structure with ρ = 0.5 only (since previous results showed little sensitivity to ρ). The

(3 × 3)−dimensional variance-covariance matrix Σ is taken as in the previous section. Tables 4 –

6 and Tables 11 – 16 present the estimates of the empirical 90th, 95th and 99th percentiles of the

END of LRT along with the END of RST statistics based on 50,000 simulations for various values

of n, p and q. We have compared simulations for 10,000, 50,000 and 100,000 runs for various choices

of p and q, and we have found that simulated results are stable for 50,000. After some preliminary
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studies we decided to use 50,000 runs.

The empirical percentiles allow us to assess the relative performance of the two testing procedures

LRT and RST in small to moderate sample size set-up by comparing the percentiles of the END

with that of its limiting χ2 distribution under various settings of n, p and q. We also see in our

simulation studies that with different correlation coefficients ρ in the CS correlation structure Ψ, the

percentiles of the ENDs of both LRT and RST statistics change minutely with ρ for various values

of n, p and q. Thus, it appears that the empirical percentiles of the null distributions in Tables 4 – 6

and Tables 11 – 16 will work reasonably well in practice for approximating the limiting χ2 in small

to moderate sample size set-up. It is to be noted that the computation of ENDs is time consuming;

for example, a medium category computer takes about 17 hours to compute the results presented in

Table 4, while it takes about 55 hours for the Table 16.

We see from Tables 4 – 6 and Tables 11 – 16 that after certain n the empirical percentiles converge

very slowly to χ2 percentiles. It is clear that the bias from the limiting χ2 percentile decreases as

sample size increases. It appears that the percentiles of RST statistic provide better approximation

and work well for approximating the limiting χ2 distribution than that of the LRT statistic. We

observe that, when n is small, both the ENDs of LRT and RST statistics are to some extent different

from the limiting χ2 distribution. From Figure 2 we see that just for n = 4 and n = 9 ENDs of RST

statistics are very close to its limiting χ2 distribution for p = q = 3. We also see from Figure 2 that

for n = 4 ENDs of RST statistics is not close to its limiting χ2 distribution for p = 5 and q = 3,

however for n = 15 it is fairly close to its limiting χ2 distribution. Note that computations of the

ENDs of LRT statistics are not even possible for n = 4 and n = 9 for p = q = 3; also computations

of the ENDs of LRT statistics are not even possible for n = 4 and n = 15 for p = 5 and q = 3. From

Figures 3 it is clear that just for n = 20 ENDs of the RST statistics are very close to its limiting χ2

distribution for p = 5 and q = 3, whereas for its counterpart LRT statistics it is not the case.
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Table 4: Empirical 90th, 95th and 99th percentiles of the null distribution of LRT and RST statistics
based on 50,000 simulations for p = 3, q = 2 and different values of n

n QLRT(90) QLRT(95) QLRT(99) QRST(90) QRST(95) QRST(99)

3 — — — 30.227 33.030 38.047
4 — — — 28.321 31.408 37.331
5 — — — 27.336 30.322 36.940
6 — — — 26.766 29.598 36.149
7 68.933 79.094 101.535 26.342 29.319 36.053
8 51.331 58.133 72.047 26.202 29.064 35.482
9 44.399 50.033 61.456 25.831 28.680 35.196

10 40.748 45.725 55.948 25.680 28.529 34.688
15 32.903 36.515 44.132 25.427 28.155 34.164
20 30.421 33.822 40.883 25.263 28.060 33.840
25 29.022 32.338 39.168 25.075 28.055 33.853
27 28.798 31.995 38.568 25.161 27.905 34.214
30 28.181 31.277 37.733 25.039 27.743 33.630
40 27.232 30.456 36.949 25.020 27.902 33.815
50 26.750 29.747 35.892 24.925 27.709 33.557
75 26.134 28.939 35.040 24.982 27.750 33.582

100 25.599 28.543 34.368 24.789 27.585 33.340
125 25.523 28.465 34.350 24.837 27.687 33.493
150 25.378 28.191 34.253 24.814 27.504 33.324
200 25.161 27.978 33.891 24.750 27.481 33.449
∞ 24.769 27.587 33.409 24.769 27.587 33.409

From the results of the simulation studies we see that the ENDs of RST statistics present signifi-

cant set of nice features. They not only have a good asymptotic behavior for increasing sample sizes,

but also have very good performance for very small sample sizes, e.g., for sample sizes exceeding

only by one or two the number of variables q. We see that there is an associated error when we use

percentile of RST statistic instead of true χ2 percentile. For example, we see that 90th percentile of

the RST statistic is 21.112 for p = 2, q = 3 and n = 100, whereas the true χ2 percentile is 21.064.

Therefore, the relative error is (21.112 - 21.064)/21.064 =0.226%. This shows that END introduces

some error, however it is acceptable when p is not too large and n is not too small. Table 7 presents

the relative errors between the RST statistics and their ENDs for 90th percentile for different values

of n and p, along with q = 3. The same for the LRT statistics for 90th percentile are also given in

Table 7 in the second row in both italics and parenthesis for each combination of n and p. We see

that the percent errors between the LRT statistics and their ENDs are much more higher than that

of the RST statistics. Also, note that for small sample size n, LRT fails to calculate the percentiles

under H0. The errors associated with ENDs for both RST and LRT statistics increase with p, which

is expected though, for a fixed sample size n. Also, the errors decrease with n for a fixed p, as large n

means more information and thus the errors get reduced. The same pattern of behavior is observed

for 95th as well as for 99th percentiles (results are not shown here). All these characteristics add up
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to make the ENDs of the RST statistics the best choice for practical applications of the test studied

for small as well as for moderate sample sizes. We thus have the following remark.

