
                    WP # 0002MGST-253-2016Date March 16, 2016 

THE UNIVERSITY OF TEXAS AT SAN ANTONIO, COLLEGE OF BUSINESS 

Working Paper SERIES 
     

 

 
 
 
 

 
 

ONE UTSA CIRCLE    
SAN ANTONIO, TEXAS  78249-0631        
210 458-4317 | BUSINESS.UTSA.EDU 

Copyright © 2016, by the author(s). Please do not quote, cite, or reproduce  
without permission from the author(s). 

 
 

 
 

Ricardo Leiva 
�Departamento de Matem atica 

F.C.E., Universidad Nacional de Cuyo 
5500 Mendoza, Argentina 

Email: rleiva@fcemail.uncu.edu.ar 
 
 

Anuradha Roy 
Department of Management Science and Statistics 

The University of Texas at San Antonio 
San Antonio, TX 78249 USA 

Email: Anuradha.Roy@utsa.edu 
 

 

Multi-level multivariate normal distribution with self-similar 
compound symmetry covariance matrix 



Multi-level multivariate normal distribution with self similar

compound symmetry covariance matrix

Ricardo Leiva
Departamento de Matemática
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1 Introduction

To understand why multi-level multivariate data analysis is indeed a need in the present era, we begin

with an example of bone replacement surgery for elderly osteoporotic patients. Osteoporosis is a disease

characterized by a reduced bone mass and a degeneration of the bone tissue; it leads to bone fragility, so

to a higher risk of fractures. As the population ages, more patients with osteoporosis require orthope-

dic procedures, for example those with intraoperative fractures, periprosthetic osteolysis with implant

migration, and postoperative periprosthetic fractures. In most cases, it brings relief and mobility after

years of pain. Bone takes a long time to grow and repair, so treating serious damage or carrying out

reconstructive procedures can be a slow and painstaking process. Up till now surgeons used to change

the bone by highly polished strong metal, ceramic material or by polymers. However, after about 10
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years of use, these artificial things often need to be replaced because of wear and fatigue-induced de-

lamination of the polymeric component. Sometimes these foreign things induce allergic reactions as

has been observed on occasion with some stainless steels, or they sometimes harbor bacteria. A short-

coming noted with ceramics used as standalone bone substitutes is the initial low resistance to impact

and fracture. The ideal bone graft substitute should be osteogenic, biocompatible, bioabsorbable, able

to provide structural support, easy to use clinically, and cost-effective. As a result scientists are now

considering to use some organic structures. It is known that organic molecules mimic behavior of metals

and thus could be used to repair the human body. Moreover, they do not have any adverse reactions

and are tolerated well by the human body. To see which organic structure works best one needs to

measure proliferation and viability of the organic structures along the circumference of the structure

and at different depths of the structure. Furthermore, to see the effectiveness of these organic structures

all these observations need to be measured repeatedly over time. Therefore, we see that this data is

a four-level (proliferation and viability: Level 1, different points on circumference: Level 2, different

depths: Level 3 and different time points: Level 4) dataset. As opposed to three-level data analysis

showing the bone activities (proliferation and viability) of organic structure along circumference and at

different depths, four-level data analysis can differentiate between the bone activities over time. The

measurements at different points on circumference, at different depths as well as at different time points

may have different measurement variations for the variables, and we must take these variations into

account while analyzing these kinds of data. Examples of three-level data can be found in Leiva and

Roy (2012) and examples of two-level data can be found in Roy (2006), Roy and Khattree (2007), and

Roy and Leiva (2008).

Two-level data (two-dimensional arrays) is analyzed using a matrix-variate normal distribution,

which is an extension of the traditional multivariate (vector-variate) normal distribution. Two-level

data can also be analyzed vectorially with a 2-separable (Kronecker product) variance-covariance struc-

ture, or block exchangeable covariance structure. These covariance structures integrate the two-level

information into the model. Whenever one has two or more levels of measurements collected within

subjects (clusters), one has a data analysis situation that requires an assumption about the structure

of a within-subject covariance matrix. One may choose to ignore it, but failing to understand how a co-

variance matrix works may influence the results. In the same way, multi-level data (multi-dimensional

arrays) can be analyzed vectorially, however with some structured variance-covariance matrix which

can incorporate multi-level information into the model, e.g., k−separable covariance tructure (Leiva

and Roy, 2014; Singull et al., 2012) for k−level data. Nonetheless, k−separable covariance structure
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may not be suitable for all datasets; thus we explore some other structure for k−level data in this article.

Our new structure can be utilized in situations where exchangeable feature is present at every level of

the data.

Advancement of computer technology allows to store complex (e.g., multi-level) data more efficiently,

inexpensively and instantly these days as compared to last century. Thus, appropriate methods need

to be developed to analyze these multi-level data to draw right conclusion. Standard multivariate

techniques with one big variance-covariance matrix do not work with these multi-level data, as these

standard techniques cannot incorporate the multi-level information in the standard models, and thus

would draw wrong conclusions (See Roy et al., 2015; Leiva and Roy, 2012).

A meaningful distinction between the multi-level normal and multivariate (vector-variate) normal

distributions is the way in which their covariances are characterized. Treating a multi-level data as

a vector-variate data with one big unstructured variance-covariance matrix fails to preserve certain

intrinsic algebraic relationships among the response variables and their geometric relationships in which

the response variables are measured. For example, algebraic operations e.g., decomposing the variance-

covariance matrix into its eigenvalues and eigenvectors, performed on multi-level data are wrong when

a multi-level data is treated as a vector-variate with the big unstructured variance-covariance matrix.

One first needs to do the eigendecomposition of a suitable structured variance-covariance matrix for

multi-level data to get the eigenblocks and eigenmatrices
(
Hao et al. (2015)

)
, and a set of uncorrelated

principal vectors with eigenblocks as their variance-covariance matrices. Then obtain the eigenvalues

of each of the eigenblocks and the corresponding uncorrelated principal components which are linear

combination of the components of the corresponding principal vector. Additionally, a big unstructured

covariance matrix of the vectorial representation of the multi-level data offers no insights into the way

the measurements of the experimental design are observed and affect their distribution. Sometimes

the structure in multi-level data is simply implied by the organization (design in broad sense) of the

experiment. Moreover, the computation of the parameters with the unstructured variance-covariance

matrix is a real problem as the number of parameters multiply with the increase of the number of

response variables and with the increase of the number of levels in the data. A multivariate analysis

is not possible for these multi-level data in a small sample setting, and this necessitates a multi-level

multivariate data analysis for these multi-level data.

Roy and Leiva (2007, 2011), and Leiva and Roy (2009, 2011, 2012) have written a series of articles

for three-level data with different covariance structures. One of the structures they used is doubly

exchangeable covariance structure. Roy and Fonseca (2012) studied linear models for three-level data
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with doubly exchangeable covariance structure on errors. Doubly exchangeable covariance structure is

a generalization of block exchangeable covariance structure or block compound symmetry covariance

structure for two-level data, which in turn is a generalization of compound symmetry covariance struc-

ture for traditional multivariate (vector-variate) data. This article generalizes this compound symmetry

covariance structure for k−level data, and we name it as “self similar compound symmetry” (SSCS)

covariance structure; the connotation will be clear in Section 2 when we define the structure. A k−SSCS

covariance structure, is a partitioned covariance matrix, consists of k unstructured covariance matrices

for the k levels of the k−level data, and thus reduces the number of unknown parameters significantly.

This is of critical importance to a variety of applied problems in medicine and engineering among many

other fields with multi-level data. The major advantage, however is that this obviates some of the prob-

lems with small sample size. Multi-level data sets often contain many variables along with the number

of levels of the data, and in most cases the total number of variables exceeds the sample size.

k−SSCS covariance structure for k−level data as opposed to unstructured covariance matrix is

very interesting as it assumes different covariance matrices at each level and uses these k covariance

matrices “cleverly” in the construction of the k−SSCS covariance matrix. In this paper we consider

the balanced case of k−level data, where the same m1−dimensional vector of measurements is recorded

for each combination f = (f2, . . . , fk) of k − 1 different levels (factors) with ft ∈ Ft = {1, . . . ,mt} at

t = 2, . . . , k for each individual (unit). We show through many examples throughout the article that

our new k−SSCS covariance structure is indeed an extension of the compound symmetry covariance

structure for multivariate data.

Let xr,f be a m1−variate vector of measurements on the rth replicate (individual) at the f factor

combination. Let x be the p1,k =
∏k

j=1mj−variate vector of all measurements corresponding to the rth

sample unit, that is, xr = (xr,1,...,1, . . . , xr,m1,...,mk
)′. The (arbitrary, but the same for all r) covariance

matrix Γx has q = p1,k (p1,k + 1) /2 parameters. If the number of samples n ≤ p1,k, one cannot estimate

the q unknown parameters. It is then necessary to assume some appropriate structure on Γx in order

to reduce the number of unknown parameters. The number of parameters to be estimated in “k−SSCS

covariance matrix” is only k
2m1 (m1 + 1), which is much less than q, the number of unknown param-

eters in an unstructured variance-covariance matrix. Also, for this k−SSCS covariance structure the

observations need not be of equally spaced. It is worth mentioning at this point that the total number

of parameters in k−separable covariance structure is
∑k

r=1mi (mi + 1) /2, but the total number of free

parameters in k−separable covariance structure is
∑k

r=1 (mi (mi + 1) /2) − (k − 1). For detail see Re-

mark 3.1 in Leiva and Roy (2014). If m1 is less than at least one of {m2,m3, . . . ,mk}, then the k−SSCS
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covariance matrix is more parsimonious than the k−separable covariance structure.

The rest of the article is organized as follows. We introduce the k−self-similar compound symmetry

covariance matrix in Section 2. Some examples of SSCS covariance structure is given in Section 3.

Maximum likelihood estimators (MLEs) and unbiased estimators of the matrix parameters of k−SSCS

covariance structure are derived in Section 4. Spectral decompositions of the k−SSCS covariance struc-

ture is obtained in Section 5. An example of a real data set is given in Section 6. Finally, Section 7

concludes with several comments and the scope for future research. Technical derivation of MLEs of all

unknown parameters and other derivations are presented in the Appendix.

2 Self-Similar compound symmetry covariance matrix

Let mh, for h = 1, . . . , k, be fixed positive integer numbers, that is, mh ∈ N, for h = 1, . . . , k. Let

pi,j be the product pi,j =
∏j

h=imh, for i ≤ j = 1, . . . , k, with pi+1,i = 1, pi+2,i = 0 and let xr be

a (p1,k × 1)−dimensional random vector, and it will be considered as a partitioned vector formed by

p1,j × 1− subvectors, that is, xr = (x′r:p1,j ;1, . . . ,x
′
r,p1,j ;pj+1,k

)
′
. Under symmetry conditions like the one

imposed by the self-similar compound symmetry covariance matrix (defined later) these conditions can

be stated (without lost of generality) to be “the first component of µh is equal to 1, for h = 2, . . . , k”.

Definition 1 We define xr to have a k−self-similar compound symmetry covariance matrix (k−SSCS

covariance matrix) if Γxr = Cov [xr] is of the form

Γx
p1,k×p1,k

=

k∑
j=1

(
k−1⊗
h=1

J
ik:j,h
mk+1−h

)
⊗ (Uk,j −Uk,j+1) , (1)

where Uk,j , for j = 1, . . . , k, are symmetric m1 ×m1−matrices, with Uk,1 positive definite, Uk,k+1 =

0m1×m1 and

ik:j = (ik:j,1, . . . , ik:j,k−1) =


01×(k−1) if j = 1(

01×k−j ,1
′
j−1

)
if j = 2, . . . , k − 1

1′k−1 if j = k

, (2)

with 1h denoting the (h×1)-dimensional vector of ones, Jh = 1h1′h, and J0
h = Ih the (h×h)-dimensional

identity matrix. The matrices Uk,j , j = 1, . . . , k, are called SSCS-component matrices.

The m1×m1 diagonal blocks Uk,1 represent the variance-covariance matrix of the m1 response variables

at any of the k levels, whereas m1 ×m1 off-diagonal blocks Uk,j , j = 2, . . . , k represent the covariance

matrix of the m1 response variables at any two different levels (same or different). In particular, when
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p1,k × 1− random vectors xr and E [xr] = µxr
are partitioned in m1 × 1− subvectors as

xr =
(
x′r;f2,f3,...,fk : fj ∈ Fj = {1, . . . ,mj} , for j = 2, . . . , k

)′
,

where xr;f2,f3,...,fk ∈ Rm1 is an m1 × 1 subvector, and

µxr
=
(
µ′f2,f3,...,fk : fj ∈ Fj = {1, . . . ,mj} , for j = 2, . . . , k

)′
,

where µf2,f3,...,fk
∈ Rm1 is an m1 × 1 subvector independent of r, that is,

xr =
(
x′r;1,1,...,1, . . . ,x

′
r;m2,1,...,1,x

′
r;1,2,...,1, . . . ,x

′
r;m2,2,...,1, . . . ,x

′
r;1,m3,...,1, . . . ,x

′
r;m2,m3,...,1,

. . . ,x′r;1,1,...,2, . . . ,x
′
r;m2,1,...,2,x

′
r;1,2,...,2, . . . ,x

′
r;m2,2,...,2, . . . ,x

′
r;1,m3,...,mk

, . . . ,x′r;m2,m3,...,mk

)′
,

and

µxr
=

(
µ′1,1,...,1, . . . ,µ

′
m2,1,...,1,µ

′
1,2,...,1, . . . ,µ

′
m2,2,...,1, . . . ,µ

′
1,m3,...,1, . . . ,µ

′
m2,m3,...,1,

. . . ,µ′1,1,...,2, . . . ,µ
′
m2,1,...,2,µ

′
1,2,...,2, . . . ,µ

′
m2,2,...,2, . . . ,µ

′
1,m3,...,mk

, . . . ,µ′m2,m3,...,mk

)′
,

then

E

[(
xr;f2,f3,...,fk − µf2,f3,...,fk

) (
xr;f∗2 ,f

∗
3 ,...,f

∗
k
− µf∗2 ,f

∗
3 ,...,f

∗
k

)′]
(3)

=

{
Uk,1 if fj+h = f∗j+h : h = 1, . . . , k − j for j = 1

Uk,j if fj 6= f∗j fj+h = f∗j+h : h = 1, . . . , k − j for j = 2, . . . , k
.

