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bCMA-FCT/UNL - Centro de Matemática e Aplicações, Universidade Nova de Lisboa, Portugal

cDepartment of Management Science and Statistics, The University of Texas at San Antonio, San Antonio, Texas, U.S.A.

Abstract

In this paper the authors study the problem of testing the hypothesis of a doubly exchangeable covariance
matrix for three-level multivariate observations, taken on m variables over u sites and over v time/spatial
points. Through the decomposition of the main hypothesis into a set of three sub-hypotheses, the likelihood
ratio test statistic is defined, its exact moments determined, and its exact distribution studied. Because this
distribution is very much intricate, a very precise near-exact distribution is developed. Numerical studies
conducted to evaluate the closeness between this near-exact distribution and the exact distribution show the
very good performance of this approximation even for very small sample sizes. A simulation study is also
conducted and a real data example is presented.

Keywords: characteristic function, composition of hypotheses, distribution of likelihood ratio statistics,
product of independent Beta random variables, sum of independent Gamma random variables.

JEL Classification: C12

1. Introduction

Advances in computing power in the past few decades greatly encouraged the collection of multi-level
multivariate data in all fields of science: biomedical, medical, social science, engineering and business. And,
with these data sets complex multivariate testing problems occur frequently. It is common in clinical trial
studies to collect measurements on more than one response variable at several locations taken repeatedly
over time on one experimental unit to test the effectiveness of some medication, diet or treatment. These are
called three-level multivariate data. For example consider an example from a clinical trial of osteoporosis.
Osteoporosis or porous bone is an age-related disorder involving in a progressive decrease in bone mass
due to the loss of minerals — mainly calcium. As a result, bones become weakened and more susceptible
to fractures. Currently it is estimated that one of every four post-menopausal women has osteoporosis.
Although it is more common in white or Asian women older than 50 years, osteoporosis can occur in
almost any person at any age: osteoporosis is not just an ‘old womans disease’. In fact, more than 2
million American men have osteoporosis. The estimated national cost for osteoporosis and related injuries
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is $14 billion each year in the United States. Johnson and Wichern (2007) report data on a study where an
investigator measures the mineral content of three bones, radius, humerus and ulna by photon absorptiometry
to examine whether a particular dietary supplement increase bone mineral content and mass in older women.
All three measurements are also recorded on the dominant and non-dominant sides for each woman. These
doubly multivariate measurements are taken on 25 women. The bone mineral contents for the first 24 women
are measured after one year of their participation in the experimental program. Thus, for our analysis we
take only the first 24 women in the first data set, and combine these two data sets side by side into a new
one. Thus, this new data set has a three-level multivariate structure, with m = 3 variables, for u = 2
locations, over v = 2 time points. We want to test whether this new three-level multivariate data set has
doubly exchangeable covariance structure to fit a linear model (Roy and Fonseca, 2012) on this new data set.
This fact motivated us to develop a new method of testing for a doubly exchangeable covariance matrix for
three-level multivariate data. Hypothesis testing on three-level multivariate data was first studied by Roy
and Leiva (2008). These two authors introduced parametrically parsimonious models for hypotheses testing
problems by using a “Blocked compound symmetric” covariance structure on the measurement vector over
sites in addition to either an autoregressive of order one (AR(1)) or a compound symmetry (CS) correlation
structure on the spatial repeated measurements. To the best of the authors’ knowledge, tests of hypotheses
for doubly exchangeable covariance matrix for three-level multivariate data have not yet been studied.

Let y be the muv-variate partitioned real-valued random vector of all measurements. We partition this
vector y as follows:

y =

 y1
...
yv

 , where yt =

 yt1
...
ytu

 , with yts =

 yts1
...

ytsm

 ,

for s = 1, . . . , u, t = 1, . . . , v. The m-dimensional vector of measurements yts represents the replicate on the
sth location and at the tth time point.

Let Θ = Cov [y] be the (muv×muv)−dimensional partitioned covariance matrix with Cov [y] =
(
Θyt,yt∗

)
=

(Θtt∗) , and Θtt∗ = (Θyts,yt∗s∗ ) = (Θts,t∗s∗), where Θtt∗ = Cov [yt,yt∗ ] and Ωts,t∗s∗ = Cov[yts,yt∗s∗ ], for
t, t∗ = 1, . . . , v and s, s∗ = 1, . . . , u.