Remark 2. From Table 7, as well as from Figures 2 and 3 we observe that for small and moderate

sample sizes the END of the RST statistic converges to the limiting χ2 distribution much faster

than the corresponding END of the LRT statistic. Thus, we conclude that the END of RST statistic

performs much better than the END of LRT statistic for both small and moderate sample studies,

and it is then prudent to use the END of RST statistic as opposed to the END of LRT statistic for

any real-life applications assuming a stationary model for one of the two matrices.

Figure 2: Plots of the empirical histogram and the limiting χ2 distribution for RST statistics for
sample sizes 4 and 9 for p = 3 (up). The same for sample sizes 4 and 15 for p = 5 (down).
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Figure 3: Plots of the empirical histogram and the limiting χ2 distribution for LRT and RST
statistics for sample sizes 20 and 100 for p = 5.

Table 5: Empirical 90th, 95th and 99th percentiles of the null distribution of LRT and RST statistics
based on 50,000 simulations for p = 2, q = 3 and different values of n

n QLRT(90) QLRT(95) QLRT(99) QRST(90) QRST(95) QRST(99)

4 — — — 22.344 23.458 25.425
5 — — — 22.592 24.206 27.077
6 — — — 22.522 24.407 27.954
7 64.211 74.505 97.059 22.321 24.491 28.501
8 47.083 53.649 67.636 22.216 24.465 28.768
9 40.000 45.297 56.885 21.885 24.180 29.010

10 36.430 41.250 51.250 22.006 24.275 29.115
15 28.772 32.388 39.738 21.593 24.023 28.885
20 26.366 29.695 36.434 21.477 23.981 28.958
25 25.072 28.210 34.654 21.410 23.928 29.121
27 24.846 27.897 34.381 21.402 23.941 29.005
30 24.218 27.174 33.295 21.238 23.669 29.016
40 23.419 26.358 32.381 21.253 23.854 28.960
50 22.885 25.746 31.678 21.194 23.787 29.220
75 22.252 24.967 30.469 21.208 23.728 29.191

100 21.922 24.509 30.232 21.112 23.595 28.870
125 21.744 24.409 30.202 21.095 23.669 29.213
150 21.612 24.273 29.812 21.084 23.655 29.002
200 21.465 24.188 29.782 21.097 23.667 29.201
∞ 21.064 23.685 29.141 21.064 23.685 29.141
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Table 6: Empirical 90th, 95th and 99th percentiles of the null distribution of LRT and RST statistics
based on 50,000 simulations for p = 3, q = 3 and different values of n

n QLRT(90) QLRT(95) QLRT(99) QRST(90) QRST(95) QRST(99)

4 — — — 58.318 62.261 72.774
5 — — — 56.072 60.108 69.189
6 — — — 54.589 58.741 67.418
7 — — — 53.957 58.087 67.135
8 — — — 53.314 57.342 66.195
9 — — — 52.568 56.538 65.284

10 130.348 145.199 178.340 52.306 56.270 65.028
15 75.239 81.388 93.834 51.238 55.108 63.240
20 66.025 71.293 82.013 50.694 54.552 62.882
25 61.507 66.411 76.058 50.549 54.501 62.657
27 60.521 65.215 74.874 50.482 54.331 62.389
30 59.103 63.834 73.027 50.370 54.332 62.294
40 56.291 60.628 69.513 50.193 54.037 61.810
50 54.679 59.157 67.366 49.927 53.776 61.636
75 52.975 57.117 65.265 49.926 53.844 61.660

100 51.833 55.932 64.165 49.614 53.553 61.496
125 51.358 55.326 63.733 49.619 53.454 61.776
150 51.212 55.040 63.079 49.755 53.490 61.361
200 50.647 54.494 62.158 49.596 53.395 60.849
∞ 49.513 53.384 61.162 49.513 53.384 61.162

Table 7: Relative error between the RST statistics and their ENDs for 90th percentile for various
values of p and n.

p → 2 3 4 5 7 10 15
n ↓
4 6.076 17.784 21.657 23.889 27.246 29.662 31.157

— — — — — — —

6 6.922 10.253 13.076 14.971 16.863 18.065 19.022
— — — — — — —

8 5.466 7.677 9.716 10.707 12.167 13.091 13.625
(123.522 ) — — — — — —

10 4.474 5.642 7.170 8.191 9.461 10.173 10.621
(72.949 ) (163.263 ) — — — — —

20 1.958 2.385 3.400 3.885 4.455 4.851 5.073
(25.168 ) (33.350 ) (45.282 ) (63.792 ) — — —

30 0.824 1.732 2.310 2.583 2.902 3.228 3.300
(14.971 ) (19.370 ) (24.541 ) (31.212 ) (49.192 ) — —

40 0.895 1.374 1.625 1.861 2.086 2.321 2.458
(11.180 ) (13.691 ) (16.691 ) (20.799 ) (30.286 ) (52.174 ) —

50 0.615 0.836 1.121 1.560 1.642 1.901 1.947
(8.645 ) (10.434 ) (12.737 ) (15.827 ) (22.031 ) (34.860 ) (76.922 )

75 0.683 0.834 0.815 1.071 1.200 1.266 1.289
(5.638 ) (6.993 ) (8.127 ) (9.903 ) (13.192 ) (19.492 ) (33.036 )

100 0.226 0.205 0.637 0.703 1.023 0.947 0.980
(4.074 ) (4.686 ) (5.804 ) (7.072 ) (9.563 ) (13.603 ) (21.648 )

Note: the values in the parenthesis and italics are the relative error between the LRT statistics and their ENDs for

90th percentile for various values of p and n.
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Computations for calculating the END for fixed n, p, q, ρ and Σ are carried out by the algorithm

presented below. The Mathematica code to compute END are available from the authors on request.