We believe that this k−SSCS structure described in such a manner can capture the data structure in

a longitudinal study in all k levels, and therefore offer more information about the true association of

the data. We now examine how the k−SSCS variance-covariance matrices look like for some particular

values of k and m in the following examples.

3 Some useful examples of SSCS structures

Example 1 If k = 2, and m1 = 1, then U2,j , j = 1, 2, are real numbers and the (m2 × 1)-dimensional

random vector xr has the covariance matrix

Γx =
2∑

j=1

(
1⊗

h=1

J
i2:j,h
mk+1−h

)
⊗ (U2,j −U2,j+1)

= Im2 ⊗ (U2,1 −U2,2) + Jm2 ⊗U2,2

= (U2,1 −U2,2) Im2 +U2,2Jm2 ,

which is a m2 ×m2 compound symmetry, equicorrelated or exchangeable covariance matrix.
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Example 2 If k = 2, and m1 > 1, then the (m1m2×1)-dimensional random vector xr has the covariance

matrix

Γx =
2∑

j=1

(
1⊗

h=1

J
i2:j,h
mk+1−h

)
⊗ (U2,j −U2,j+1)

= Im2 ⊗ (U2,1 −U2,2) + Jm2 ⊗U2,2.,

which is the equicorrelated covariance matrix (Leiva, 2007) or block exchangeable covariance matrix.

Example 3 If k = 3, the (m1m2m3 × 1)-dimensional random vector xr has the covariance matrix

Γx =
3∑

j=1

(
2⊗

h=1

J
i3:j,h
mk+1−h

)
⊗ (U3,j −U3,j+1)

= Im3m2 ⊗ (U3,1 −U3,2) +Im3
⊗Jm2

⊗ (U3,2 −U3,3) +Jm3m2
⊗U3,3,

which is the jointly equicorrelated covariance matrix (Roy and Leiva, 2007) or doubly exchangeable

covariance matrix. Note that

Γx = Im3m2 ⊗ (U3,1 −U3,2) +Im3
⊗Jm2

⊗ (U3,2 −U3,3) +Jm3m2
⊗U3,3

= Im3 ⊗
{[
Im2 ⊗ (U3,1 −U3,2) +Jm2

⊗U3,2

]
− Jm2⊗U3,3

}
+Jm3

⊗
(
Jm2⊗U3,3

)
= Im3 ⊗ {V 3 −W 3}+Jm3

⊗ (W 3) ,

where V 3 = Im2 ⊗ (U3,1 −U3,2) +Jm2
⊗U3,2 is a 2−SSCS covariance matrix and W 3 = Jm2⊗U3,3.

Therefore, we see that 2−SSCS covariance matrix is nested in 3−SSCS covariance matrix.

Example 4 If k = 4, the (m1m2m3m4 × 1)-dimensional random vector xr has the covariance matrix

Γx =
4∑

j=1

(
3⊗

h=1

J
i4:j,h
mk+1−h

)
⊗ (U4,j −U4,j+1)

= Im4m3m2 ⊗ (U4,1 −U4,2) +Im4m3
⊗Jm2

⊗ (U4,2 −U4,3)

+Im4
⊗Jm3m2

⊗ (U4,3 −U4,4) +Jm4m3m2
⊗U4,4.

This case has not been treated in the literature, even though there are cases in the experimental research

where the obtained data (e.g., the organic structure data described in the Introduction) could be analyzed

using this covariance structure.
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Note again that

Γx = Im4m3m2 ⊗ (U4,1 −U4,2) +Im4m3
⊗Jm2

⊗ (U4,2 −U4,3)

+Im4
⊗Jm3m2

⊗ (U4,3 −U4,4) +Jm4m3m2
⊗U4,4

= Im4 {Im3m2 ⊗ (U4,1 −U4,2) +Im3
⊗Jm2

⊗ (U4,2 −U4,3) +Jm3m2
⊗ (U4,3 −U4,4)}

+Jm4 ⊗
(
Jm3m2⊗U4,4

)
= Im4 ⊗ {V 4 −W 4}+Jm4

⊗ (W 4) ,

where V 4 = Im3m2⊗(U4,1 −U4,2)+Im3
⊗Jm2

⊗(U4,2 −U4,3)+Jm3m2
⊗U4,3 is a 3−SSCS covariance

matrix and W 4 = Jm3m2 ⊗U4,4 . Therefore, in this example we see that 3−SSCS covariance matrix is

nested in 4−SSCS covariance matrix.

So, combining Examples 3 and 4 we find that 2−SSCS covariance matrix is nested in 3−SSCS covariance

matrix; and 3−SSCS covariance matrix is nested in 4−SSCS covariance matrix. We now prove that this

property is true for general k. From (1) Γx can be written as

Γx =


k−1∑
j=1

(
k−1⊗
h=1

J
ik:j,h
mk+1−h

)
⊗ (Uk,j −Uk,j+1)

+

(
k−1⊗
h=1

J
ik:k,h
mk+1−h

)
⊗Uk,k

= Imk
⊗


k−1∑
j=1

(
k−1⊗
h=2

J
ik−1:j,h
mk+1−h

)
⊗ (Uk,j −Uk,j+1)

+ Jmk
⊗

(
k−1⊗
h=2

Jmk+1−h

)
⊗Uk,k

= Imk
⊗


k−2∑
j=1

(
k−1⊗
h=2

J
ik−1:j,h
mk+1−h

)
⊗ (Uk,j −Uk,j+1)

+

(
k−1⊗
h=2

J
ik−1:k−1,h
mk+1−h

)
⊗ (Uk,k−1 −Uk,k)


+Jmk

⊗

(
k−1⊗
h=2

Jmk+1−h

)
⊗Uk

= Imk
⊗


k−2∑
j=1

(
k−1⊗
h=2

J
ik−1:j,h
mk+1−h

)
⊗ (Uk,j −Uk,j+1) +

(
k−1⊗
h=2

J
ik−1:k−1,h
mk+1−h

)
⊗Uk,k−1


−

(
k−1⊗
h=2

J
ik−1:k−1,h
mk+1−h

)
⊗Uk,k

}
+ Jmk

⊗

(
k−1⊗
h=2

Jmk+1−h

)
⊗Uk,k

= Imk
⊗ {V k −W k}+ Jmk

⊗W k,

where

V k =
k−2∑
j=1

(
k−1⊗
h=2

J
ik−1:j,h
mk+1−h

)
⊗ (Uk,j −Uk,j+1) +

(
k−1⊗
h=2

Jmk+1−h

)
⊗Uk,k−1

is a (k − 1)−SSCS variance-covariance matrix and

W k =

(
k−1⊗
h=2

Jmk+1−h

)
⊗Uk,k.
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Therefore, for general k, the above property justifies the name why the covariance matrix Γx is called

self similar compound symmetry or exchangeable covariance matrix as it has a compound symmetry

(structure) behavior at each of its k depth levels.

More precisely, if the (p1,k × 1)-dimensional random vector xr is considered as a partitioned vector

xr = (x′r,p1,k−1;1
, . . . ,x′r,p1,k−1;mk

)
′
, then its partitioned covariance matrix Γx in its first depth level has

the form

Γx = V k+1 =


V k W k · · · W k

W k V k · · · W k
...

...
. . .

...
W k W k · · · V k


= Imk

⊗ (V k −W k) + Jmk
⊗W k,

where V k and W k are (p1,k−1 × p1,k−1) matrices such that V k = cov
[
x′r,p1,k−1;t

]
, t = 1, . . . ,mk and

W k = Jp2,k−1
⊗Uk,k.

In the second depth level when we consider V k is partitioned into (p1,k−2×p1,k−2) matrices, it turns

out to be also of the form

V k =


V k−1 W k−1 · · · W k−1
W k−1 V k−1 · · · W k−1
...

...
. . .

...
W k−1 W k−1 · · · V k−1


= Imk−1

⊗ (V k−1 −W k−1) + Jmk−1
⊗W k−1,

where V k−1 and W k−1 are (p1,k−2 × p1,k−2) matrices such that V k−1 = Cov
[
x′r,p1,k−2;t

]
, for t =

1, . . . ,mk−1mk = pk−1,k, and W k−1 = Jp2,k−2
⊗Uk,k−1.

The same phenomenon happens for each j = 0, 1, . . . , k−2, in the j+1 depth level when we consider

V k−j is partitioned into (p1,k−j−2 × p1,k−j−2) matrices it turns out to be of the form

V k+1−j
p1,k−j×p1,k−j

=


V k−j W k−j · · · W k−j
W k−j V k−j · · · W k−j
...

...
. . .

...
W k−j W k−j · · · V k−j

 (4)

= Imk−j
⊗ (V k−j −W k−j) + Jmk−j

⊗W k−j ,

where V k−j and W k−j are (p1,k−j−1 × p1,k−j−1) matrices such that V k−j = Cov
[
x′r,p1,k−j−1;t

]
, for

t = 1, . . . , pk−j,k, and W k−j = Jp2,k−j−1
⊗ Uk,k−j . We use this self similar property of Γx to find out

the inverse and the determinants of Γx in the following two lemmas. In both lemmas, matrices

∆k,j =

j∑
i=1

p2,i (Uk,i −Uk,i+1), for j = 1, . . . , k, (5)
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play an important role. These matrices can also be expressed using the ik:j = (ik:j,h : h = 1, , . . . , k − 1)

notation given in (2), that is,

∆k,j =

j∑
j∗=1

 k−1∏
h=k−j∗+1

m
ik:j∗,h
k+1−h

 (Uk,j∗ −Uk,j∗+1), (6)

since

k−1∏
h=1

m
ik:j∗,h
k+1−h =

k−1∏
h=k−j∗+1

m
ik:j∗,h
k+1−h (7)

=
k−1∏

h=k−j∗+1

mk+1−h = p2,j∗ ,

because ik:j∗ = (ik:j∗,h : h = 1, , . . . , k − 1) with

ik:j∗,h =

{
0 if h = 1, . . . , k − j∗
1 if h = k − (j∗ − 1) , . . . , k − 1.

Lemma 1 Let Γx be a k−SSCS variance-covariance matrix as in equation (1) of Definition 1. It can

be proved that if ∆k,j , for j = 1, . . . , k, are all non singular matrices, then

Γ−1xr
=

k∑
j=1

(
k−1⊗
h=1

J
ik:j,h
mk+1−h

)
⊗ 1

p2,j

(
∆−1k,j −∆−1k,j−1

)
, (8)

where the symbol ∆−1k,0 indicates the (m1 ×m1) zero matrix (∆−1k,0 = 0m1×m1). Notice that when Uk,j =

Uk+1,j for j = 1, . . . , k, then ∆k+1,j = ∆k,j , for j = 1, . . . , k − 1, but ∆k+1,k = ∆k,k − p2,kUk+1,k+1.

The proof of this lemma is given in Appendix A.1. It is worthwhile to note that the form of Γ−1xr
is

the same as the form of Γxr . Therefore, the SSCS covariance structure is invariant with respect to the

inverse. Furthermore, SSCS covariance structure is invariant with respect to addition. Using similar

inductive arguments as above we can prove the following lemma.

Lemma 2 Let Γx be a k−SSCS variance-covariance matrix as in equation (1) of Definition 1. Let

pk+1,k = 1 and pk+2,k = 0. Then, it can be proved that

|Γxr | = |V k+1| =
k∏

j=1

|∆j |pj+1,k−pj+2,k , (9)

The proof of this lemma is given in Appendix A.2.
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4 Estimation

To carry out any statistical analysis with multi-level data we need to estimate the k−SSCS covariance

matrix Γx. We obtain MLEs of Γx and its component matrices in the following Section 4.1. However,

for the derivation of many statistics for testing purposes we need the unbiased estimates of the k−SSCS

covariance matrix Γx and its component matrices, which are derived in Section 4.2.

4.1 Maximum likelihood estimators of the k−SSCS covariance matrix Γx

Theorem 1 If x1, . . . ,xn is a random sample of size n from a population with distribution Np1,k (µx; Γx),

where Γx is a positive definite k−SSCS covariance matrix, then the MLE of µx is µ̂x = x, where

x =
1

n

n∑
r=1

xr,

and the MLE Γ̂x of Γx is

Γ̂x =
k∑

j=1

(
k−1⊗
h=1

J
ik:j,h
mk+1−h

)
⊗
(
Ûk,j − Ûk,j+1

)
,

where Ûk,h, for j = 1, . . . , k, and h = 1, . . . , k − 1, are given in (A27).

The proof of this theorem which is straightforward but tedious is given in Appendix A.3.