We say that a covariance matrix has a Doubly exchangeable covariance structure (Roy and Leiva, 2007)
if it can be written as
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Θ =



U0 U1 · · · U1 W W · · · W · · · W W · · · W
U1 U0 · · · U1 W W · · · W · · · W W · · · W
...

...
. . .

...
...

...
. . .

...
. . .

...
...

. . .
...

U1 U1 · · · U0 W W · · · W · · · W W · · · W

W W · · · W U0 U1 · · · U1 · · · W W · · · W
W W · · · W U1 U0 · · · U1 · · · W W · · · W
...

...
. . .

...
...

...
. . .

...
. . .

...
...

. . .
...

W W · · · W U1 U1 · · · U0 · · · W W · · · W
...

...
. . .

...
...

...
. . .

...
. . .

...
...

. . .
...

W W · · · W W W · · · W · · · U0 U1 · · · U1

W W · · · W W W · · · W · · · U1 U0 · · · U1

...
...

. . .
...

...
...

. . .
...

. . .
...

...
. . .

...
W W · · · W W W · · · W · · · U1 U1 · · · U0



,

= Iuv ⊗U0 + [Iv ⊗ (Ju − Iu))]⊗U1 + [Juv − (Iv ⊗ Ju)]⊗W

= Iuv ⊗ (U0 −U1) +Iv ⊗Ju ⊗ (U1 −W ) +Juv ⊗W , (1.1)

where U0 is a positive definite symmetric m ×m matrix, and U1 and W are symmetric m ×m matrices.
The matrices U0,U1 and W are all unstructured.

Thus, the vectors y11, . . . ,y1u, . . . ,yv1, . . . ,yvu are doubly exchangeable if

Cov [yts;yt∗s∗ ] =

 U0 if t = t∗ and s = s∗,
U1 if t = t∗ and s 6= s∗,
W if t 6= t∗.

The m×m diagonal blocks U0 in (1.1) represent the variance-covariance matrix of the m response variables
at any given location and at any given time point, whereas the m × m off-diagonal blocks U1 in (1.1)
represent the covariance matrix of the m response variables between any two locations and at any given time
point. We assume U0 is constant for all locations and time points, and U1 is same for all location pairs and
for all time points. The m ×m off-diagonal blocks W represent the covariance matrix of the m response
variables between any two time points. It is assumed to be the same for any pair of time points, irrespective
of location or between any two locations.

2. Formulation of the hypothesis and the likelihood ratio test

Let y ∼ Nmuv(µ,Σ). We are interested in testing the hypothesis

H0 : Σ = Θ , (2.1)

where Θ is defined in (1.1).
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In Lemma 3.1 in Roy and Fonseca (2012), it is shown that we may write

Γ•Γ∗ΘΓ∗′Γ•′ =



∆3 0 0 0 0 0 · · · 0
0 Iu−1 ⊗∆1 0 0 0 0 · · · 0
0 0 ∆2 0 0 0 · · · 0
0 0 0 Iu−1 ⊗∆1 0 0 · · · 0
0 0 0 0 ∆2 0 · · · 0
...

...
...

...
...

...
. . .

...
0 0 0 0 0 0 · · · Iu−1 ⊗∆1


,

where Γ∗ = C ′
v×v
⊗ Imu and Γ• = Iv ⊗ (C∗′

u×u
⊗ Im), where C and C∗ are orthogonal matrices whose first

columns are proportional to 1’s, so that Γ• and Γ∗ are not function of either U0, or U1 or W , and

∆1 = U0 −U1,

∆2 = U0 + (u− 1)U1 − uW = (U0 −U1) + u (U1 −W ) ,

and ∆3 = U0 + (u− 1)U1 + u (v − 1)W = (U0 −U1) + u (U1 −W ) + uvW .

Thus, to test H0 in (2.1) is equivalent to test

H0 : Σ∗ = Ω (2.2)

where
Σ∗ = Γ•Γ∗ΣΓ∗′Γ•′ and Ω = Γ•Γ∗ΘΓ∗′Γ•′ .