Algorithm Outline:

Step 1 Fix n, p, q, ρ and Σ . Calculate Ψ = (1− ρ)Ip + ρJp.

Step 2 Set the seed to 123213789.

Step 3 Generate the observation matrix X from the matrix normal distribution Npq,n(0 ,Ψ ⊗

Σ, In).

Step 4 Get the pooled sample variance-covariance matrix for repeated measures, say G .

Step 5 Obtain an initial estimate of ρ as ρ̂0 = (1′pG 1p− tr(G ))/p(p−1). Take Ψ̂0 = (1− ρ̂0)Ip+

ρ̂ 0Jp as an initial estimate of Ψ .

Step 6 Compute Σ̂ = 1
np

∑p
i=1(ei ⊗ Iq)′(Ψ̂ ⊗ Iq)X Q1nX

′(ei ⊗ Iq), where ei is p-th column of

Ip.

Step 7 Compute k0 = nqp(p− 1), a = tr((Ip ⊗ Σ̂ )X Q1nX
′), and b = tr((Jp ⊗ Σ̂ )X Q1nX

′).

Step 8 Compute the value of ρ̂ by solving the cubic equation k0(p− 1)ρ̂3 + (k0 − k0(p− 1) + (p−

1)2a− (p− 1)b)ρ̂2 + (2(p− 1)a− k0)ρ̂+ a− b = 0. Ensure that −1/(p− 1) < ρ̂ < 1. Truncate

ρ̂ to −1/(p− 1) or 1, if it is outside this range.

Step 9 Compute the revised estimate of Ψ̂ from ρ̂.

Step 10 Compute the revised estimate of Σ̂ using Ψ̂ obtained in Step 9.

Step 11 Repeat Steps 7, 8, 9 and 10 until convergence is attained. This is ensured by verifying that

the maximum of the absolute difference between two successive values of ρ̂ and the absolute

difference between two successive values of tr(Σ̂ ) is less than a pre-determine number ε(= 10−6,

say).

Step 12 Calculate the Rao’s score test statistic RS = nqp/2− tr(Z) + (1/2n)tr(Z2), where

Z = (Ψ̂ ⊗ Σ̂ )X Q1nX
′.

Step 13 Repeat Steps 3-12 50,000 times.
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4.3 Power Simulations

Power analysis is very important for applications to real data. Thus, we carry out some power

simulations to study the finite sample performance of the tests comparing the LRT and the RST

approaches. The power of a statistical test (Lehmann and Romano, 2005), e.g., for RST, is a function

and is defined as

β(Ω) = PΩ(reject H0 when using RST given H0 is false) = PΩ(RST > κ̂α),

where κα is defined in (19), and κ̂α is an estimate of κα This function cannot be computed exactly,

but can be approximated using Monte Carlo technique (Rizzo, 2008). Now, both RST and LRT

statistics depend on n, p and q. So, both RST and LRT statistics are functions of n, p and q as

shown in Tables 8 and 9. It seems RST is more powerful than the LRT for the alternative in our

study.

Like observed Type I error rates α̂LRT and α̂RST here also samples of various sizes from small

to large, e.g., n = 4, 6, 8, 10, 15, 20, 25, 30, 50, 75 and 100 are generated from a pq−variate normal

population Npq(0,Ω), where Ω is an unstructured positive definite matrix. The number of repeated

measurements p is chosen as 3, 4, 5 and 7, and the number of characteristics q as 3. We generate

50,000 samples for each combination of parameters p, q and n. The empirical powers of LRT and

RST for p = 3, 4, 5 and p = 7 and for different values of n are given in Tables 8 and 9 for α = 0.01

and 0.05 respectively.

Table 8: Empirical powers of LRT and RST for different values of n and p for α = 0.01 based on
50,000 simulations

p → 3 4 5 7

n LRT RST LRT RST LRT RST LRT RST

4 — 0.022 — 0.021 — 0.018 — 0.014
6 — 0.044 — 0.034 — 0.028 — 0.021
8 — 0.067 — 0.053 — 0.037 — 0.027

10 0.020 0.097 — 0.078 — 0.055 — 0.037
15 0.134 0.229 0.058 0.174 — 0.117 — 0.070
20 0.316 0.397 0.205 0.330 0.099 0.228 — 0.130
25 0.536 0.583 0.372 0.479 0.226 0.346 0.073 0.209
30 0.713 0.750 0.580 0.662 0.391 0.504 0.158 0.295
50 0.985 0.989 0.961 0.976 0.887 0.927 0.682 0.773
75 1.000 1.000 1.000 1.000 0.997 0.999 0.973 0.986

100 1.000 1.000 1.000 1.000 1.000 1.000 0.999 1.000

While there is some correspondence between Type I error and power in these tests, it is not a

strong linkage. This is because neither the null nor alternative hypotheses are point hypotheses;

both describe sets of covariance structures. This makes the concept of a statistical distance between
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hypotheses very difficult to measure. The measure of discrepancy between hypotheses is based

on Genton (2007). It is to be noted that this measure is used in nearest Kronecker product for

a space time covariance matrix problem, and it is not sufficient to measure the distance between

our structured covariance matrix and the alternative. For our studies we assumed nonseparable

covariance matrix as true hypothesis. The results presented in the tables are for large distances from

separability. For determining empirical power of the LRT and the RST we use the corresponding

empirical null distributions.