Example 5 If k = 2 (see Example 2) we have

Û2,1 = C2,1 =
B2,1

n ·m2
=

1

n ·m2

n∑
r=1

m2∑
f2=1

(xr;f2 − xf2) (xr;f2 − xf2)′ and

Û2,2 = C2,2 =
B2,2

n ·m2 (m2 − 1)
=

1

n ·m2 (m2 − 1)

n∑
r=1

m2∑
f2=1

m2∑
f2 6=f∗2=1

(xr;f2 − xf2)
(
xr;f∗2

− xf∗2

)′
.

The same estimates are obtained by Leiva (2007).

Example 6 If k = 3 (see Example 3) then

B3,1 =

n∑
r=1

m2∑
f2=1

m3∑
f3=1

(xr;f2f3 − xf2f3) (xr;f2f3 − xf2f3)′

B3,2 =

n∑
r=1

m2∑
f2=1

m3∑
f3=1

m3∑
f3 6=f∗3=1

(xr;f2f3 − xf2f3)
(
xr;f2f∗3

− xf2f∗3

)′
and

B3,3 =
n∑

r=1

m2∑
f2=1

m2∑
f2 6=f∗2=1

m3∑
f3=1

m3∑
f∗3=1

(xr;f2f3 − xf2f3)
(
xr;f∗2 f

∗
3
− xf∗2 f

∗
3

)′
.

11



Therefore

Û3,1 = C3,1 =
B3,1

n ·m3 ·m2

Û3,2 = C3,2 =
B3,2

n ·m3 ·m2 (m2 − 1)
and

Û3,3 = C3,3 =
B3,3

n ·m3 (m3 − 1) ·m2m2
.

The same estimates are obtained by Roy and Leiva (2007).

Example 7 If k = 4 (see Example 4) then

B4,1 =
n∑

r=1

m2∑
f2=1

m3∑
f3=1

m4∑
f4=1

(xr;f2f3f4 − xf2f3f4) (xr;f2f3f4 − xf2f3f4)′ ,

B4,2 =

n∑
r=1

m2∑
f2=1

m3∑
f3=1

m4∑
f4=1

m4∑
f4 6=f∗4=1

(xr;f2f3f4 − xf2f3f4) (xr;f2f3f4 − xf2f3f4)′ ,

B4,3 =

n∑
r=1

m2∑
f2=1

m3∑
f3=1

m3∑
f3 6=f∗3=1

m4∑
f4=1

m4∑
f∗4=1

(xr;f2f3f4 − xf2f3f4) (xr;f2f3f4 − xf2f3f4)′ and

B4,4 =
n∑

r=1

m2∑
f2=1

m2∑
f2 6=f∗2=1

m3∑
f3=1

m3∑
f∗3=1

m4∑
f4=1

m4∑
f∗4=1

(xr;f2f3f4 − xf2f3f4) (xr;f2f3f4 − xf2f3f4)′ .

Therefore

Û4,1 = C4,1 =
B4,1

n ·m4 ·m3 ·m2

Û4,2 = C4,2 =
B4,2

n ·m4 ·m3 ·m2 (m2 − 1)

Û4,3 = C4,3 =
B4,3

n ·m4 ·m3 (m3 − 1) ·m2m2
and

Û4,4 = C4,4 =
B4,4

n ·m4 (m4 − 1) ·m3m3 ·m2m2
.

4.2 Unbiased estimators of the k−SSCS covariance matrix Γx

Theorem 2 An unbiased estimator of the k−SSCS covariance matrix Γx is given by

Γ̃x =

k∑
j=1

(
k−1⊗
h=1

J
ik:j,h
mk+1−h

)
⊗
(
Ũk,j − Ũk,j+1

)
,

where an unbiased estimator of the component matrices Uk,j for each j = 1, . . . , k are given by

Ũk,j =
n

n− 1
Ck,j =

Bk,j

(n− 1) qk,j
=

n

n− 1
Ûk,j .

12



Under the Normal assumption of Theorem 1 of the previous Section 4.1 and using the partitioned x

into m1 × 1 subvectors given in (A20), we know that

x =
(
x′f2,f3,...,fk : fj ∈ Fj = {1, . . . ,mj} , for j = 2, . . . , k

)′ ∼ Np1,k

(
µx;

1

n
Γx

)
, (10)

where xf2,f3,...,fk ∈ Rm1 is given by (A21), where

µx = µxr
=
(
µ′f2,f3,...,fk : fj ∈ Fj = {1, . . . ,mj} , for j = 2, . . . , k

)′
,

and Γx is a k−SSCS positive definite covariance matrix given by (1).

By the definition Γx is

E

[(
xr;f∗2 ,...,f

∗
j+1,fj ,...,fk

− µ
f∗2 ,...,f∗

j+1
,fj ,...,fk

)(
xr;f2,f3,...,fk − µf2,f3,...,fk

)′]
= Uk,j , (11)

and from (10) we know that

E

[(
xf∗2 ,...,f

∗
j+1,fj ,...,fk

− µ
f∗2 ,...,f∗

j+1
,fj ,...,fk

)(
xf2,f3,...,fk − µf2,f3,...,fk

)′]
=

1

n
Uk,j . (12)

Now from (A17) we have

n∑
r=1

(xr − x) (xr − x)′ =

[
n∑

r=1

(xr − µx) (xr − µx)′
]
− n (x−µx) (x−µx)′,

and, in particular, using the notation qk,j given in (A26) we have

nqk,jCk,j =

n∑
r=1

k−j sums︷ ︸︸ ︷∑
fk∈Fk

· · ·
∑

fj+1∈Fj+1

1 special sum pair︷ ︸︸ ︷ ∑
fj∈Fj

∑
fj 6=f∗j ∈Fj


j−2 sum pairs︷ ︸︸ ︷ ∑

fj−1∈Fj−1

∑
f∗j−1∈Fj−1

 · · ·
 ∑

f2∈Fk

∑
f∗2∈Fk


(
xr;f∗(ik:j) − xf∗(ik:j)

)
(xr;f − xf )′

=

 n∑
r=1

∑
fk∈Fk

· · ·
∑

fj+1∈Fj+1

∑
fj∈Fj

∑
fj 6=f∗j ∈Fj

 ∑
fj−1∈Fj−1

∑
f∗j−1∈Fj−1


· · ·

 ∑
f2∈Fk

∑
f∗2∈Fk

(xr;f∗(ik:j) − µf∗(ik:j)

) (
xr;f − µf

)′
−

 ∑
fk∈Fk

· · ·
∑

fj+1∈Fj+1

∑
fj∈Fj

∑
fj 6=f∗j ∈Fj

 ∑
fj−1∈Fj−1

∑
f∗j−1∈Fj−1


· · ·

 ∑
f2∈Fk

∑
f∗2∈Fk

n
(
xf∗(ik:j) − µf∗(ik:j)

) (
xf − µf

)′.
13



Therefore

E [nqk,jCk,j ] = nqk,jUk,j − qk,jUk,j

= (n− 1) qk,jUk,j ,

and thus,

E

[
n

n− 1
Ck,j

]
= Uk,j .

As a result

Ũk,j =
n

n− 1
Ck,j =

Bk,j

(n− 1) qk,j
=

n

n− 1
Ûk,j (13)

is an unbiased estimator of Uk,j for each j = 1, . . . , k. Therefore,

Γ̃x =

k∑
j=1

(
k−1⊗
h=1

J
ik:j,h
mk+1−h

)
⊗
(
Ũk,j − Ũk,j+1

)
(14)

is an unbiased estimator of the k−SSCS covariance matrix Γx.

5 Spectral decompositions of the k−SSCS covariance matrix

We perform spectral decompositions of the k−SSCS variance-covariance matrix. We get the eigenblocks

∆k,k,∆k,k−1, . . . ,∆k,1 and the corresponding eigenmatrices of the k−SSCS variance-covariance matrix

Γx in this section. Explicit unbiased estimators of the eigenblocks are given in Lemma 5.

5.1 Eigenblocks and eigenmatrices

Let us consider the following orthogonal matrices

Γ1 = H ′mk
⊗ Im1···mk−1

Γ2 = Imk
⊗ (H ′mk−1

⊗ Im1···mk−2
)

...

and Γk−1 = Imk
⊗ Imk−1

⊗ · · · ⊗ Im3 ⊗ (H ′m2
⊗ Im1)

where for each j = 2, . . . , k, Hmj is mj × mj Helmert matrix, that is, an orthogonal matrix whose

first column is proportional to 1mj , (note that Γ1, . . . ,Γk−1 are not function of neither U i’s). Since the

product of orthogonal matrices is an orthogonal matrix,

L′k = Γk−1 · · ·Γ1

=
[
Imk
⊗ Imk−1

⊗ · · · ⊗ Im3 ⊗ (H ′m2
⊗ Im1)

]
· · · (H ′mk

⊗ Im1···mk−1
)

= H ′ ⊗ Im1

14



is an orthogonal matrix where

H
p2,k×p2,k

= Hmk
⊗Hmk−1

⊗ · · · ⊗Hm2 .

This Lk diagnolizes the SSCS matrix Γx. The following theorem present this result and it is proved

using mathematical induction. To anticipate the idea of the inductive implication proof, let’s consider

the example where starting from the knowledge of the diagonalization of Γx = V k+1 for the case k = 2,

then the case k = 3 is proved

Example 8 When k = 2 (see Example 2) the diagonalization of matrix

V k+1 = V 3 = Im2 ⊗ (V 2 −W 2)
p1,k−1×p1,k−1

+ Jm1 ⊗ W 2
p1,k−1×p1,k−1

(15)

= Im2 ⊗ (U1 −U2)
m1×m1

+ Jm1 ⊗ U2
m1×m1

is doing by pre and post multiplying V 3 as follows (see Leiva 2007)

L′2V 3L2 =
(
H ′m2

⊗ Im1

)
V 3 (Hm2 ⊗ Im1)

= diag {U1 + (m2 − 1)U2; Im2−1 ⊗ (U1 −U2)} ,

where

∆2,2 = U1 + (m2 − 1)U2 and

∆2,1 = U1 −U2,

This result is assumed known (in the proof of Theorem 2 this will be replaced by the inductive hypothesis).

We want to proof the corresponding result for the case k = 3, that is, for the 3−SSCS covariance matrix

(see example 3)

V 4 = Im3 ⊗ Im2 ⊗ (U1 −U2)
m1×m1

+ Im3 ⊗ Jm2 ⊗ (U2 −U3)
m1×m1

+ Jm3 ⊗ Jm2 ⊗ U3
m1×m1

,

that is, the result to be proved is

L′3V 4L3

=
(
H ′m3

⊗H ′m2
⊗ Im1

)
V 4 (Hm3 ⊗Hm2 ⊗ Im1)

= diag {∆3,3; Im2−1 ⊗∆3,1; Im3−1 ⊗ diag {∆3,2; Im2−1 ⊗∆3,1}},

where

∆3,3 = (U1 −U2) +m2 (U2 −U3) +m2m3U3

∆3,2 = (U1 −U2) +m2 (U2 −U3) and

∆3,1 = U1 −U2,

15



For a prof see Lemma 3.1 in Roy and Fonseca (2012). However, we prove the result for k = 3 here as

well, so that it would help the readers to follow the next theorem structurally. In the first step we write

V 4 as a 3− 1 = 2−SSCS matrix of the form

V 4 = Im3 ⊗ (V 3 −W 3)
p1,3−1×p1,3−1

+ Jm3 ⊗ W 3
p1,3−1×p1,3−1

,

where V 3 is given in(15) and W 3 = Jm2 ⊗ U3. Then using the known result for the case k = 2

diagonalize the matrix V 4 using the orthogonal matrix Hm3 ⊗ Ip1,2

D3 =
(
H ′m3

⊗ Im1m2

)
V 4 (Hm3 ⊗ Im1m2)

= diag {V 3 + (m3 − 1)W 3; Im3−1 ⊗ (V 3 −W 3)}. (16)

In the second step we realize that both V 3 +(m3 − 1)W 3 and V 3−W 3 are 2−SSCS matrix of the form

V 3 + (m3 − 1)W 3

= Im2 ⊗ [(U1 + (m3 − 1)U3)− (U2 + (m3 − 1)U3)]
p1,2−1×p1,2−1

+ Jm2 ⊗ (U2 + (m3 − 1)U3)
p1,2−1×p1,2−1

= Im2 ⊗ (U1 −U2) + Jm2 ⊗ (U2 + (m3 − 1)U3) ,

and

V 3 −W 3 = Im2 ⊗ [(U1 −U3)− (U2 −U3)] + Jm2 ⊗ (U2 −U3)

= Im2 ⊗ (U1 −U2) + Jm2 ⊗ (U2 −U3),

repectively, and consequently, both can be diagonalize using Hm2 ⊗ Ip1,1 , that is,

D∗∗3 =
(
H ′m2

⊗ Ip1,1
)

[V 3 + (m3 − 1)W 3]
(
Hm2 ⊗ Ip1,1

)
= diag {(U1 −U2) +m2 (U2 + (m3 − 1)U3) ; Im2−1 ⊗ (U1 −U2)}

= diag {(U1 −U2) +m2 (U2 −U3) +m2m3U3; Im2−1 ⊗ (U1 −U2)} (17)

and

D∗3 =
(
H ′m2

⊗ Ip1,1
)

(V 3 −W 3)
(
Hm2 ⊗ Ip1,1

)
= diag {(U1 −U2) +m2 (U2 −U3) ; Im2−1 ⊗ (U1 −U2)}. (18)

The final step is to apply Im3 ⊗Hm2 ⊗Ip1,1 = diag
{
Hm2 ⊗ Ip1,1 , Im3−1 ⊗Hm2 ⊗ Ip1,1

}
to diagonalize
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D3, given in (16),using (17) and (18), that is,(
Im3 ⊗H ′m2

⊗ Im1

)
D3 (Im3 ⊗Hm2 ⊗ Im1)

= diag
{
H ′m2

⊗ Ip1,1 , Im3−1 ⊗H ′m2
⊗ Ip1,1

}
·diag {V 3 + (m3 − 1)W 3; Im3−1 ⊗ (V 3 −W 3)}

·diag
{
Hm2 ⊗ Ip1,1 , Im3−1 ⊗Hm2 ⊗ Ip1,1

}
= diag {(U1 −U2) +m2 (U2 −U3) +m2m3U3; Im2−1 ⊗ (U1 −U2)

; Im3−1 ⊗ diag [(U1 −U2) +m2 (U2 −U3) ; Im2−1 ⊗ (U1 −U2)]},

which is the desired result.