We may split the null hypothesis in (2.2) as

H0 ≡
(
H0c|a ||H0b|a

)
oH0a , (2.3)

where ‘o’ means ‘after’ and ‘||’ means ‘parallel’, meaning ‘either after or before’.
In (2.3),

H0a : Σ∗ = block-diag(Σ∗i , i = 1, . . . , uv) , (2.4)

is the hypothesis of independence of the uv diagonal blocks Σ∗i (i = 1, . . . , uv) of size m×m of Σ∗;

H0b|a : Σ∗2 = · · · = Σ∗u︸ ︷︷ ︸
u−1

= Σ∗u+2 = · · · = Σ∗2u︸ ︷︷ ︸
u−1

= · · · = Σ∗(v−1)u+2 = · · · = Σ∗vu︸ ︷︷ ︸
u−1

,

assuming H0a,

(2.5)

is the hypothesis of equality of v(u− 1) covariance matrices of dimension m×m, assuming H0a, and

H0c|a : Σ∗u+1 = Σ∗2u+1 = · · · = Σ∗(v−1)u+1

assuming H0a,
(2.6)

is the hypothesis of equality of the covariance matrices Σ∗u+1,Σ
∗
2u+1, . . . ,Σ

∗
(v−1)u+1, assuming H0a.

The likelihood ratio test (l.r.t.) statistic to test H0a in (2.4) is (Anderson, 2003, Sec. 9.2)

Λa =

(
|A|∏uv

j=1 |Aj |

)n/2
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where A = Γ•Γ∗A+Γ∗′Γ•′ is the is the maximum likelihood estimator (m.l.e.) of Σ∗, and Aj its j-th
diagonal m×m block, being A+ the m.l.e. of Σ.

The l.r.t. statistic to test H0b|a in (2.5) is (Anderson, 2003, Sec. 10.2)

Λb =

(
(v(u− 1))

mv(u−1)

∏v
`=1

∏u−1
k=1

∣∣A(`−1)u+1+k

∣∣
|A∗|v(u−1)

)n/2
, (2.7)

where

A∗ =

v∑
`=1

u−1∑
k=1

A(`−1)u+1+k .

The l.r.t. statistic to test H0c|a in (2.6) is (Anderson, 2003, Sec. 10.2)

Λc =

(
(v − 1)m(v−1)

∏v−1
k=1 |Aku+1|
|A∗∗|v−1

)n/2
(2.8)

where

A∗∗ =

v−1∑
k=1

Aku+1 .

Then, through an extension of Lemma 10.3.1 in (Anderson, 2003, Sec. 10.3), the l.r.t. statistic to test H0

in (2.2) will be
Λ = ΛaΛbΛc

=

(
(v(u− 1))

mv(u−1)
(v − 1)m(v−1) |A|

|A1||A∗|v(u−1) |A∗∗|v−1

)n/2
,

(2.9)

with
E
(
Λh
)

= E
(
Λha
)
E
(
Λhb
)
E
(
Λhc
)
, (2.10)

since on one hand, under H0a Λa is independent of
∏uv
j=1 |Aj | (Marques and Coelho, 2012; Coelho and

Marques, 2012b), which makes Λa independent of Λb and Λc, while on the other hand, theAj (j = 1, . . . , uv),
under H0a, are independent among themselves, which makes Λb and Λc independent because they are built
on different Aj ’s.

In the following section we obtain the expressions for the moments of all three l.r.t. statistics Λa, Λb and
Λc, as well as their distributions.

3. On the exact distribution of the l.r.t. statistic

Using the results in Coelho (2004), Coelho, Arnold and Marques (2010) and Marques, Coelho and Arnold
(2011) we may write the h-th moment of Λa as

E
(
Λha
)

=

uv−1∏
k=1

m∏
j=1

Γ
(
n−j

2

)
Γ
(
n−(uv−k)m−j

2 + n
2h
)

Γ
(
n−(uv−k)m−j

2

)
Γ
(
n−j

2 + n
2h
)

=


muv∏
j=3

(
n− j
n

)rj (n− j
n

+ h

)−rj︸ ︷︷ ︸
Φa,1(h)

(
Γ
(
n−1

2

)
Γ
(
n−2

2 + n
2h
)

Γ
(
n−1

2 + n
2h
)

Γ
(
n−2

2

))k∗
︸ ︷︷ ︸

Φa,2(h)

(3.1)

5



where

k∗ =


⌊uv

2

⌋
m odd

0 m even,
(3.2)

and

rj =

{
hj−2 + (−1)jk∗ j = 3, 4

rj−2 + hj−2 j = 5, . . . ,muv ,

with

hj =

{
uv − 1 j = 1, . . . ,m

−1 j = m+ 1, . . . ,muv − 2 .