Table 9: Empirical powers of LRT and RST for different values of n and p for α = 0.05 based on
50,000 simulations

p → 3 4 5 7

n LRT RST LRT RST LRT RST LRT RST

4 — 0.092 — 0.086 — 0.073 — 0.065
6 — 0.142 — 0.125 — 0.102 — 0.084
8 — 0.199 — 0.166 — 0.137 — 0.107

10 0.094 0.269 — 0.233 — 0.176 — 0.132
15 0.350 0.469 0.202 0.391 — 0.304 — 0.216
20 0.583 0.672 0.441 0.591 0.275 0.469 — 0.327
25 0.773 0.817 0.642 0.743 0.474 0.624 0.231 0.448
30 0.882 0.909 0.798 0.863 0.645 0.758 0.391 0.583
50 0.997 0.998 0.992 0.995 0.967 0.983 0.875 0.926
75 1.000 1.000 1.000 1.000 1.000 1.000 0.995 0.998

100 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

As expected, empirical power increases steadily with n for a fixed p, as increase in n provides more

information. We observe this phenomenon for both α = 0.01 and 0.05 for LRT as well as for RST.

Now, since the number of parameters in the (pq×pq)−dimensional unstructured variance-covariance

matrix Ω is pq(pq+1)/2, increase in p for a fixed n means more parameters to estimate. So, too many

degrees of freedom are used up in estimating too many parameters in the (pq × pq)−dimensional

covariance matrix Ω, and consequently power decreases with the increase of p for LRT as well as

for RST. The most important factor to be noticed from Tables 8 and 9 is that the power of LRT is

always smaller than the power of RST, especially for small samples for both α = 0.01 and 0.05. If we

compare Tables 8 and 9, as expected we see that the increase in the Type I error (α), increases the

power of a test. We notice that as the number of repeated measures, p, increases empirical power

decreases. It is to be noted, that a bigger power study is needed, since our study is only for one

unstructured Ω as the alternative hypothesis.
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5 Three real data examples

To illustrate our proposed testing method, in this section we test the Hypothesis (2) on three data

sets. The first one is of relatively smaller in size, and the second and third ones are of moderately

larger sizes. We use the biased along with the unbiased and unmodified RST in these examples to

see the performance of our new method and evaluate the performance in comparison to the biased

along with the unbiased and unmodified LRT method.

Example 1 (Dental Data). The data set is from Timm (1980, Table 7.2). The data were originally

collected by T. Zullo of the School of Dental Medicine at the University of Pittsburgh. There are nine

subjects in the data set. Measurements at three different time points (p = 3) were made on each of

q = 3 characteristics. Note that the null hypothesis cannot be tested using the LRT as the number of

subjects n = 9 is not greater than pq = 9. Therefore, if we take all three measurements LRT cannot

be performed, nonetheless RST can be performed as it only requires n > q. The calculated value

of RST statistic is 54.8215 (see Table 10) with 38 df
(
9·10
2 −

3·4
2 − 1 = 38

)
. Now, χ2

38,0.05 = 53.384

and χ2
38,0.01 = 61.162. Therefore, we reject the null hypothesis at 5% level of significance and fail to

reject it at 1% level of significance. From Table 6 we notice that our calculated RST statistic is less

than the corresponding critical values, the empirical 95th percentiles for n = 9: ENDRST
9,0.1 = 52.568

and ENDRST
9,0.05 = 56.538. So, we reject the null hypothesis at 10% level of significance for RST

(p−value < 0.1). Nevertheless, we fail to reject the null hypothesis at 5% level of significance for

RST (p−value > 0.05). Thus, we draw a little different conclusion when we use END of RST statistic

in place of the limiting χ2 distribution.

For the purpose of comparison of the LRT and the RST, we now consider only two measurements

(q = 2). The test statistics values are given in Table 10. We will first consider measurements 1

and 2. The calculated value of the LRT statistic with 17 df is 27.0035. Now, χ2
17,0.1 = 24.769

and χ2
17,0.05 = 27.587. Therefore, we fail to reject the null hypothesis marginally at 5% level of

significance, but reject it at 10% level of significance. However, RS= 22.1995 with the same 17 df.

Therefore, in this case we fail to reject the null hypothesis at 10% level of significance (p−value > 0.1).

Nevertheless, these inferences are not accurate or correct, as from Table 4 we notice that both our

calculated LRT and RST statistics are less than the corresponding empirical 90th percentiles for

n = 9: ENDLRT
9,0.1 = 44.399 and ENDRST

9,0.1 = 25.831. So, we fail to reject the null hypothesis at 10%

level of significance for both LRT and RST (p−value > 0.1).
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Table 10: Calculated values of LRT, RST statistics and their p−values along with the p−values of
the limiting χ2

ν distribution for different data sets

Data n p q ν LRT (END p−value) RST (END p−value) LRT (χ2
ν p−value) RST (χ2

ν p−value)