Alternatively, the above result for k = 3 can be written as follows(
Im3 ⊗H ′m2

⊗ Im1

)
D3 (Im3 ⊗Hm2 ⊗ Im1) = diag {Df2,f3 : f2 ∈ F2, f3 ∈ F3},

where

Df2,f3 =


(U1 −U2) +m2 (U2 −U3) +m2m3U3 if f2 = 1, f3 = 1
(U1 −U2) +m2 (U2 −U3) if f2 = 1, f3 6= 1
U1 −U2 if f2 6= 1.

We thus have the following theorem.

Theorem 3

L′kΓxLk = diag
{
Dik,k ; ik,k = 1, 2, . . . , p2,k

}
, (19)

where the diagonal m1 ×m1− matrices Dik,k are given by

Dik,k =



∆k,k if ik,k = 1
∆k,k−1 if ik,k = 1 + ik,1p2,k−1 for ik,k−1 = 1, . . . ,mk − 1

∆k,k−2 if ik,k = 1 +
∑2

h=1 ik,k−hp2,k−h for

{
ik,k−1 = 0, . . . ,mk − 1
ik,k−2 = 1, . . . ,mk−1 − 1

...
...

...
...

...

∆k,2 if ik,k = 1 +
∑k−2

h=1 ik,k−hp2,k−h for


ik,k−1 = 0, . . . ,mk − 1

...
ik,3 = 0, . . . ,m4 − 1
i2 = 1, . . . ,m3 − 1

∆k,1 if ik,k = 1 +
∑k−1

h=1 ik,k−hp2,k−h for


ik,k−1 = 0, . . . ,mk − 1

...
i2 = 0, . . . ,m3 − 1
i1 = 1, . . . ,m2 − 1

,

(20)

where for h = k − 1 is assumed that p2,k−h = p2,k−(k−1) = p2,1 = 1.
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Proof: Proof is given in Appendix A.4.

Finally, note that the diaginal blocks ∆k,j , j = 1, . . . , k in the diagonal matrixL′kΓxLk, are repeated,

and not in order. One can cluster them together with the help of commutation matrix. Thus, we have

the following corollary.

Corollary 1 Multiplying the orthogonal matrix Lk by an appropriate (p1,k × p1,k)− dimensional per-

mutation matrix (orthogonal) Kk we have

K ′kL
′
kΓxLkKk = Diag

[
∆k,k; ∆k,k−1; . . . ; ∆k,k−1︸ ︷︷ ︸

(mk−1) times

; . . . ; ∆k,1; . . . ; ∆k,1︸ ︷︷ ︸
m3···mk(m2−1) times

]
.

We have

Γx = LkKkDiag
[
∆k,k; ∆k,k−1; . . . ; ∆k,k−1︸ ︷︷ ︸

(mk−1) times

; . . . ; ∆k,1; . . . ; ∆k,1︸ ︷︷ ︸
m3···mk(m2−1) times

]
K ′kL

′
k

= LkKkDiag
[
∆k,k; ∆k,k−1; . . . ; ∆k,k−1︸ ︷︷ ︸

(pk,k−1) times

; . . . ; ∆k,1; . . . ; ∆k,1︸ ︷︷ ︸
p2,k−p3,k times

]
K ′kL

′
k.

We now partition (horizontal, side by side) the orthogonal matrix LkKk as p2,k p1,k × m1 blocks as

LkKk = [E1 : · · · : Ep2,k ]. So,

(LkKk)′ =

 E′1
...

E′p2,k


Therefore,

Γx = E1∆k,kE
′
1 +

pk,k∑
i=2

Ei∆k,k−1E
′
i + · · ·+

p2,k∑
i=p3,k+1

Ei∆k,1E
′
i,

where E1 is the eigenmatrix corresponding to eigenblock ∆k,k, Ei, i = 2, . . . , pk,k is the eigenmatrices

corresponding to eigenblock ∆k,k−1 and Ei, i = p3,k + 1, . . . , p2,k is the eigenmatrices corresponding to

eigenblock ∆k,1. The eigenmatrices [E1 : · · · : Ep2,k ] are not functions of either of the SSCS-component

matrices Uk,j , j = 1, . . . , k.

Thus, SSCS covariance structure for k−level data has k distinct eigenblocks: ∆k,k, ∆k,k−1 with

multiplicity pk,k − 1, . . . , ∆k,1 with multiplicity p2,k − p3,k.

18



Now, since LkKk is an orthogonal matrix

tr(Γx) = tr
(
LkKkDiag

[
∆k,k; ∆k,k−1; . . . ; ∆k,k−1︸ ︷︷ ︸

(pk,k−1) times

; . . . ; ∆k,1; . . . ; ∆k,1︸ ︷︷ ︸
p2,k−p3,k times

]
K ′kL

′
k

)

= tr
(

Diag
[
∆k,k; ∆k,k−1; . . . ; ∆k,k−1︸ ︷︷ ︸

(pk,k−1) times

; . . . ; ∆k,1; . . . ; ∆k,1︸ ︷︷ ︸
p2,k−p3,k times

]
K ′kL

′
kLkKk

)

= tr
(

Diag
[
∆k,k; ∆k,k−1; . . . ; ∆k,k−1︸ ︷︷ ︸

(pk,k−1) times

; . . . ; ∆k,1; . . . ; ∆k,1︸ ︷︷ ︸
p2,k−p3,k times

])
= tr(∆k,k) + (pk,k − 1)tr(∆k,k−1) + · · ·+ (p2,k − p3,k)tr(∆k,1). (21)

Thus, the total population variance tr(Γx) = tr(∆k,k)+(pk,k−1)tr(∆k,k−1)+ · · ·+(p2,k−p3,k)tr(∆k,1).

Therefore, the trace of the variance-covariance matrix of the data is the sum of the traces of the

(p2,k − p3,k) eigenblocks.

Note that the variability of each eigenblock ∆k,j , j = 1, . . . , k depends on the data set at hand. It

depends on the interconnections or the correlation matrix of the variables between the levels. However,

if one wants to arrange the diagonal matrix according to the variability of the eigenblocks, one needs

to choose an appropriate commutation matrix Kk. Suppose for some 3−SSCS covariance structure

it may happen tr(∆̃3,2) > tr(∆̃3,1), and for some other 3−SSCS covariance structure the relationship

may be opposite. In the following example we show a commutation matrix K3 for a dataset where

tr(∆̃3,2) > tr(∆̃3,1).

Example 9 If k = 3, then there exists an m3m2m1 ×m3m2m1 orthogonal matrix L3 such that

L′3ΓxL3 = Diag

∆3,3; ∆3,1; . . . ; ∆3,1︸ ︷︷ ︸
m2−1

; ∆3,2; ∆3,1; . . . ; ∆3,1︸ ︷︷ ︸
m2−1

; . . . ; ∆3,2; ∆3,1; . . . ; ∆3,1︸ ︷︷ ︸
m2−1

, (22)

where the m3m2 m1 ×m1 eigenblocks ∆3,1; ∆3,2; ∆3,3 are given in (5), and P 3 = Pm3Pm2Im1.

Now, one can find an appropriate m3m2m1×m3m2m1−dimensional permutation matrix (orthogonal)

K3 such that K3 matrix looks as follows:

K3 =



Im1 0 0 0 0 0 · · · 0
0 0 0 0 Im2−1 ⊗ Im1 0 · · · 0
0 Im1 0 0 0 0 · · · 0
0 0 0 0 0 Im2−1 ⊗ Im1 · · · 0
0 0 0 Im1 0 0 · · · 0
...

...
...

...
...

...
. . .

...
0 0 0 0 0 0 · · · Im2−1 ⊗ Im1


,
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Now,

K ′3L
′
3ΓxL3K3 = Diag

[
∆3,3; ∆3,2; . . . ; ∆3,2︸ ︷︷ ︸

(m3−1) times

; ∆3,1; . . . ; ∆3,1︸ ︷︷ ︸
m3(m2−1) times

]
,

5.2 Principal vectors for k−SSCS covariance matrix

From Section we have E1 is the eigenmatrix corresponding to eigenblock ∆k,k, Ei, i = 2, . . . , pk,k is

the eigenmatrices corresponding to eigenblock ∆k,k−1 and Ei, i = p3,k + 1, . . . , p2,k is the eigenmatrices

corresponding to eigenblock ∆k,1. Therefore the principal vectors are

yj = E′jx,

where j = 1, . . . , (2, k), and these principal vectors are independent. The first principal vector y1 has

variance ∆k,k, the second has variance ∆k,k−1, and the last one y2,k has ∆k,1.

In the following section we derive the distributions of the unbiased estimates of the eigenblocks

∆k,j , j = 1, . . . , k. For this derivation we need the following definition.

Definition 2 Let the (p1,k × p1,k)−dimensional matrix A be partitioned in (p1,k−j×p1,k−j)−dimensional

submatrices, that is A
p1,k×p1,k

=

(
Ah,h∗

p1,k−j×p1,k−j

)pk−j+1,k

h,h∗=1

, then the block operators b
∑

p1,k−j
(A) and bTrp1,k−j

(A)

are defined respectively by

b
∑

p1,k−j

(A) =

pk−j+1,k∑
h=1

pk−j+1,k∑
h∗=1

Ah,h∗

and

bTrp1,k−j
(A) =

pk−j+1,k∑
h=1

Ah,h,

where the subindex p1,k−j in both operators indicates that they apply to a matrix A partitioned in

p1,k−j × p1,k−j− submatrices, and consequently their results are also p1,k−j × p1,k−j− matrices.

Using these operators on the SSCS−covariance matrix, the following properties hold

Lemma 3 Let Γx the k−SSCS variance covariance matrix (as in equation (1) of Definition 1) be

partitioned in p1,k−j × p1,k−j− submatrices, then

1. bTrp1,k−j
(Γx) = pk−(j−1),kV k+1−j , where V k+1−j is given in (4).

2. bTrp1,k−j
(Γx) = bTrp1,k−j

(
bTrp1,k−i

Γx

)
, for i < j = 1, . . . , k − 1.

3. Uk,k−j =
bSump1,1(W k−j)

p2
2,k−(j+1)

=
bSump1,1

(
Jp2,k−(j+1)

⊗Uk,k−j

)
p2
2,k−(j+1)

, for j = 0, . . . , k − 2.
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4. W k−j =
bSump1,k−(j+1)(V k+1−j)−bTrp1,k−(j+1)(V k+1−j)

mk−j ·(mk−j−1)
=

bSump1,k−(j+1)

(
bTrp1,k−j

(Γx)
)
−bTrp1,k−(j+1)

(Γx)

pk−(j−1),k·mk−j ·(mk−j−1)

5. Uk,k−j =
bSump1,1

([
bSump1,k−(j+1)

(
bTrp1,k−j

(Γx)
)
−bTrp1,k−(j+1)

(Γx)
])

pk−(j−1),k·[mk−j ·(mk−j−1)]·p22,k−(j+1)

, for j = 0, . . . , k−2. and Uk,1 =

bTrp1,1 (V k)

p2,k−1
=

bTrp1,1 (Γx)

p2,k
.

Proof: Proof is straightforward

Note that if one has a good unbiased estimator Γ̃x of Γx, then using property (5) of Lemma 3 it is

easy to see that

Ũk,1 =
bTrp1,1

(
Γ̃x

)
p2,k

(23)

and

Ũk,k−j =
bSump1,1

([
bSump1,k−(j+1)

(
bTrp1,k−j

(
Γ̃x

))
− bTrp1,k−(j+1)

(
Γ̃x

)])
pk−(j−1),k · [mk−j · (mk−j − 1)] · p22,k−(j+1)

, (24)

for j = 0, . . . , k − 2, are estimators of the corresponding Uk,k−j , for j = 0, . . . , k − 1.

In the following Lemma we give an interesting property using the ∆k,j =
∑j

i=1 p2,i (Uk,i −Uk,i+1),

for j = 1, . . . , k, given by (6). Consider the mutually orthogonal projector matrices Pmi = 1
mi
Jmi and

Qmi
= Imi − Pmi and noting that these projector matrices are idempotent, we have

P 2
mi

= Pmi ,

PmiJmiPmi = miPmi ,

Q2
mi

= Qmi

Qmi
JmiQmi

= 0. (25)

We now define the matrices Qk,j : j = 1, . . . , k − 1, by

Qk,1 = Pmk
⊗ Pmk−1

⊗ · · · ⊗ Pm2 ⊗ Im1 =

(
k−1⊗
h=1

Pmk+1−h

)
⊗ Im1 = Q∗k,1 ⊗ Im1 (26)

Qk,j =

(
k−j⊗
h=1

Pmk+1−h

)
⊗Qmj

⊗

 k−1⊗
h=k−(j−2)

Pmk+1−h

⊗ Im1

= Q∗k,j ⊗ Im1 , for j = 2, . . . , k,
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where

Q∗k,1 =
k−1⊗
h=1

Pmk+1−h

Q∗k,j =

(
k−j⊗
h=1

Pmk+1−h

)
⊗Qmj

⊗

 k−1⊗
h=k−(j−2)

Pmk+1−h

.
Lemma 4 Let Γx the k−SSCS variance covariance matrix (as in equation (1) of Definition 1).