Now, using the results in (Coelho and Marques, 2012a; Coelho, Arnold and Marques, 2010; Marques,
Coelho and Arnold, 2011) we obtain the expression for the h-th moment of Λb as

E
(
Λhb
)

=

m∏
j=1

v(u−1)∏
k=1

Γ
(
n−1

2 −
j−1

2v(u−1) + k−1
v(u−1)

)
Γ
(
n−j

2 + n
2h
)

Γ
(
n−1

2 −
j−1

2v(u−1) + k−1
v(u−1) + n

2h
)

Γ
(
n−j

2

)
=


m∏
j=2

(
n− j
n

)sj (n− j
n

+ h

)−sj︸ ︷︷ ︸
Φb,1(h)

×


bm/2c∏
j=1

v(u−1)∏
k=1

Γ
(
n− 1 + k−2j

v(u−1)

)
Γ
(
n− 1 +

⌊
k−2j
v(u−1)

⌋
+ nh

)
Γ
(
n− 1 + k−2j

v(u−1) + nh
)

Γ
(
n− 1 +

⌊
k−2j
v(u−1)

⌋)


×


v(u−1)∏
k=1

Γ
(
n−m

2 + m−1
2 + 2k−m−1

2v(u−1)

)
Γ
(
n−m

2 +
⌊
m−1

2 + 2k−m−1
2v(u−1)

⌋
+ n

2h
)

Γ
(
n−m

2 + m−1
2 + 2k−m−1

2v(u−1) + n
2h
)

Γ
(
n−m

2 +
⌊
m−1

2 + 2k−m−1
2v(u−1)

⌋)

m⊥⊥2

︸ ︷︷ ︸
Φb,2(h)

(3.3)
where sj (j = 2, . . . ,m) are given in Appendix A.

By looking at (2.7) and (2.8) we may see that the h-th moment of Λc may be obtained, as follows, from
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the h-th moment of Λb by first replacing v by 1 and then replacing u by v,

E
(
Λhc
)

=

m∏
j=1

v−1∏
k=1

Γ
(
n−1

2 −
j−1

2(v−1) + k−1
v−1

)
Γ
(
n−j

2 + n
2h
)

Γ
(
n−1

2 −
j−1

2(v−1) + k−1
v−1 + n

2h
)

Γ
(
n−j

2

)
=


m∏
j=2

(
n− j
n

)δj (n− j
n

+ h

)−δj︸ ︷︷ ︸
Φc,1(h)

×


bm/2c∏
j=1

v−1∏
k=1

Γ
(
n− 1 + k−2j

v−1

)
Γ
(
n− 1 +

⌊
k−2j
v−1

⌋
+ nh

)
Γ
(
n− 1 + k−2j

v−1 + nh
)

Γ
(
n− 1 +

⌊
k−2j
v−1

⌋)


×


v−1∏
k=1

Γ
(
n−m

2 + m−1
2 + 2k−m−1

2(v−1)

)
Γ
(
n−m

2 +
⌊
m−1

2 + 2k−m−1
2(v−1)

⌋
+ n

2h
)

Γ
(
n−m

2 + m−1
2 + 2k−m−1

2(v−1) + n
2h
)

Γ
(
n−m

2 +
⌊
m−1

2 + 2k−m−1
2(v−1)

⌋)

m⊥⊥2

︸ ︷︷ ︸
Φc,2(h)

(3.4)
where the shape parameters δj (j = 2, . . . ,m) are given in Appendix A.