Dental 9 3 1,2,3 38 — 54.8215 (> 0.05 & < 0.10) — (> 0.01 & < 0.05)
Dental 9 3 1,2 17 27.0035 (> 0.1) 22.1995 (> 0.1) (> 0.05 & < 0.10) > 0.1
Dental 9 3 1,3 17 40.4858 (> 0.1) 23.3546 (> 0.1) < 0.01 > 0.1
AIDS 27 3 1,2,3 38 134.8540 (< 0.01) 114.6980 (< 0.01) < 0.01 < 0.01
AIDS 27 3 1,2 17 80.4133 (< 0.01) 61.9511 (< 0.01) < 0.01 < 0.01
Mineral 25 2 1,2,3 14 22.7675 (> 0.1) 17.7937 (> 0.1) (> 0.05 & < 0.10) > 0.1

We further consider this data set with measurements 1 and 3. In this case the calculated values

of LRT and RST are 40.4858 and 23.3546 respectively with 17 df. Since again χ2
17,0.1 = 24.769

and χ2
17,0.01 = 33.409, we reject the null hypothesis with p−value < 0.01 using LRT, but fail to

reject the null hypothesis with p−value > 0.1 using RST. So, we see very different conclusions for

both the tests. However, when we consider empirical null distributions, we see from Table 4 that

again our calculated LRT and RST statistics are less than the respective 90th percentile values, and

therefore we fail to reject the null hypothesis at 10% level of significance for both LRT and RST

(p−values > 0.1).

Thus, we draw very different conclusions on the null Hypothesis (2) when we use ENDs in place

of the limiting χ2 distributions. Nonetheless, the conclusions using LRT and RST are the same if

we use the respective empirical distributions when n > pq.

Example 2 (Aids Data). The data set taken from Thompson (1991) corresponds to a sample

of 27 patients involved in a pilot study for a new treatment for AIDS. Three different variables:

TMHR scores, Karofsky scores, and T-4 cell counts, were measured at three time points at an

interval of 90 days during the study. Thus, for this data set p = 3 and q = 3. The test statistics

values are also given in Table 10. We will first consider all three variables. The calculated test

statistic values for LRT and RST methods are equal to 134.85402 and 114.698 respectively with

38 df. Now, χ2
38,0.01 = 61.162. Therefore, we reject the null hypothesis at 1% level of significance

(p−value < 0.01) for both LRT and RST. Now, from Table 6 we see that the critical values, the

empirical 99th percentiles for n = 27 are ENDLRT
27,0.01 = 74.874 and ENDRST

27,0.01 = 62.389. Thus, if we

consider END we also reject the null hypothesis at 1% level of significance (p−value < 0.01) for LRT

as well as for RST.

We further consider this data set with the 1st and the 2nd variables, i.e., with TMHR scores and

Karofsky scores. In this case calculated test statistic values for LRT and RST methods are equal to
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80.413 and 61.951 respectively with 17 df. Since χ2
17,0.01 = 33.409, we reject the null hypothesis at

1% level of significance (p−value < 0.01) for both LRT and RST. However, from Table 4 we see that

the empirical 99th percentiles for n = 27 are ENDLRT
27,0.01 = 38.568 and ENDRST

27,0.01 = 34.214. Thus, if

we consider END we also reject the null hypothesis at 1% level of significance (p−value < 0.01) for

both LRT and RST.

From this example we see that if we use ENDs, we come to the same conclusions for both LRT

and RST. Moreover, if we use limiting χ2 distribution we reach the same conclusion as that of the

ENDs.

Example 3 (Mineral Data). This data set is taken from Johnson and Wichern (2007, p. 43). An

investigator measured the mineral content of bones (radius, humerus and ulna) by photon absorp-

tiometry to examine whether dietary supplements would slow bone loss in 25 older women. Mea-

surements were recorded for three bones on the dominant and non-dominant sides. Clearly, for this

data set we have p = 2 and q = 3. The calculated test statistics values for LRT and RST are 22.7675

and 17.7937 respectively with 14 df and are given in Table 10. Observe that χ2
14,0.1 = 21.064 and

χ2
14,0.05 = 23.685. Therefore, basing on LRT, we reject the null hypothesis at 10% level of significance

(p−value < 0.1), but fail to reject the null hypothesis at 5% level of significance (p−value > 0.05).

In case of RST we fail to reject the null hypothesis at 10% level of significance (p−values > 0.1).

Now, from Table 5 we see that the empirical 90th percentiles for n = 25 are ENDLRT
25,0.1 = 25.072 and

ENDRST
25,0.1 = 21.410. Thus, if we consider ENDs we fail to reject the null hypothesis at 10% level of

significance (p−value > 0.1) for LRT as well as for RST.

From this example we see that if we use ENDs, we come to the same conclusions for both the

tests, whereas if we use limiting χ2 distribution we reach different conclusions.

From the above examples we have the following suggestions for the researchers and statistical

practitioners.

Remark 3. From the above examples we see that the inference changes most of the time if we

use END as opposed to the limiting χ2 distribution which is very conservative, especially if the test

statistic value lies in the close neighborhood of the critical value of the χ2 distribution. However,

the conclusions remain the same for LRT and RST if we use END, which is more desirable. But

most importantly, we see that the conclusions drawn from END using RST and the limiting χ2

distribution are the same all but one time (in a marginal case with too small sample size) in a

small sample example above. These observations suggest us to use RST instead of LRT for testing
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separability of the variance-covariance matrix with first component as CS correlation matrix for small

and moderate sample sizes, and especially in small sample sizes. From these studies it can be seen

that for precise conclusion it is always better to use END of RST if available instead of χ2. However,

the above examples show that if END of RST is not available, the decision based on the limiting χ2

distribution would not differ much. Remark 2 also reinforces Remark 3.