1. Let ∆k,j , for j = 1, . . . , k, be given by (5), that is, ∆k,j =
∑j

i=1 p2,i (Uk,i −Uk,i+1) , then

∆k,1 =
m2 · bTrp1,1 (Γx)− bSump1,1

[
bTrp1,2 (Γx)

]
p2,k (m2 − 1)

,

∆k,k

=
1

p2,k

{
bSump1,1

[
bTrp1,2 (Γx)

]
+

k−1∑
i=2

[
bSump1,1

[
bSump1,i

(
bTrp1,i+1 (Γx)

)]
− bTrp1,i (Γx)

]}
,

and

∆k,j

=
1

p2,k

{
bSump1,1

[
bTrp1,2 (Γx)

]
+

j−1∑
i=2

[
bSump1,1

[
bSump1,i

(
bTrp1,i+1 (Γx)

)]
− bTrp1,i (Γx)

]
− 1

mj+1 − 1

[
bSump1,1

[
bSump1,j

(
bTrp1,j+1 (Γx)

)]
− bTrp1,j (Γx)

]}
, for j = 2, . . . , k − 1.

2. Let the matrices Qk,j be given by (26), then

Qk,1ΓxQk,1 =

(
k−1⊗
h=1

Pmk+1−h

)
⊗∆k,k

Qk,jΓxQk,j =

(
k−j⊗
h=1

Pmk+1−h

)
⊗Qmj

⊗

 k−1⊗
h=k−(j−2)

Pmk+1−h

⊗∆k,j−1, for j = 2, . . . , k.

3.

∆k,k = bTrp1,1(Qk,1ΓxQk,1) =
1

p2,k
bSump1,1(Qk,1ΓxQk,1)

∆k,j−1 =
bTrp1,1

(
Qk,jΓxQk,j

)
mj − 1

, for j = 2, . . . , k.

Proof: The proof of Lemma 4 is given in Appendix A.5.

Now, using the unbiased estimate of Γx in (14), it can be easily proved the following result that

corresponds to Lemma 4 using instead of Γx its unbiased estimator Γ̃x = n
n−1S,
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Lemma 5 Let Γx the k−SSCS variance covariance matrix (as in equation (1) of Definition 1), and let

∆k,j , for j = 1, . . . , k, be given by (5), then.

1. For each j = 1, . . . , k, the estimator ∆̃k,j is given by

∆̃k,1 =
n

n− 1

m2 · bTrp1,1 (S)− bSump1,1

[
bTrp1,2 (S)

]
p2,k (m2 − 1)

,

∆̃k,k

=
n

n− 1

1

p2,k

{
bSump1,1

[
bTrp1,2 (S)

]
+

k−1∑
i=2

[
bSump1,1

[
bSump1,i

(
bTrp1,i+1 (S)

)]
− bTrp1,i (S)

]
,

and

∆̃k,j

=
n

n− 1

1

p2,k

{
bSump1,1

[
bTrp1,2 (S)

]
+

j−1∑
i=2

[
bSump1,1

[
bSump1,i

(
bTrp1,i+1 (S)

)]
− bTrp1,i (S)

]
− 1

mj+1 − 1

[
bSump1,1

[
bSump1,j

(
bTrp1,j+1 (S)

)]
− bTrp1,j (S)

]}
, for j = 2, . . . , k − 1,

is an unbiased estimator of the corresponding ∆k,j .

2. Let the matrices Qk,j be given by (26), then

Qk,1

(
n

n− 1
S

)
Qk,1 =

(
k−1⊗
h=1

Pmk+1−h

)
⊗ ∆̃k,k

Qk,j

(
n

n− 1
S

)
Qk,j =

(
k−j⊗
h=1

Pmk+1−h

)
⊗Qmj

⊗

 k−1⊗
h=k−(j−2)

Pmk+1−h

⊗ ∆̃k,j−1,

for j = 2, . . . , k.

3.

∆̃k,k =
n

n− 1
· bTrp1,1(Qk,1 · S ·Qk,1)

=
n

(n− 1) p2,k
· bSump1,1(Qk,1 · S ·Qk,1)

∆̃k,j−1 =
n · bTrp1,1

(
Qk,j · S ·Qk,j

)
(n− 1) (mj − 1)

, for j = 2, . . . , k.

Proof: Proof is straightforward using Lemma 4.
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6 A real data example

In this section we demonstrate our new methods with a real data set, where an investigator measured

the mineral content of bones (radius, humerus and ulna) by photon absorptiometry to examine whether

dietary supplements would slow bone loss in 25 older women. This data set is taken from Johnson and

Wichern (2007, p. 43 and p. 353). Measurements were recorded for three bones on the dominant and

nondominant sides Johnson and Wichern (2007, p. 43). The bone mineral contents for the first 24

women one year after their participation in an experimental program is given in Johnson and Wichern

(2007, p. 353). Thus, for our analysis we take only first 24 women in the first data set. Thus, for our

analysis we take only the first 24 women in the first data set, and combine these two data sets side by

side into a new one, which we analyze in this article. Thus, this new three-level dataset has 3−SSCS

covariance structure, with m3 = 2, m2 = 2 and m1 = 3. We rearrange the variables in the new data

set by grouping together the mineral content of the dominant sides of radius, humerus and ulna as the

first three variables, that is, the variables in the dominant side and then the mineral contents for the

non-dominant side of the same bones on the first year of the experiment; and do the same thing at the

second year of the experiment. Let a typical sample of this data after rearranging by dominant and

non-dominant sides, and then by time looks like

y = (y11 1, y11 2, y11 3, y12 1, y12 2, y12 3, y21 1, y21 2, y21 3, y22 1, y22 2, y22 3)
′,

where the first subscript from the right represents the variable. The second subscript: if it is 1, then

it is the dominant side, and if it is 2, it is the non-dominant side. The third subscript represents the

time: for example, if it is 1 then it is first year, and if 2, it represents the second year. The unbiased

estimates Ũ3,1, Ũ3,2 and Ũ3,3 of 3−SSCS covariance structure are

Ũ3,1 =

 0.01297 0.02428 0.00900
0.02428 0.08587 0.01908
0.00900 0.01908 0.01115

, Ũ3,2 =

 0.01081 0.02164 0.00843
0.02164 0.07633 0.01726
0.00843 0.01726 0.00733

,

and Ũ3,3 =

 0.01143 0.02255 0.00868
0.02255 0.07837 0.01829
0.00868 0.01829 0.00877

,
respectively, and the unbiased estimates of the eigenblocks ∆̃3,1, ∆̃3,2 and ∆̃3,3 are

∆̃3,1 =

 0.00217 0.00264 0.00057
0.00264 0.00955 0.00182
0.00057 0.00182 0.00381

, ∆̃3,2 =

 0.00091 0.00083 0.00007
0.00083 0.00546 −0.00024
0.00007 −0.00024 0.00094

,
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and ∆̃3,3 =

 0.04665 0.09101 0.03480
0.09101 0.31895 0.07293
0.03480 0.07293 0.03602

,
respectively. The 3−SSCS covariance matrix has a total of four eigenblocks: the eigenblocks ∆3,3 and

∆3,2 are with multiplicity one, and the eigenblock ∆3,1 is with multiplicity two. From Roy (2014) the

four (3× 1)−dimensional principal vectors of the 3−SSCS covariance structure are as follows:

y1 =

 ((y11 1 + y21 1) + (y12 1 + y22 1))/2
((y11 2 + y21 2) + (y12 2 + y22 2))/2
((y11 3 + y21 3) + (y12 3 + y22 3))/2

,

y2 =

 ((y11 1 − y21 1) + (y12 1 − y22 1))/2
((y11 2 − y21 2) + (y12 2 − y22 2))/2
((y11 3 − y21 3) + (y12 3 − y22 3))/2

,

y3 =

 ((y11 1 + y21 1 − (y12 1 + y22 1))/2
((y11 2 + y21 2 − (y12 2 + y22 2))/2
((y11 3 + y21 3 − (y12 3 + y22 3))/2

,
and

y4 =

 ((y11 1 − y21 1)− (y12 1 − y22 1))/2
((y11 2 − y21 2)− (y12 2 − y22 2))/2
((y11 3 − y21 3)− (y12 3 − y22 3))/2

.
The first principal vector y1 corresponding to eigenblock ∆3,3 represents the total grand midpoints of

the variables over sides and time points. The second principal vector y2 corresponding to eigenblock

∆3,2 represents the difference between the two time points. For example (y11 1 − y21 1) provides the

difference between the first year and the second year of the first variable radius at the dominant side.

And, (y12 1−y22 1) provides the difference between the first year and the second year of the first variable

radius at the non-dominant side. So,
(
(y11 1−y21 1)+(y12 1−y22 1)

)
/2 represents the average difference

between the first year and the second year of the first variable radius. Similarly, for the other two

components of the second principal vector represent the average difference between the first year and

the second year of the second and third variables humerus and ulna. The third and the fourth principal

vectors y3 and y4 correspond to the same eigenblocks ∆3,1. And, these two principal vectors are

independent. The average of these two blocks, which represents the difference between the dominant

and non-dominant sides has the variance-covariance matrix ∆3,1.

We see that the variability in the first eigenblock is tr(∆̃3,3) = 0.4016149, and the variabilities in

the second and the third eigenblocks are tr(∆̃3,2) = 0.0073121 and tr(∆̃3,1) = 0.0155271 respectively.
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Table 1: Trace(eigenblocks) and percent(%) trace(eigenblocks) of Mineral data.

Eigenblock Trace(Eigenblock) %Trace(Eigenblock)

∆3,3 0.4016149 91.27999
∆3,1 2 ×0.0155271 7.05807
∆3,2 0.0073121 1.66191

Total 0.4399813 100.00

That is, in this data set tr(∆̃3,1) > tr(∆̃3,2). Therefore, from (21) the total variability in the data is

tr(Γ̃x) = tr(∆̃3,3) + 2tr(∆̃3,1) + tr(∆̃3,2)

= 0.4016149 + 2(0.0155271) + 0.0073121 = 0.4399813.

We see that the first eigenblock ∆3,3 accounts for the 91.27999% of the variability of the data. One

can calculate the (3 × 3) first principal vector y1 corresponding to the first eigenblock ∆3,3, and then

one can obtain the eigenvalues of ∆3,3 and the corresponding principal components, which are linear

combination of the components of the first principal vector y1 (total grand midpoints of the variables

over sides and time points) using any known software, e.g., SAS.

7 Conclusions

Multi-level data is present in almost every field these days, there are many interconnections among the

k levels, but it takes time to see them. More and more Multi-level datasets are coming and will continue

to come in future. So, it is important that we develop statistical tool to analyze these datasets. One

can develop testing of mean vectors for one population/ two populations or paired populations when

the populations have k−SSCS covariance structure; and obtain the classification rules with the derived

estimates of the k−SSCS matrix parameters. One can also study the optimality properties of k−SSCS

matrix parameters; we are currently working on these problems and report it in future publications.

Optimality properties of 2−SSCS matrix parameters are studied by Roy et al. (2016). There many be

some structure on mean vector too. One can study the k−SSCS covariance structure in this setting too.

A Appendix

A.1 Proof of Lemma 1

Proof: We use mathematical induction to prove that (8) is true for all natural numbers k. We know that

expression (8) is valid for k = 2 and k = 3. See Leiva and Roy (2007). We assume that the inverse of any
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(k − 1)−SSCS matrix is given by (8), and we will prove that (8) is true for an arbitrary k−SSCS matrix.

Given Γxr = V k+1 an arbitrary k−SSCS matrix with SSCS-component matrices Uk,j , j = 1, . . . , k, it

can be written as

V k+1 = Γxr = Imk
⊗ (V k −W k) + Jmk

⊗W k,

we know that

Γ−1xr
= Imk

⊗ (V k −W k)−1 + Jmk
⊗ 1

mk

[
(V k + (mk − 1)W k)−1 − (V k −W k)−1

]
. (A1)

Noting ik−1:k−1 = 1′k−2 and then

Jp2,k−1
⊗Uk,k =

(
k−2⊗
h=1

J
ik−1:k−1,h
mk−h

)
⊗Uk,k,

we prove that V k −W k has (k − 1)−SSCS form. Now,

V k −W k = V k − Jp2,k−1
⊗Uk,k

=
k−2∑
j=1

(
k−2⊗
h=1

J
ik−1:j,h
mk+1−h

)
⊗ (Uk−1,j −Uk−1,j+1)

+

(
k−2⊗
h=1

J
ik−1:k−1,h
mk+1−h

)
⊗Uk−1,k−1 −

(
k−2⊗
h=1

J
ik−1:k−1,h
mk−h

)
⊗Uk,k

=

k−2∑
j=1

(
k−2⊗
h=1

J
ik−1:j,h
mk+1−h

)
⊗ [(Uk,j −Uk,k)− (Uk,j+1 −Uk,k)]

+

(
k−2⊗
h=1

J
ik−1:k−1,h
mk+1−h

)
⊗ (Uk−1,k−1 −Uk,k).