Since the supports of Λa, Λb and Λc are delimited, their distributions are defined by their moments, and
as such, from the first expression in (3.1) we may write

Λa
st∼

m∏
j=1

uv−1∏
k=1

(Xjk)
n/2

, where Xjk ∼ Beta
(
n− (uv − k)m− j

2
,

(uv − k)m

2

)
, (3.5)

where ‘
st∼’ means ‘stochastically equivalent’ and Xjk (j = 1, . . . ,m; k = 1, . . . , uv − 1) are independent ran-

dom variables, while from the first expression in (3.3) we may write

Λb
st∼

m∏
j=1

v(u−1)∏
k=1

(
X∗jk

)n/2
, where X∗jk ∼ Beta

(
n− j

2
,
j − 1

2
+

2k − j − 1

2v(u− 1)

)
, (3.6)

where X∗jk (j = 1, . . . ,m; k = 1, . . . , v(u− 1)) are independent, and from the first expression in (3.4) we may
write

Λc
st∼

m∏
j=1

v−1∏
k=1

(
X∗∗jk

)n/2
, where X∗∗jk ∼ Beta

(
n− j

2
,
j − 1

2
+

2k − j − 1

2(v − 1)

)
, (3.7)

where X∗∗jk (j = 1, . . . ,m; k = 1, . . . , v − 1) are independent, so that we may write for the overall l.r.t. statistic
for H0 in (2.3)

Λ
st∼

m∏
j=1


(
uv−1∏
k=1

Xjk

)n/2
×

v(u−1)∏
k=1

X∗jk

n/2

×

(
v−1∏
k=1

X∗∗jk

)n/2 , (3.8)

where all random variables are independent.
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On the other hand, based on the results in Appendix B and from the second expressions in (3.1)-(3.4)
we may respectively write, for Λa,

Λa
st∼

muv∏
j=3

e−Zj

×
 k∗∏
j=1

(Wj)
n/2

 (3.9)

where

Zj ∼ Γ

(
rj ,

n− j
n

)
and Wj ∼ Beta

(
n− 2

2
,

1

2

)
(3.10)

are all independent random variables, while for Λb we may write

Λb
st∼

 m∏
j=2

e−Z
∗
j

×
bm/2c∏

j=1

v(u−1)∏
k=1

(
W ∗1jk

)n×
v(u−1)∏

k=1

(W ∗2k)
n/2

m⊥⊥2

(3.11)

where

Z∗j ∼ Γ

(
sj ,

n− j
n

)
, W ∗1jk ∼ Beta

(
n− 1 +

⌊
k − 2j

v(u− 1)

⌋
,
k − 2j

v(u− 1)
−
⌊
k − 2j

v(u− 1)

⌋)
, (3.12)

and

W ∗2k ∼ Beta
(
n−m

2
+

⌊
m− 1

2
+

2k −m− 1

2v(u− 1)

⌋
,
m− 1

2
+

2k −m− 1

2v(u− 1)
−
⌊
m− 1

2
+

2k −m− 1

2v(u− 1)

⌋)
(3.13)

are all independent random variables, while for Λc we may write

Λc
st∼

 m∏
j=2

e−Z
∗∗
j

×
bm/2c∏

j=1

v−1∏
k=1

(
W ∗∗1jk

)n×(v−1∏
k=1

(W ∗∗2k )
n/2

)m⊥⊥2

(3.14)

where

Z∗∗j ∼ Γ

(
δj ,

n− j
n

)
, W ∗∗1jk ∼ Beta

(
n− 1 +

⌊
k − 2j

v − 1

⌋
,
k − 2j

v − 1
−
⌊
k − 2j

v − 1

⌋)
, (3.15)

and

W ∗∗2k ∼ Beta
(
n−m

2
+

⌊
m− 1

2
+

2k −m− 1

2(v − 1)

⌋
,
m− 1

2
+

2k −m− 1

2(v − 1)
−
⌊
m− 1

2
+

2k −m− 1

2(v − 1)

⌋)
(3.16)

are all independent random variables.
Thus, we have the following Theorem.

Theorem 1. The exact distribution of the overall l.r.t. statistic Λ in (2.9), to test H0 in (2.2) or (2.3) is,
for general u, v and m, the same as that ofmuv∏
j=2

e−Tj

×
 k∗∏
j=1

Wj

n/2×
bm/2c∏

j=1

v(u−1)∏
k=1

W ∗1jk

n×
bm/2c∏

j=1

v−1∏
k=1

W ∗∗1jk

n×

v(u−1)∏

k=1

W ∗2k

n/2×(v−1∏
k=1

W ∗∗2k

)n/2
m⊥⊥2

(3.17)
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where, for j = 2, . . . ,muv,