6 Summary and scope for the future

Two-level or doubly multivariate data are thriving in all disciplines in the 21st century, so this

topic is of wide interest to many researchers and statistical practitioners in many industries. Here

we develop a new hypothesis testing procedure to test the separability of a covariance matrix for

two-level multivariate data using RST, which is no longer just an alternative or competitor to LRT,

but is much superior to LRT in small and in moderate-sized data sets. A first advantage of the RST

over the LRT is that it does not require an estimate of the information matrix under the alternative

hypothesis. A second advantage of the RST over the LRT is that it converges to a Chi-square

distribution much faster according to our simulation study. From the theoretical point of view the

drawback of the RST is that at the beginning the RST needs more calculations connected with the

Fisher information matrix F , requiring second derivatives of likelihood functions and the inverse of

the Fisher information matrix F . However, it is enough to calculate it one time to obtain a simple

form of the RST statistic. So, from computational point of view, RST is faster to obtain, because it

does not need to find MLE’s under HA, which are more time-consuming. We see from Remark 1 that

one may increase p for more information, and still can get stable estimate of the RST statistic with

permissible minimum sample size q + 1, a quantity independent of p. Nevertheless, the condition

n > pq has some advantages, by providing smaller bias and higher precision to ML estimates that

help for the behavior of both LRT and RST statistics and the characterization of their distributions

- compared to when n ≤ pq and n is equal to or just about the permissible minimum sample size.

In this article we have taken the correlation matrix Ψ as CS. First, it is well known (see Naik

and Rao, 2001; Jones, 1993) that the correlation matrix Ψ of the repeated measures usually has a

simpler structure such as CS, AR(1), circular or Toeplitz as opposed to a general structure. In our

formulation, it is easier to accommodate different structures for the correlation matrix of repeated

measures (via Ψ). Thus, it may be worthwhile to develop tests of the null hypothesis H0 with

Ψ as AR(1), circular or Toeplitz for various types of two-level multivariate data sets. Likewise, if

one prefers a non-stationary covariance structure, one can develop an RST statistic with Ψ as an
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unstructured or antedependent covariance matrix. All these studies would surely help in providing

an improved statistical analysis for two-level multivariate data.

The modeling of the mean may have an effect on the performance of separability tests for variance-

covariance structures. Since the hypothesis we are interested in this article involves only the variance-

covariance matrix, we derive the RST statistic corresponding to vechΩ by calculating the component

of the score vector corresponding to vechΩ. If one wants to see the effect of the mean vector one

needs to derive the RST statistic corresponding to µ too, i.e., derive the RST statistic corresponding

to the score vector s(θ). We would like to solve this problem in near future and publish it in a future

correspondence.

A relatively new criterion for testing hypothesis, referred to as the gradient test, has been pro-

posed by Terrell (2002). Its statistic shares the same first order asymptotic properties with the three

classical tests, the likelihood ratio, the Wald and the Rao’s score statistics, and is very simple when

compared with the same three classical tests. We will explore Terrell’s method to develop a test

statistic for the null hypothesis H0 in near future, and will report it in a future correspondence.
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A Some algebraic definitions and results

Following Magnus and Neudecker (1986) let Nm be the symmetric idempotent m2 × m2 matrix

defined as Nm = 1
2(Im2 +Km,m), where m2 ×m2 matrices Im2 and Km,m represent the identity

matrix and the commutation matrix (c.f. Kollo and von Rosen, 2005) respectively. Then a unique

m2 ×m(m+ 1)/2−dimensional transformation matrix Dm is called a duplication matrix if

DmvechA = vecA;
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see Magnus and Neudecker (1986). Using the above definitions we have the following propositions.

Proposition 1. The following equalities hold:

(i) (In ⊗Kn,n)(Kn,n ⊗ In) = Kn2,n;

(ii) Km,k(A⊗B)K l,n = B ⊗A for any k × l matrix A and m× n matrix B;

(iii) vec(A⊗B) = (I l ⊗Kn,k ⊗ Im)(vecA⊗ vecB) for any k × l matrix A and m× n matrix B;

(iv)
(
D′m(A−1 ⊗A−1)Dm

)−1
= D+

m(A⊗A)D+′
m for any m×m nonsingular matrix A, where D+

m

is a Moore-Penrose inverse of Dm.

Proposition 2. For any m×m symmetric matrix A the following equalities hold:

(i) NmvecA = vecA;

(ii) Km,mDm = Dm;

(iii) Nm(A⊗A)Nm = Nm(A⊗A) = (A⊗A)Nm;

(iv) DmD
+
m = Nm.

The statements in the above propositions can be found in Magnus and Neudecker (1986) or

Ghazal and Neudecker (2000).

Proposition 3. Let F (Z) be a k × l matrix function of Z.

(i) If Z is an m × n matrix, then
∂vecF (Z)

∂vec′Z
is a kl ×mn matrix such that its (i, j)th element is

the derivative of the ith element of vecF (Z) with respect to the jth element of vecZ.

(ii) If Z is an m×m symmetric matrix then

∂vecF (Z)

∂vech′Z
=
∂vecF (Z)

∂vec′Z
· ∂vecZ

∂vech′Z
=
∂vecF (Z)

∂vec′Z
·Dn,

where the derivative of the first term in the multiplicaton is calculated treating Z as non-symmetric.