Now, by defining the matrices U∗k−1,j for j = 1, . . . , k − 1

U∗k−1,j = Uk,j −Uk,k, for j = 1, . . . , k − 1, (A2)

and by denoting U∗k−1,k as the null matrix, we have

V k −W k =
k−1∑
j=1

(
k−2⊗
h=1

J
ik−1:j,h
mk−h

)
⊗
(
U∗k−1,j −U∗k−1,j+1

)
(A3)

=
k−2∑
j=1

(
k−2⊗
h=1

J
ik−1:j,h
mk−h

)
⊗ (Uk,j −Uk,j+1) +

(
k−2⊗
h=1

J
ik−1:k−1,h
mk−h

)
⊗Uk,k−1.

Therefore, V k −W k has the (k − 1)−SSCS form, and thus by the inductive hypothesis we get

(V k −W k)−1 =

k−1∑
j=1

(
k−2⊗
h=1

J
ik−1:j,h
mk−h

)
⊗ 1

p2,j

(
∆∗−1k−1,j −∆∗−1k−1,j−1

)

=
k−1∑
j=1

(
k−2⊗
h=1

J
ik−1:j,h
mk−h

)
⊗ 1

p2,j

(
∆−1k,j −∆−1k,j−1

)
, (A4)

27



where for j = 1, . . . , k − 1, we use

∆∗k−1,j =

j∑
i=1

p2,i
(
U∗k−1,i −U∗k−1,i+1

)
(A5)

=

j∑
i=1

p2,i (Uk,i −Uk,i+1) = ∆k,j .

We now prove that V k + (mk − 1)W k also has (k − 1)−SSCS form. Now,

V k + (mk − 1)W k

= V k + Jp2,k−1
⊗ (mk − 1)Uk,k

=

k−2∑
j=1

(
k−2⊗
h=1

J
ik−1:j,h
mk+1−h

)
⊗ (Uk−1,j −Uk−1,j+1)

+

(
k−2⊗
h=1

J
ik−1:k−1,h
mk+1−h

)
⊗Uk−1,k−1 +

(
k−2⊗
h=1

J
ik−1:k−1,h
mk−h

)
⊗ (mk − 1)Uk,k

=
k−2∑
j=1

(
k−2⊗
h=1

J
ik−1:j,h
mk+1−h

)
⊗ {[Uk−1,j + (mk − 1)Uk,k]− [Uk−1,j+1 + (mk − 1)Uk,k]}

+

(
k−2⊗
h=1

J
ik−1:k−1,h
mk+1−h

)
⊗ [Uk−1,k−1 + (mk − 1)Uk,k].

Now, by defining the matrices U∗∗k−1,j for j = 1, . . . , k − 1

U∗∗k−1,j = Uk,j + (mk − 1)Uk,k, for j = 1, . . . , k − 1, (A6)

and denoting with U∗∗k−1,k as the null matrix, we have

V k + (mk − 1)W k =
k−1∑
j=1

(
k−2⊗
h=1

J
ik−1:j,h
mk−h

)
⊗
(
U∗∗k−1,j −U∗∗k−1,j+1

)
(A7)

=

k−2∑
j=1

(
k−2⊗
h=1

J
ik−1:j,h
mk−h

)
⊗ (Uk,j −Uk,j+1)


+

(
k−2⊗
h=1

Jmk−h

)
⊗ (Uk,k−1 + (mk − 1)Uk,k).
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Thus, V k + (mk − 1)W k has the (k − 1)−SSCS form and by the inductive hypothesis we get

(V k + (mk − 1)W k)−1 =

k−1∑
j=1

(
k−2⊗
h=1

J
ik−1:j,h
mk−h

)
⊗ 1

p2,j

(
∆∗∗−1k−1,j −∆∗∗−1k−1,j−1

)

=

k−2∑
j=1

(
k−2⊗
h=1

J
ik−1:j,h
mk−h

)
⊗ 1

p2,j

(
∆−1k,j −∆−1k,j−1

)

+

(
k−2⊗
h=1

Jmk−h

)
⊗ 1

p2,k−1

(
∆∗∗−1k−1,k−1 −∆−1k,k−2

)
=

k−2∑
j=1

(
k−2⊗
h=1

J
ik−1:j,h
mk−h

)
⊗ 1

p2,j

(
∆−1k,j −∆−1k,j−1

)

+

(
k−2⊗
h=1

Jmk−h

)
⊗ 1

p2,k−1

(
∆−1k,k −∆−1k,k−2

)
, (A8)

where for j = 1, . . . , k − 2, we use

∆∗∗k−1,j =

j∑
i=1

p2,i
(
U∗∗i −U∗∗i+1

)
(A9)

=

j∑
i=i

p2,i (U i −U i+1) = ∆k,j , and

∆∗∗k−1,k−1 =
k−2∑
i=1

p2,i
(
U∗∗k−1,i −U∗∗k−1,i+1

)
+ p2,k−1U

∗∗
k−1,k−1 (A10)

=
k−1∑
i=1

p2,i (Uk,i −Uk,i+1) + p2,kUk,k = ∆k,k.

Now,

(V k + (mk − 1)W k)−1 − (V k −W k)−1

=
k−2∑
j=1

(
k−2⊗
h=1

J
ik−1:j,h
mk−h

)
⊗ 1

p2,j

(
∆−1k,j −∆−1k,j−1

)

+

(
k−2⊗
h=1

Jmk−h

)
⊗ 1

p2,k−1

(
∆−1k,k −∆−1k,k−2

)
−

k−1∑
j=1

(
k−2⊗
h=1

J
ik−1:j,h
mk−h

)
⊗ 1

p2,j

(
∆−1k,j −∆−1k,j−1

)

=

(
k−2⊗
h=1

Jmk−h

)
⊗ 1

p2,k−1
⊗
(
∆−1k,k −∆−1k,k−1

)
. (A11)
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Now, substituting the values of (V k −W k)−1 and (V k + (mk − 1)W k)−1 − (V k −W k)−1 from (A4)

and (A11) in (A1) we obtain

Γ−1xr
= Imk

⊗ (V k −W k)−1 + Jmk
⊗ 1

mk

[
(V k + (mk − 1)W k)−1 − (V k −W k)−1

]
= Imk

⊗
k−1∑
j=1

(
k−2⊗
h=1

J
ik−1:j,h
mk−h

)
⊗ 1

p2,j

(
∆−1k,j −∆−1k,j−1

)

+Jmk
⊗ 1

mk

(
k−2⊗
h=1

Jmk−h

)
⊗ 1

p2,k−1
⊗
(
∆−1k,k −∆−1k,k−1

)
=

k∑
j=1

(
k−1⊗
h=1

J
ik:j,h
mk+1−h

)
⊗ 1

p2,j

(
∆−1k,j −∆−1k,j−1

)
.

This completes the proof of Lemma 1.

A.2 Proof of Lemma 2

Proof: We know that expression (9) is valid for k = 2 and k = 3. See Leiva (2007) and Roy and Leiva

(2007). We assume that the determinant of any (k − 1)−SSCS matrix is given by (9), and we will

prove that (9) is true for an arbitrary k−SSCS matrix. Now,

k∑
j=1

(pj+1,k − pj+2,k) =

k−2∑
j=1

(pj+1,k − pj+2,k)

+mk − 1 + 1− 0

= (p2,k − pk,k) +mk − 1 + 1 = p2,k.

Noting that both V k −W k and V k + (mk − 1)W k have the (k − 1)−SSCS form, using (A5) and (A9)

we get

|V k+1| = |V k −W k|mk−1 |V k + (mk − 1)W k|

=

k−1∏
j=1

∣∣∆∗k−1,j∣∣pj+1,k−1−pj+2,k−1

mk−1

k−1∏
j=1

∣∣∆∗∗k−1,j∣∣pj+1,k−1−pj+2,k−1

=

k−1∏
j=1

|∆k,j |(pj+1,k−1−pj+2,k−1)(mk−1)
k−2∏
j=1

|∆k,j |pj+1,k−1−pj+2,k−1 |∆k,k|

=

k−2∏
j=1

|∆k,j |(pj+1,k−1−pj+2,k−1)mk

 |∆k,k−1|(pk−1+1,k−1−pk−1+2,k−1)(mk−1) |∆k,k|

=
k∏

j=1

|∆j |pj+1,k−pj+2,k .

This completes the proof of Lemma 2.
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A.3 Proof of Theorem 1

Proof: For r = 1, . . . , n, let xr be an p1,k−variate vector with mean µx and a k−SSCS covariance matrix

Γx with SSCS component matrices Uk,j : j = 1, . . . , k. Assume x1, . . . ,xn is a random sample of size

n of a population with distribution Np1,k (µx; Γx) , where Γx is a positive definite k−SSCS covariance

matrix. The likelihood function L = L (µx; Γx) is given by

L (µx,Γx) =
exp−1

2

∑n
r=1 (xr−µx)

′
Γ−1x (xr − µx)

(2π)
p1,k
2 |Γx|

n
2

,

or equivalently,

L
(
µx∗ ,Γx∗

)
=

exp−1
2

(
x∗−µx∗

)′
Γ−1x∗

(
x∗ − µx∗

)
(2π)

p1,k
2 |Γx∗ |

1
2

, (A12)

where

x∗ =
(
x
′
1, . . . ,x

′
n

)′
, and

µx∗ = 1n ⊗ µx = 1n ⊗
(
µxr;1,...,1

, . . . ,µxr;m1,...,mk

)′
,

with µxr;j1,...,jk
∈ <, is the same for all r = 1, . . . , n, and

Γx∗ = In ⊗ Γx = In ⊗
k∑

j=1

(
k−1⊗
h=1

J
ik:j,h
mk+1−h

)
⊗ (Uk,j −Uk,j+1) ,

where U j , for j = 1, . . . , k, are m1 ×m1−matrices, where Uk+1 is the m1 ×m1 zero matrix ( Uk+1 =

0m1×m1). Thus, the log likelihood function is

log(L) = −
np1,k

2
log (2π)− n

2
log |Γx| −

1

2

n∑
r=1

(xr−µx)
′
Γ−1x (xr−µx)

= −
np1,k

2
log (2π)− 1

2
log |Γx∗ | −

1

2

(
x∗ − µx∗

)′
Γ−1x∗

(
x∗ − µx∗

)
. (A13)

The matrix Γ−1x in (A13) is by (8) of the form

Γ−1x =
k∑

j=1

(
k−1⊗
h=1

J
ik:j,h
mk+1−h

)
⊗Aj,

with

Aj =
1

p2,j

(
∆−1k,j −∆−1k,j−1

)
, (A14)

for j = 1, . . . , k, where it is assumed that ∆−1k,0 = 0, and where ∆k,j , for j = 1, . . . , k, are given in (5)

and with p2,1 = 1
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Let
•
xr = xr − µx be expressed as

•
xr = xr − µx = (xr − x) + (x− µx) , where x is the global

sample mean, that is,

x =
1

n

n∑
r=1

xr. (A15)

The sum of quadratic forms in the exponent of (A13) is

Q
(
x∗ : µx∗ ,Γ

−1
x∗

)
=

(
x∗ − µx∗

)′
Γ−1x∗

(
x∗ − µx∗

)
=

n∑
r=1

(xr − µx)
′
Γ−1x (xr − µx)

= tr

[
Γ−1x

n∑
r=1

(xr−µx) (xr − µx)′
]

= tr
[
Γ−1x R

]
, (A16)

where

R =
n∑

r=1

(xr − µx) (xr − µx)′ (A17)

=
n∑

r=1

[(xr − x) + (x− µx)] [(xr − x) + (x− µx)]′

=
n∑

r=1

(xr − x) (xr − x)′ +
n∑

r=1

(x− µx) (x− µx)′ + 2

[
n∑

r=1

(xr − x)

]
(x−µx)′

=

[
n∑

r=1

(xr − x) (xr − x)′
]

+ n (x−µx) (x−µx)′ = W + Z,

with

W =

n∑
r=1

(xr − x) (xr − x)′

and

Z = n (x− µx) (x− µx)′ .

Then, log(L) = −np1,k
2 log (2π)− n

2 log |ΓX | − 1
2

∑n
r=1 (xr−µX)

′
Γ−1X (xr−µX) can be written as

log(L) = −
np1,k

2
log (2π)− n

2
log |Γx| −

1

2
tr
(
Γ−1x W

)
− 1

2
tr
(
Γ−1x Z

)
. (A18)

When the vector mean µx is unstructured, that is,

µx = µxr
=
(
µxr;1,...,1

, . . . ,µxr;m1,...,mk

)′
,

with µxr;j1,...,jk
∈ <, equation (A18) assures that MLE of µx is µ̂x = x, given in (A15). Therefore, by

replacing µx by x the log likelihood reduces to

log(L) = −
np1,k

2
log (2π)− n

2
log |Γx| −

1

2
tr
(
Γ−1x W

)
(A19)

= −
np1,k

2
log (2π)− n

2
log |Γx| −

1

2
tr

(
Γ−1x

n∑
r=1

(xr − x) (xr − x)′
)
.
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Let x given in (A15) be partitioned inm1×1 subvectors as x =
(
x′f2,f3,...,fk : fj ∈ Fj = {1, . . . ,mj} , for j = 2, . . . , k

)′
,

where xf2,f3,...,fk ∈ Rm1 , that is,

x =
(
x′1,1,...,1, . . . ,x

′
m2,1,...,1, x

′
1,2,...,1, . . . ,x

′
m2,2,...,1, . . . ,x

′
1,m3,...,1, . . . ,x

′
m2,m3,...,1, (A20)

. . . ,x′1,1,...,2, . . . ,x
′
m2,1,...,2,x

′
1,2,...,2, . . . ,x

′
m2,2,...,2, . . . ,x

′
1,m3,...,mk

, . . . ,x′m2,m3,...,mk

)′
,

with

xf = xf2,f3,...,fk =
1

n

n∑
r=1

xr;f2,f3,...,fk , (A21)

for each f = (f2, f3, . . . , fk)′ ∈ F =
∏k

j=2 Fj .