Tj ∼ Γ

(
µj ,

n− j
n

)
,

with

µj =

muv∑
j=2

(
r+
j + s+

j + δ+
j

)
(3.18)

where

r+
j =

{
0 j = 2

rj j = 3, . . . ,muv

and

ω+
j =

{
ωj j = 2, . . . ,m

0 j = m+ 1, . . . ,muv

with ω ≡ s or ω ≡ δ, and where the shape parameters sj and δj are defined in Appendix A. The distributions
of Wj, W

∗
1jk, W ∗2k, W ∗∗1jk and W ∗∗2k are defined in (3.10), (3.12), (3.13), (3.15) and (3.16).

Proof. The proof of the above theorem is rather trivial, from the previously established results. We may
only remark that the random variables Tj are the sum of the random variables Zj , Z

∗
j and Z∗∗j , which are

independent Gamma distributed random variables, all with the same rate parameters n−j
n , for a given j. As

such, for a given j, their sum is a Gamma distributed random variable with that same rate parameter and
a shape parameter which is the sum of the original shape parameters. �

The following Corollary refers to the particular cases for v = 1 and v = 2, which are particular cases of
interest.

Corollary 1. For both v = 1 and v = 2, the hypothesis H0c|a vanishes and as such the distribution of Λ is
in this case the same as that ofmuv∏

j=2

e−Tj

×
 k∗∏
j=1

Wj

n/2×
bm/2c∏

j=1

v(u−1)∏
k=1

W ∗1jk

n×

v(u−1)∏

k=1

W ∗2k

n/2

m⊥⊥2

(3.19)

where, for j = 2, . . . ,muv,

Tj ∼ Γ

(
µ∗j ,

n− j
n

)
,

with

µ∗j =

muv∑
j=2

(
r+
j + s+

j

)
(3.20)

where

r+
j =

{
0 j = 2

rj j = 3, . . . ,muv
and s+

j =

{
sj j = 2, . . . ,m

0 j = m+ 1, . . . ,muv

where the shape parameters sj are defined in Appendix A. The distributions of Wj, W
∗
1jk and W ∗2k, are

defined in (3.10), (3.12) and (3.13).

The case for v = 1 is equivalent to the test for block compound symmetric covariance structure and it is
addressed in Coelho and Roy (2013).
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4. The characteristic function of W = − log Λ

The reason why in the previous section we actually obtain two equivalent representations for the exact
distribution of Λ, which are the one obtained from (3.8) and the one in Theorem 1 is because the first of
these neither does it yield a manageable cumulative distribution function nor is it adequate to lead to a
sharp approximation to the exact distribution of Λ.

In order to be able to obtain a very sharp and manageable approximation to the exact distribution of Λ,
we will base our developments in the representation given by Theorem 1 and Corollary 1.

From Theorem 1 and expressions (3.1)–(3.4) we may write the characteristic function (c.f.) ofW = − log Λ
as

ΦW (t) = E
(
eitW

)
= E

(
Λ−it

)
=


muv∏
j=2

(
n− j
n

)µj
(
n− j
n
− it

)−µj

︸ ︷︷ ︸
ΦW,1(t)

× Φa,2(−it) Φb,2(−it) Φc,2(−it)︸ ︷︷ ︸
ΦW,2(t)

(4.1)

where µj is given by (3.18), Φa,2( · ), Φb,2( · ) and Φc,2( · ) are defined in (3.1)–(3.4), and ΦW,1(t) is actually
equal to Φa,1(−it)Φb,1(−it)Φc,1(−it).

For v = 1 and v = 2, according to Corollary 1 in the previous section ΦW (t) reduces to

ΦW (t) =


muv∏
j=2

(
n− j
n

)µ∗j (n− j
n
− it

)−µ∗j︸ ︷︷ ︸
ΦW,1(t)

× Φa,2(−it) Φb,2(−it)︸ ︷︷ ︸
ΦW,2(t)

(4.2)

for µ∗j given by (3.20) and where now ΦW,1(t) is equal to Φa,1(−it)Φb,1(−it).
Expressions (4.1) and (4.2), together with expressions (3.17) and (3.19), show that the exact distribution

of W = − log Λ is the same as that of the sum of muv − 1 independent Gamma random variables with an
independent sum of a number of independent Logbeta random variables.