Proposition 3 (ii) follows from the chain rule as described in Magnus and Neudecker (1986). Using

the above propositions we now have the following lemma.

Lemma 1. For any m×m symmetric matrix A

(i) (vec′A⊗ Im)(Im ⊗ vecA−1) = Im;
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(ii) (vecA⊗Dm)′(Im ⊗Km,m ⊗ Im)(Im2 ⊗ vecA−1) = D′m;

(iii) (vecA⊗Dm)′(Im ⊗Km,m ⊗ Im)(vecA−1 ⊗ Im2) = D′m;

Proof. (i) Let Ai• denote the i-th row and A•j denote the j-th column of matrix A. Then clearly

Ai•A
−1
•j =

{
1 if i = j,
0 if i 6= j.

Since

(vec′A⊗ In)(In ⊗ vecA−1) =
{
Ai•A

−1
•j

}
ij
,

we obtain (i).

(ii) From Proposition 2 (ii) and Proposition 1 (i), (iii) and Lemma 1 (i) we can write

(vecA⊗Dm)′(Im ⊗Km,m ⊗ Im)(Im2 ⊗ vecA−1)

= D′m(vecA⊗ Im2)′(Im2 ⊗Km,m)(Im ⊗Km,m ⊗ Im)(Im2 ⊗ vecA−1)

= D′m(vecA⊗ Im2)′(Im ⊗Km2,m)(Im2 ⊗ vecA−1)

= D′m(vecA⊗ Im2)′(Im ⊗Km2,m(Im ⊗ vecA−1))

= D′m((vec′A⊗ Im)(Im ⊗ vecA−1)⊗ Im)

= D′m.

(iii) We have

(vecA⊗Dm)′(Im ⊗Km,m ⊗ Im)(vecA−1 ⊗ Im2)

= D′m

m∑
i=1

m∑
j=1

(vecA⊗ Im2)′(Im ⊗Eij ⊗E′ij ⊗ Im)(vecA−1 ⊗ Im2)

= D′m

m∑
i=1

m∑
j=1

(vecA⊗ Im2)′(vec(EijA
−1)⊗ Im2)

= D′m

m∑
i=1

m∑
j=1

tr
[
AEijA

−1] (E′ij ⊗ Im)

= D′m

m∑
i=1

(Eii ⊗ Im)

= D′m,

where Eij = eie
′
j and ei is the i-th column of Im.
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B Empirical percentiles of the null distribution of LRT and RST
statistics for several combinations of p, q and n

Table 11: Empirical 90th, 95th and 99th percentiles of the null distribution of LRT and RST statistics
based on 50,000 simulations for p = 2, q = 2 and different values of n

n QLRT(90) QLRT(95) QLRT(99) QRST(90) QRST(95) QRST(99)

3 — — — 14.870 16.124 17.446
4 — — — 13.239 15.367 19.063
5 34.557 41.986 57.578 12.239 14.435 18.953
6 23.919 28.418 38.353 11.804 13.940 18.422
7 20.071 23.857 32.368 11.553 13.524 18.301
8 17.985 21.262 28.342 11.402 13.349 17.797
9 16.586 19.552 26.262 11.209 13.065 17.590

10 15.735 18.695 25.160 11.224 13.155 17.607
15 13.522 15.915 21.253 11.013 12.829 17.068
20 12.746 15.049 20.063 10.995 12.800 16.712
25 12.216 14.431 19.282 10.889 12.716 17.028
27 12.090 14.266 19.097 10.879 12.734 16.839
30 11.923 14.184 18.703 10.828 12.697 16.722
40 11.477 13.621 18.099 10.743 12.616 16.770
50 11.323 13.368 17.951 10.730 12.635 16.792
75 11.167 13.194 17.497 10.740 12.642 16.705

100 10.998 12.969 17.315 10.691 12.568 16.948
125 10.825 12.832 17.102 10.613 12.528 16.627
150 10.811 12.791 17.222 10.628 12.543 16.763
200 10.784 12.757 16.923 10.672 12.558 16.644
∞ 10.645 12.592 16.812 10.645 12.592 16.812

Table 12: Empirical 90th, 95th and 99th percentiles of the null distribution of LRT and RST statistics
based on 50,000 simulations for p = 4, q = 3 and different values of n

n QLRT(90) QLRT(95) QLRT(99) QRST(90) QRST(95) QRST(99)

4 — — — 105.398 111.562 125.228
5 — — — 100.983 106.867 120.120
6 — — — 97.964 103.873 116.879
8 — — — 95.053 100.818 112.848

10 — — — 92.847 98.290 110.686
12 — — — 91.950 97.500 108.948
15 158.181 168.873 190.700 90.590 96.112 107.197
20 125.865 133.295 147.892 89.581 94.622 105.384
25 114.058 121.070 134.729 89.054 94.413 105.428
30 107.897 114.259 126.383 88.637 93.804 104.401
35 103.882 109.989 122.271 88.254 93.508 103.897
40 101.096 106.988 118.456 88.043 92.927 103.237
50 97.670 103.604 115.208 87.607 92.746 103.319
75 93.676 99.072 110.081 87.342 92.456 102.729

100 91.664 97.054 107.680 87.187 92.232 102.469
125 90.823 96.117 106.665 87.116 92.223 102.523
150 90.148 95.518 105.823 87.138 92.390 102.466
200 89.178 94.445 104.764 86.967 92.131 102.391
∞ 86.635 91.670 101.621 86.635 91.670 101.621
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Table 13: Empirical 90th, 95th and 99th percentiles of the null distribution of LRT and RST statistics
based on 50,000 simulations for p = 5, q = 3 and different values of n

n QLRT(90) QLRT(95) QLRT(99) QRST(90) QRST(95) QRST(99)