With this notation and using (8), we first find an appropriate expression for

Q
(
x∗ : x∗,Γ

−1
x∗

)
(A22)

= tr
[
Γ−1x∗ (x∗ − x∗) (x∗ − x∗)

′
]

= tr

(
Γ−1x

n∑
r=1

(xr − x) (xr − x)′
)
,

where

x∗ =
(
x
′
1, . . . ,x

′
n

)′
, and

x∗ = 1n ⊗ x.

Since for the calculation of this trace of a product of this two matrices, both partitioned in m1 ×m1

we only need the product of a block row indicated by f = (f2, f3, . . . , fk) in Γ−1x by the corresponding

f = (f2, f3, . . . , fk) block column of
∑n

r=1 (xr − x) (xr − x)′ .The f = (f2, f3, . . . , fk) block row of Γ−1x

is formed by the following p2,k blocks: (fk − 1) p2,k−1 blocks equal to Ak, (fk−1 − 1) p2,k−2 blocks equal

to Ak−1 +Ak, . . . , (f3 − 1) p2,2 blocks equal to A3 + · · ·+Ak, (f2 − 1) blocks equal to A2 + · · ·+Ak,

one block equal to A1 + · · ·+Ak, (m2 − f2) blocks equal to A2 + · · ·+Ak, (m− f3) p2,2 blocks equal

to A3 + · · · +Ak, . . . , (mk−1 − fk−1) p2,k−2 blocks equal to Ak−1 +Ak and (mk − fk) p2,k−1 blocks
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equal to Ak, . Note that

# of blocks =

k−1∑
j=1

(fk+1−j − 1) p2,k−j

+ 1 +

k−1∑
j=1

(mk+1−j − fk+1−j) p2,k−j


=

k−1∑
j=1

(mk+1−j − 1) p2,k−j

+ 1 =

k−1∑
j=1

mk+1−jp2,k−j −
k−1∑
j=1

p2,k−j

+ 1

=

k−1∑
j=1

p2,k+1−j −
k−1∑
j=1

p2,k−j

+ 1 =

 k−2∑
j∗=0

p2,k−j∗ −
k−1∑
j=1

p2,k−j

+ 1

= p2,k +

 k−2∑
j∗=1

p2,k−j∗ −
k−2∑
j=1

p2,k−j

− p2,1 + 1 = p2,k.

The product of the above row block with f = (f2, f3, . . . , fk) block column of
∑n

r=1 (xr − x) (xr − x)′

is

Ak

fk−1∑
f∗k=1

∑
f∗k−1∈Fk−1

· · ·
∑

f∗2∈F2

(
xr;f∗2 ,...,f

∗
k−1,f

∗
k
− xf∗2 ,...,f

∗
k−1,f

∗
k

)
(xr;f2,...,fk − xf2,,...,fk)′

+ (Ak−1 +Ak)

fk−1−1∑
f∗k−1=1

∑
f∗k−2∈Fk−2

· · ·
∑

f∗2∈F2

(
xr;f∗2 ,...,f

∗
k−1,fk

− xf∗2 ,...,f
∗
k−1,fk

)
(xr;f2,...,fk − xf2,,...,fk)′

...

+ (Ak−1 +Ak)

mk−1−1∑
f∗k−1=fk−1+1

∑
f∗k−2∈Fk−2

· · ·
∑

f∗2∈F2

(
xr;f∗2 ,...,f

∗
k−1,fk

− xf∗2 ,...,f
∗
k−1,fk

)
(xr;f2,...,fk − xf2,,...,fk)′

Ak

mk−1∑
f∗k=fk+1

∑
f∗k−1∈Fk−1

· · ·
∑

f∗2∈F2

(
xr;f∗2 ,...,f

∗
k−1,f

∗
k
− xf∗2 ,...,f

∗
k−1,f

∗
k

)
(xr;f2,...,fk − xf2,,...,fk)′ .

Then, denoting by Bk,j , for each j = 1, 2, . . . , k, the m1 ×m1 matrix

Bk,j (A23)

=

n∑
r=1

k−j sums︷ ︸︸ ︷∑
fk∈Fk

· · ·
∑

fj+1∈Fj+1

1 special sum pair︷ ︸︸ ︷ ∑
fj∈Fj

∑
fj 6=f∗j ∈Fj


j−2 sum pairs︷ ︸︸ ︷ ∑

fj−1∈Fj−1

∑
f∗j−1∈Fj−1

 · · ·
 ∑

f2∈Fk

∑
f∗2∈Fk


(
x′
r;f∗(ik:j)

− x′
f∗(ik:j)

)′
(xr;f − xf ) ,

where f = fk, . . . , fj+1, fj , . . . , f2 and f∗ (ik:j) = fk, . . . , fj+1, f
∗
j , . . . , f

∗
2 , and consequently, where the

sums with subindex fj or f∗j with j < 2 do not appear in the above expression, is

tr

(
Γ−1x

n∑
r=1

(xr − x) (xr − x)′
)

=

k∑
j=1

tr

 k∑
i=j

Ai

Bk,j

 .
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Now, note that (A22) can be seen as

Q
(
x∗ : x∗,Γ

−1
x∗

)
= tr

(
Γ−1x∗C

)
, (A24)

where C is a np1,k × np1,k− block diagonal matrix where all the diagonal block are equal to blockC,

where

blockC =

k∑
j=1

(
k−1⊗
h=1

J
ik:j,h
mk+1−h

)
⊗ (Ck,j −Ck,j+1) ,

with, for j = 1, . . . , k,

Ck,j =
Bk,j

nqk,j
, (A25)

where Bk,j is given by (A23) and

qk,j =


k−1∏
i=1

mk+1−i = p2,k if j = 1(
k−j∏
i=1

mk+1−i

)
mj (mj − 1)

(
j−2∏
i=1

m2
j−i

)
if j = 2, . . . , k

, (A26)

where
0∏

i=1
mk+1−i =

0∏
i=1

mj−i = 1. Therefore, since (A19)

log(L) = −
np1,k

2
log (2π)− n

2
log |Γx| −

1

2
tr

(
Γ−1x

p1,k×p1,k
W

p1,k×p1,k

)

= −
np1,k

2
log (2π)− 1

2
log |Γx∗ | −

1

2
tr

(
Γ−1x∗

np1,k×np1,k
C

np1,k×np1,k

)
,

we can use lemma 3.2.2 of Anderson (2003) to find its maximum with respect to Γx∗ . This maximum

is attained at Γx∗ = C. From this, the maximum likelihood estimates of the k − SSCS covariance

components are

Ûk,j = Ck,j =
1

nqk,j
(A27)

·
n∑

r=1

k−j sums︷ ︸︸ ︷∑
fk∈Fk

· · ·
∑

fj+1∈Fj+1

1 special sum pair︷ ︸︸ ︷ ∑
fj∈Fj

∑
fj 6=f∗j ∈Fj


j−2 sum pairs︷ ︸︸ ︷ ∑

fj−1∈Fj−1

∑
f∗j−1∈Fj−1

 · · ·
 ∑

f2∈Fk

∑
f∗2∈Fk


(
xr;f∗(ik:j) − xf∗(ik:j)

) (
x′r;f − x′f

)
,

for j = 1, . . . , k, and the maximum likelihood estimate Γ̂x of Γx can be written as

Γ̂x =

k∑
j=1

(
k−1⊗
h=1

J
ik:j,h
mk+1−h

)
⊗
(
Ûk,j − Ûk,j+1

)
, (A28)

where Ûk,h is given in (A27).
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A.4 Proof of Theorem 3

We use mathematical induction to prove that (19) with Dik is given by (20) is true for all natural

numbers k. The proof of this result for k = 2 is given in Leiva (2007), and for k = 3 is given in ????. We

assume is true for any (k − 1)−SSCS matrix Vk (inductive hypothesis is given by (8), and we will prove

that (19) is true for an arbitrary k−SSCS matrix Vk+1. Consider Γxr = V k+1 an arbitrary k−SSCS

matrix with SSCS-component matrices Uk,j , j = 1, . . . , k, it can be written as

V k+1
p1,k×p1,k

= Imk
⊗ (V k −W k)

p1,k−1×p1,k−1

+ Jmk
⊗ W k

p1,k−1×p1,k−1

,

then (
H ′mk

⊗ Ip1,k−1

)
V k+1

(
Hmk

⊗ Ip1,k−1

)
(A29)

= diag {V k + (mk − 1)W k; Imk−1 ⊗ (V k −W k)}

where V k −W k is the (k − 1)−SSCS matrix given in (A3) and (A2), i.e.,

V k −W k
p1,k−1×p1,k−1

=

k−1∑
j=1

(
k−2⊗
h=1

J
ik−1:j,h
mk−h

)
⊗
(
U∗k−1,j −U∗k−1,j+1

)
=

k−2∑
j=1

(
k−2⊗
h=1

J
ik−1:j,h
mk−h

)
⊗ (Uk,j −Uk,j+1) +

(
k−2⊗
h=1

J
ik−1:k−1,h
mk−h

)
⊗Uk,j ,

with U∗k−1,k = 0, and where V k + (mk − 1)W k is the k − 1−SSCS matrix given in (A7) and (A6), i.e,

V k + (mk − 1)W k =

k−1∑
j=1

(
k−2⊗
h=1

J
ik−1:j,h
mk−h

)
⊗
(
U∗∗k−1,j −U∗∗k−1,j+1

)

=

k−2∑
j=1

(
k−2⊗
h=1

J
ik−1:j,h
mk−h

)
⊗ (Uk,j −Uk,j+1)


+

(
k−2⊗
h=1

Jmk−h

)
⊗ (Uk,k−1 + (mk − 1)Uk,k).

By the inductive hypotesis, using L′k−1 = H ′mk−1
⊗ · · · ⊗H ′m2

⊗ Im1 we obtain

D∗k−1 = L′k−1 (V k −W k)Lk−1 = diag
{
D∗i∗k−1,k−1

: i∗k−1,k−1 = 1, . . . , p2,k−1

}
, and

D∗∗k−1 = L′k−1 (V k + (mk − 1)W k)Lk−1 = diag
{
D∗∗i∗∗k−1,k−1

: i∗∗k−1,k−1 = 1, . . . , p2,k−1

}
Therefore, pre and post multiplying (A29) = RICARDO, CAN YOU FINISH IT

Dk =
(
Imk
⊗L′k−1

)
diag {V k + (mk − 1)W k; Imk−1 ⊗ (V k −W k)} (Imk

⊗Lk−1)

= diag
{
L′k−1 [V k + (mk − 1)W k]Lk−1; Imk−1 ⊗L

′
k−1 (V k −W k)Lk−1

}
= diag

{
D∗∗k−1; Imk−1 ⊗D

∗
k−1
}
,
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where using (A10) and (A9) is

D∗∗i∗∗k−1,k−1

=



∆∗∗k−1,k−1 = ∆k,k if i∗∗k−1,k−1 = 1

∆∗∗k−1,k−2 = ∆k,k−2 if i∗∗k−1,k−1 = 1 + i∗∗k−1,k−2p2,k−1−1 for i∗∗k−1,k−2 = 1, . . . ,mk−1 − 1

∆∗∗k−1,k−3 = ∆k,k−3 if i∗∗k−1,k−1 = 1 +
∑2

h=1 i
∗∗
k−1,k−hp2,k−1−h for

{
i∗∗k−1,k−2 = 0, . . . ,mk−1 − 1

i∗∗k−1,k−3 = 1, . . . ,mk−2 − 1
...

...
...

...
...

∆∗∗k−1,2 = ∆k,2 if i∗∗k−1,k−1 = 1 +
∑k−2

h=1 i
∗∗
k−1,k−hp2,k−1−h for


i∗∗k−1,k−2 = 0, . . . ,mk−1 − 1

...
i∗∗k−1,3 = 0, . . . ,m4 − 1

i∗∗k−1,2 = 1, . . . ,m3 − 1

∆∗∗k−1,1 = ∆k,1 if i∗∗k−1,k−1 = 1 +
∑k−1

h=1 ik−hp2,k−h for


i∗∗k−1,k−2 = 0, . . . ,mk−1 − 1

...
i∗∗k−1,2 = 0, . . . ,m3 − 1

i∗∗k−1,1 = 1, . . . ,m2 − 1

(A30)

while D∗k−1 appears repeated mk−1 times filling in the diagonal blocks the rows from p1,k−1 + 1 to p1,k

(that is from the second diagonal (m1×m1)− block to the (p2,k) th diagonal (m1×m1)− block repeating

the following set of p2,k components D∗i∗k−1,k−1
.