Then, in building the near-exact distributions we will keep ΦW,1(t) untouched and will approximate
ΦW,2(t) asymptotically by the c.f. of a finite mixture of Gamma distributions.

5. Near-exact distributions

Indeed, based on the result in Section 5 of Tricomi and Erdélyi (1951), we may, for increasing values
of a, asymptotically replace the distribution of any Logbeta(a, b) distributed random variable by an infinite
mixture of Γ(b+ `, a) distributions (` = 0, 1, . . . ). As such, we could replace ΦW,2(t) in either (4.1) or (4.2)
by the c.f. of the sum of infinite mixtures of Gamma distributions, which would be the same as the c.f. of
an infinite mixture of sums of Gamma distributions. Although it happens that these Gamma distributions
would have different rate parameters, these parameters would anyway be of comparable magnitude. As such,
in building our near-exact distributions for W = − log Λ and Λ, while we will leave ΦW,1(t) unchanged, we
will replace ΦW,2(t) in either (4.1) or (4.2), by

Φ∗(t) =

m∗∑
`=0

π` ν
r+`(ν − it)−(r+`) (5.1)
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which is the c.f. of a finite mixture of Γ(r + `, ν) distributions, where, for the general case in (4.1) and for
k∗ in (3.2) and v > 1, we will take

r =
k∗

2
+

bm/2c∑
j=1

v(u−1)∑
k=1

k − 2j

v(u− 1)
−
⌊
k − 2j

v(u− 1)

⌋
+

bm/2c∑
j=1

v−1∑
k=1

k − 2j

v(u− 1)
−
⌊
k − 2j

v − 1

⌋

+(m ⊥⊥ 2)

v(u−1)∑
k=1

m− 1

2
+

2k −m− 1

2v(u− 1)
−
⌊
m− 1

2
+

2k −m− 1

2v(u− 1)

⌋
+

v−1∑
k=1

m− 1

2
+

2k −m− 1

2(v − 1)
−
⌊
m− 1

2
+

2k −m− 1

2(v − 1)

⌋

=


m

4
(uv − 3) even m

1

2

⌊uv
2

⌋
+
m+ 1

4
(uv − 3) odd m,

(5.2)

which is the sum of all the second parameters of the Logbeta distributions in ΦW,2(t) in (4.1), while for the
particular case in (4.2) we will take

r =
k∗

2
+

bm/2c∑
j=1

v(u−1)∑
k=1

k − 2j

v(u− 1)
−
⌊
k − 2j

v(u− 1)

⌋

+(m ⊥⊥ 2)

v(u−1)∑
k=1

m− 1

2
+

2k −m− 1

2v(u− 1)
−
⌊
m− 1

2
+

2k −m− 1

2v(u− 1)

⌋

=


m

4

(
v(u− 1)− 1

)
even m

1

2

⌊uv
2

⌋
+
m+ 1

4

(
v(u− 1)− 1

)
odd m,

(5.3)

which is the sum of all the second parameters of the Logbeta distributions in ΦW,2(t) in (4.2).
The parameter ν in (5.1) is then taken as the rate parameter in

Φ∗∗(t) = θ νs1(ν − it)−s1 + (1− θ)νs2(ν − it)−s2

where θ, ν, s1 and s2 are determined in such a way that

dΦW,2(t)

dth

∣∣∣∣
t=0

=
dΦ∗∗(t)

dth

∣∣∣∣
t=0

for h = 1, . . . , 4 ,

while the weights π` (` = 0, . . . ,m∗ − 1) in (5.1) will then be determined in such a way that

dΦW,2(t)

dth

∣∣∣∣
t=0

=
dΦ∗(t)

dth

∣∣∣∣
t=0

for h = 1, . . . ,m∗ ,

with πm∗ = 1−
∑m∗−1
`=0 π`.

11



This procedure yields near-exact distributions for W which will match the first m∗ exact moments of W
and which have c.f.

ΦW,1(t)Φ∗(t) ,

with ΦW,1(t) given by (4.1) or (4.2) and Φ∗(t) by (5.1), where r, given by (5.2) or (5.3) is always either an
integer or a half-integer.