4 — — — 164.330 173.128 191.403
5 — — — 156.797 164.600 182.030
6 — — — 152.502 160.348 176.634
8 — — — 146.845 154.184 170.504

10 — — — 143.508 150.908 166.040
12 — — — 141.755 148.932 163.625
15 — — — 139.811 146.810 161.214
20 217.259 228.517 249.515 137.797 144.415 157.764
25 187.491 196.404 213.762 136.733 143.274 157.020
30 174.044 182.113 197.796 136.070 142.630 155.900
35 165.742 173.532 188.688 135.731 142.095 155.404
40 160.232 167.613 181.731 135.112 141.327 154.295
50 153.637 161.152 175.388 134.712 141.223 153.951
75 145.779 152.569 165.676 134.064 140.456 152.839

100 142.024 148.673 161.851 133.576 140.000 152.877
125 140.005 146.360 159.271 133.635 139.788 151.979
150 138.671 145.233 158.134 133.442 139.624 152.296
200 137.180 143.617 156.191 133.175 139.508 152.130
∞ 132.643 138.811 150.882 132.643 138.811 150.882

Table 14: Empirical 90th, 95th and 99th percentiles of the null distribution of LRT and RST statistics
based on 50,000 simulations for p = 7, q = 3 and different values of n

n QLRT(90) QLRT(95) QLRT(99) QRST(90) QRST(95) QRST(99)

4 — — — 320.045 333.168 361.732
5 — — — 303.298 315.493 342.473
6 — — — 293.932 305.697 330.462
8 — — — 282.119 292.984 316.203

10 — — — 275.313 285.590 307.403
12 — — — 270.973 280.887 302.721
15 — — — 266.898 276.713 296.705
20 — — — 262.723 271.876 290.728
25 439.586 456.694 489.763 260.331 269.477 287.586
30 375.245 388.996 415.646 258.815 267.726 287.194
35 345.770 357.629 380.706 257.898 267.085 284.771
40 327.691 338.589 360.184 256.763 265.778 283.790
50 306.928 317.389 337.764 255.648 264.475 282.015
75 284.697 294.300 312.812 254.536 263.070 279.643

100 275.569 284.881 302.935 254.091 262.666 279.355
125 270.313 279.169 296.581 253.392 261.914 278.743
150 266.792 275.679 292.738 253.124 261.774 277.989
200 262.866 271.316 288.614 252.587 260.956 277.771
∞ 251.517 259.914 276.159 251.517 259.914 276.159
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Table 15: Empirical 90th, 95th and 99th percentiles of the null distribution of LRT and RST statistics
based on 50,000 simulations for p = 10, q = 3 and different values of n

n QLRT(90) QLRT(95) QLRT(99) QRST(90) QRST(95) QRST(99)

4 — — — 644.667 664.529 707.946
5 — — — 608.276 626.401 665.933
6 — — — 587.009 604.763 640.058
8 — — — 562.278 577.856 612.186

10 — — — 547.768 562.611 594.212
12 — — — 538.109 552.198 582.809
15 — — — 529.319 543.350 572.790
20 — — — 521.311 534.671 561.423
25 — — — 516.178 529.025 554.500
30 — — — 513.238 525.937 551.812
35 854.716 877.584 923.150 510.528 523.092 548.606
40 756.593 774.862 811.536 508.731 521.305 545.550
50 670.511 86.437 717.042 506.644 519.276 542.509
75 594.103 607.839 635.022 503.483 516.007 539.454

100 564.821 578.598 604.252 501.898 514.261 537.148
125 548.963 562.197 587.149 501.093 512.856 536.589
150 539.778 552.828 576.845 501.004 512.910 535.901
200 528.065 540.549 563.514 499.988 512.262 534.177
∞ 497.190 508.893 531.335 497.190 508.893 531.335

Table 16: Empirical 90th, 95th and 99th percentiles of the null distribution of LRT and RST statistics
based on 50,000 simulations for p = 15, q = 3 and different values of n

n QLRT(90) QLRT(95) QLRT(99) QRST(90) QRST(95) QRST(99)

4 — — — 1425.043 1457.008 1524.644
5 — — — 1343.057 1370.775 1433.269
6 — — — 1293.202 1319.587 1378.464
8 — — — 1234.561 1258.438 1309.237

10 — — — 1201.916 1224.987 1272.263
12 — — — 1181.405 1202.980 1248.336
15 — — — 1160.459 1180.732 1223.385
20 — — — 1141.643 1161.045 1199.219
25 — — — 1129.622 1149.006 1186.455
30 — — — 1122.381 1141.361 1180.518
35 — — — 1117.097 1135.311 1172.995
40 — — — 1113.225 1130.898 1167.173
50 1922.299 1957.103 2026.640 1107.674 1125.905 1161.561
75 1445.463 1468.783 1514.400 1100.529 1118.660 1152.947

100 1321.733 1342.645 1383.925 1097.170 1115.496 1148.483
125 1262.594 1282.593 1319.962 1095.268 1112.801 1146.797
150 1227.295 1246.608 1283.002 1093.888 1111.188 1143.588
200 1186.980 1205.457 1242.884 1091.553 1109.649 1143.251
∞ 1086.521 1103.702 1136.416 1086.521 1103.702 1136.416
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