D∗i∗k−1,k−1

=



∆∗∗k−1,k−1 = ∆k,k if i∗∗k−1,k−1 = 1

∆∗∗k−1,k−2 = ∆k,k−2 if i∗∗k−1,k−1 = 1 + i∗∗k−1,k−2p2,k−1−1 for i∗∗k−1,k−2 = 1, . . . ,mk−1 − 1

∆∗∗k−1,k−3 = ∆k,k−3 if i∗∗k−1,k−1 = 1 +
∑2

h=1 i
∗∗
k−1,k−hp2,k−1−h for

{
i∗∗k−1,k−2 = 0, . . . ,mk−1 − 1

i∗∗k−1,k−3 = 1, . . . ,mk−1 − 1
...

...
...

...
...

∆∗∗k−1,2 = ∆k,2 if i∗∗k−1,k−1 = 1 +
∑k−2

h=1 i
∗∗
k−1,k−hp2,k−1−h for


i∗∗k−1,k−2 = 0, . . . ,mk−1 − 1

...
i∗∗k−1,3 = 0, . . . ,m4 − 1

i∗∗k−1,2 = 1, . . . ,m3 − 1

∆∗∗k−1,1 = ∆k,1 if i∗∗k−1,k−1 = 1 +
∑k−1

h=1 ik−hp2,k−h for


i∗∗k−1,k−2 = 0, . . . ,mk−1 − 1

...
i∗∗k−1,2 = 0, . . . ,m3 − 1

i∗∗k−1,1 = 1, . . . ,m2 − 1

(A31)

L′k−1 = H ′mk−1
⊗ · · · ⊗H ′m2

⊗ Im1

is

Dk =
(
Imk
⊗L′k−1

)
[Imk

⊗ (V k −W k) + Jmk
⊗W k] (Imk

⊗Lk−1)
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Alternatively, the result of Theorem 4 can be written as

L′kΓxLk = diag

Df ;f = (f2, f3, . . . , fk)′ ∈ F =
k∏

j=2

Fj

 , (A32)

where the diagonal (m1 ×m1)− matrices Df = Df2,f3,...,fk are given by

Df2,f3,...,fk =



∆k,k if f2 = 1, . . . , fk−1 = 1, fk = 1
∆k,k−1 if f2 = 1, . . . , fk−1 = 1, fk 6= 1
∆k,k−2 if f2 = 1, . . . , fk−2 = 1, fk−1 6= 1

...
...

...
∆k,2 if f2 = 1, f3 6= 1
∆k,1 if f2 6= 1

(A33)

A.5 Proof of Lemma 4

1. Using () and part 5 of Lemma 3, we know that

∆k,1 = Uk,1 −Uk,2

=
bTrp1,1 (Γx)

p2,k
−
bSump1,1

(
bTrp1,2 (Γx)

)
− bTrp1,1 (Γx)

p2,k (m2 − 1)

=
(m2 − 1) bTrp1,1 (Γx)− bSump1,1

(
bTrp1,2 (Γx)

)
+ bTrp1,1 (Γx)

p2,k (m2 − 1)

=
m2 · bTrp1,1 (Γx)− bSump1,1

[
bTrp1,2 (Γx)

]
p2,k (m2 − 1)

.

Since

p2,i (Uk,i −Uk,i+1)

=
p2,i · bSump1,1

{
bSump1,i−1

(
bTrp1,i (Γx)

)
− bTrp1,i−1 (Γx)

}
pi+1,k ·mi (mi − 1) · p22,i−1

−
p2,i · bSump1,1

{
bSump1,i

(
bTrp1,i+1 (Γx)

)
− bTrp1,i (Γx)

}
pi+2,k ·mi+1 (mi+1 − 1) · p22,i

=
mi · bSump1,1

{
bSump1,i−1

(
bTrp1,i (Γx)

)
− bTrp1,i−1 (Γx)

}
pi+1,k ·mi (mi − 1) · p2,i−1

−
bSump1,1

{
bSump1,i

(
bTrp1,i+1 (Γx)

)
− bTrp1,i (Γx)

}
pi+2,k ·mi+1 (mi+1 − 1) · p2,i

,
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then

∆k,j =

j∑
i=1

p2,i (Uk,i −Uk,i+1)

= p2,1Uk,1 +

(
j−1∑
i=1

(p2,i+1 − p2,i)Uk,i+1

)
− p2,jUk,j+1

=
bTrp1,1 (Γx)

p2,k
− p2,jUk,j+1

+

(
j−1∑
i=1

(mi+1 − 1) · p2,i ·
bSump1,1

{
bSump1,i

(
bTrp1,i+1 (Γx)

)
− bTrp1,i (Γx)

}
pi+2,k ·mi+1 (mi+1 − 1) · p22,i

)

=
bTrp1,1 (Γx)

p2,k
+

(
j−1∑
i=1

bSump1,1

{
bSump1,i

(
bTrp1,i+1 (Γx)

)
− bTrp1,i (Γx)

}
p2,k

)
− p2,jUk,j+1

=
bTrp1,1 (Γx)

p2,k
+

(
j−1∑
i=1

bSump1,1

{
bSump1,i

(
bTrp1,i+1 (Γx)

)
− bTrp1,i (Γx)

}
p2,k

)

−
p2,j · bSump1,1

{
bSump1,j

(
bTrp1,j+1 (Γx)

)
− bTrp1,j (Γx)

}
pj+2,k ·mj+1 (mj+1 − 1) · p22,j

=
bTrp1,1 (Γx)

p2,k
+

(
j−1∑
i=1

bSump1,1

{
bSump1,i

(
bTrp1,i+1 (Γx)

)
− bTrp1,i (Γx)

}
p2,k

)

−
bSump1,1

{
bSump1,j

(
bTrp1,j+1 (Γx)

)
− bTrp1,j (Γx)

}
p2,k · (mj+1 − 1)

.

Finally, the expression of ∆k,k is obtained by replacing j with k in the above expression of ∆k,j

and noting that the last term is p2,kUk,k+1 = 0.

2. Since for j = 1 is ik:1,h = 0 for each h = 1, . . . , k − 1,

Qk,1ΓxQk,1

=

[(
k−1⊗
h=1

Pmk+1−h

)
⊗ Im1

] k∑
j=1

(
k−1⊗
h=1

J
ik:j,h
mk+1−h

)
⊗ (Uk,j −Uk,j+1)


[(

k−1⊗
h=1

Pmk+1−h

)
⊗ Im1

]

=

 k∑
j=1

(
k−1⊗
h=1

Pmk+1−h
J

ik:j,h
mk+1−hPmk+1−h

)
⊗ (Uk,j −Uk,j+1)


=

(
k−1⊗
h=1

Pmk+1−h

)
⊗

k∑
j=1

(
k−1∏
h=1

m
ik:j,h
k+1−h

)
(Uk,j −Uk,j+1) ,
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and using (7) is

Qk,1ΓxQk,1 =

(
k−1⊗
h=1

Pmk+1−h

)
⊗

k∑
j=1

p2,j (Uk,j −Uk,j+1)

=

(
k−1⊗
h=1

Pmk+1−h

)
⊗∆k,k.

Similarly, using (25), for j = 2, . . . , k, is

Qk,jΓxQk,j

=

(k−j⊗
h=1

Pmk+1−h

)
⊗Qmj

⊗

 k−1⊗
h=k−(j−2)

Pmk+1−h

⊗ Im1


 k∑
j∗=1

(
k−1⊗
h=1

J
ik:j∗,h
mk+1−h

)
⊗ (Uk,j∗ −Uk,j∗+1)


(k−j⊗

h=1

Pmk+1−h

)
⊗Qmj

⊗

 k−1⊗
h=k−(j−2)

Pmk+1−h

⊗ Im1


=

k∑
j∗=1

[(
k−j⊗
h=1

Pmk+1−h
J

ik:j∗,h
mk+1−hPmk+1−h

)
⊗Qmj

J
ik:j∗,k−(j−1)
mk+1−h Qmj

⊗

 k−1⊗
h=k−(j−2)

Pmk+1−h
J

ik:j∗,h
mk+1−hPmk+1−h

⊗ (Uk,j∗ −Uk,j∗+1)
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since Qmj
J

ik:j∗,h
mk+1−hQmj

= 0 for each ik:j∗,h = 1, that is, for each ik:j∗ with j∗ ≥ j, then

Qk,jΓxQk,j

=

j−1∑
j∗=1

[(
k−j⊗
h=1

Pmk+1−h
J

ik:j∗,h
mk+1−hPmk+1−h

)
⊗Qmj

J
ik:j∗,k−(j−1)
mk+1−h Qmj

⊗

 k−1⊗
h=k−(j−2)

Pmk+1−h
J

ik:j∗,h
mk+1−hPmk+1−h

⊗ (Uk,j∗ −Uk,j∗+1)


=

j−1∑
j∗=1

(k−j⊗
h=1

Pmk+1−h
Pmk+1−h

)
⊗Qmj

J0
mk+1−h

Qmj
⊗

 k−j∗⊗
h=k−(j−2)

Pmk+1−h
J0

mk+1−h
Pmk+1−h


⊗

 k−1⊗
h=k−(j∗−1)

Pmk+1−h
J1

mk+1−h
Pmk+1−h

⊗ (Uk,j∗ −Uk,j∗+1)


=

j−1∑
j∗=1

(k−j⊗
h=1

Pmk+1−h

)
⊗Qmj

⊗

 k−j∗⊗
h=k−(j−2)

Pmk+1−h


⊗

 k−1⊗
h=k−(j∗−1)

mk+1−hPmk+1−h

⊗ (Uk,j∗ −Uk,j∗+1)


=

(
k−j⊗
h=1

Pmk+1−h

)
⊗Qmj

 k−1⊗
h=k−(j−2)

Pmk+1−h


⊗

j−1∑
j∗=1

 k−1∏
h=k−(j∗−1)

mk+1−h

 (Uk,j∗ −Uk,j∗+1)

 ,
that is, using (6),

Qk,jΓxQk,j

=

(
k−j⊗
h=1

Pmk+1−h

)
⊗Qmj

⊗

 k−1⊗
h=k−(j−2)

Pmk+1−h


⊗

j−1∑
j∗=1

 k−1∏
h=k−(j∗−1)

mk+1−h

 (Uk,j∗ −Uk,j∗+1)


=

(
k−j⊗
h=1

Pmk+1−h

)
⊗Qmj

⊗

 k−1⊗
h=k−(j−2)

Pmk+1−h

⊗∆k,j−1.
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3. Using the above part (2), the results to be proved are equivalent to

∆k,k = bTrp1,1

[(
k−1⊗
h=1

Pmk+1−h

)
⊗∆k,k

]

=
1

p2,k
bSump1,1

[(
k−1⊗
h=1

Pmk+1−h

)
⊗∆k,k

]

∆k,j−1 =

bTrp1,1

[(
k−j⊗
h=1

Pmk+1−h

)
⊗Qmj

⊗

(
k−1⊗

h=k−(j−2)
Pmk+1−h

)
⊗∆k,j−1

]
mj − 1

,

for j = 2, . . . k.

Noting that each m1 × m1− block of

(
k−1⊗
h=1

Pmk+1−h

)
⊗ ∆k,k =

(
k−1⊗
h=1

Jmk+1−h

)
⊗ 1

p2,k
∆k,k is

1
p2,k

∆k,k, then

bTrp1,1

[(
k−1⊗
h=1

Pmk+1−h

)
⊗∆k,k

]
= p2,k ·

1

p2,k
∆k,k = ∆k,k,

and

bSump1,1

[(
k−1⊗
h=1

Pmk+1−h

)
⊗∆k,k

]
= p22,k ·

1

p2,k
∆k,k = p2,k ·∆k,k,

that is,

∆k,k = bTrp1,1

[(
k−1⊗
h=1

Pmk+1−h

)
⊗∆k,k

]

=
1

p2,k
bSump1,1

[(
k−1⊗
h=1

Pmk+1−h

)
⊗∆k,k

]
.

Similarly, the matrix Qk,j ⊗∆k,j−1 can be expressed as

Qk,j ⊗∆k,j−1

=

(
k−j⊗
h=1

1

mk+1−h
Jmk+1−h

)
⊗Qmj

⊗

 k−1⊗
h=k−(j−2)

1

mk+1−h
Jmk+1−h

⊗∆k,j−1

=
1

pj+1,k
Jpj+1,k

⊗
(
Imj −

1

mj
Jmj

)
⊗ 1

p2,j−1
Jp2,j−1 ⊗∆k,j−1

= Jpj+1,k
⊗
(
(mj − 1) Imj −

(
Jmj − Imj

))
⊗ Jp2,j−1 ⊗

∆k,j−1
p2,k

= Jpj+1,k
⊗ Imj ⊗ Jp2,j−1 ⊗

(mj − 1) ∆k,j−1
p2,k

−Jpj+1,k
⊗
(
Jmj − Imj

)
⊗ Jp2,j−1 ⊗

∆k,j−1
p2,k

,
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where all m1 ×m1− block in the diagonal of Jpj+1,k
⊗
(
Jmj − Imj

)
⊗ Jp2,j−1 ⊗

∆k,j−1

p2,k
are 0, and then

bTrp1,1
(
Qk,j ⊗∆k,j

)
= bTrp1,1

(
Jpj+1,k

⊗ Imj ⊗ Jp2,j−1 ⊗
(mj − 1) ∆k,j−1

p2,k

)
= pj+1,k ·mj · p2,j−1 ·

(mj − 1) ∆k,j

p2,k
= (mj − 1) ∆k,j ,

that is,

∆k,j =
bTrp1,1

(
Qk,j ⊗∆k,j

)
mj − 1

, for j = 2, . . . , k.
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