As such, the near-exact distributions developed yield, for W , distributions which, for non-integer r, are
mixtures, with weights π` (` = 0, . . . ,m∗), of m∗ + 1 Generalized Near-Integer Gamma (GNIG) distributions
of depth muv with integer shape parameters µj (j = 2, . . . ,muv) and real shape parameter r, in the general
case, or shape parameters µ∗j (j = 2, . . . ,muv) for the case of v = 1 or v = 2, and corresponding rate
parameters (n−j)/n (j = 2, . . . ,muv) and ν, and which, for integer r, are similar mixtures but of Generalized
Integer Gamma (GIG) distributions, with the same shape and rate parameters (see Coelho (1998, 2004) and
Appendix C for further details on the GIG and GNIG distributions and their probability density and
cumulative distribution functions).

Using the notation in Appendix C for the probability density and cumulative distribution functions of
the GNIG distribution, the near-exact distributions obtained for W , for the general case of v > 2 and for
the case of non-integer r, will have probability density and cumulative distribution functions respectively of
the form

f∗W (w) =

m∗∑
`=0

π` f
GNIG

(
w
∣∣∣µ2, . . . , µmuv; r + `;

n− 2

n
, . . . ,

n−muv
n

; ν;muv

)
, w > 0

and

F ∗W (w) =

m∗∑
`=0

π` F
GNIG

(
w
∣∣∣µ2, . . . , µmuv; r + `;

n− 2

n
, . . . ,

n−muv
n

; ν;muv

)
, w>0 ,

while the near-exact probability density and cumulative distribution functions of Λ are respectively given by

f∗Λ(λ) =

m∗∑
`=0

π` f
GNIG

(
− log λ

∣∣∣µ2, . . . , µmuv; r + `;
n− 2

n
, . . . ,

n−muv
n

; ν;muv

)
1

λ
, 0<λ<1

and

F ∗Λ(λ) =

m∗∑
`=0

π`

(
1− FGNIG

(
− log λ

∣∣∣µ2, . . . , µmuv; r + `;
n− 2

n
, . . . ,

n−muv
n

; ν;muv

))
, 0<λ<1 .

For the case v = 1 or v = 2 all we have to do is to replace the shape parameters µj given by (3.18) by the
shape parameters µ∗j given by (3.20) and use r given by (5.3), instead of r given by (5.2).

For integer r, all we have to do is to replace the GNIG probability density and cumulative distribution
functions by their GIG counterparts (see Appendix C), yielding near-exact distributions for W , for the
general case of v > 2, with probability density and cumulative distribution functions respectively of the form

f∗W (w) =

m∗∑
`=0

π` f
GIG

(
w; µ2, . . . , µmuv, r + `;

n− 2

n
, . . . ,

n−muv
n

, ν;muv

)
, w > 0

and

F ∗W (w) =

m∗∑
`=0

π` F
GIG

(
w; µ2, . . . , µmuv, r + `;

n− 2

n
, . . . ,

n−muv
n

, ν;muv

)
, w>0 ,
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while the near-exact probability density and cumulative distribution functions of Λ are respectively given by

f∗Λ(λ) =

m∗∑
`=0

π` f
GIG

(
− log λ ; µ2, . . . , µmuv, r + `;

n− 2

n
, . . . ,

n−muv
n

, ν;muv

)
1

λ
, 0<λ<1 (5.4)

and

F ∗Λ(λ) =

m∗∑
`=0

π`

(
1− FGIG

(
− log λ ; µ2, . . . , µmuv, r + `;

n− 2

n
, . . . ,

n−muv
n

, ν;muv

))
, 0<λ<1 ,

(5.5)
and where, similar to what happens for the case of non-integer r, for the case v = 1 or v = 2 we have to
replace the shape parameters µj given by (3.18) by the shape parameters µ∗j given by (3.20) and use r given
by (5.3), instead of r given by (5.2).

6. Numerical studies

In order to assess the performance of the near-exact distributions developed we will use

∆ =
1

2π

∫ +∞

−∞

∣∣∣∣ΦW (t)− ΦW,1(t)Φ∗(t)

t

∣∣∣∣ dt (6.1)

with
∆ ≥ max

w
|FW (w)− F ∗W (w)| ,

as a measure of proximity between the exact and the near-exact distributions, where ΦW (t) is the exact c.f.
of W in (4.1) or (4.2) and FW ( · ) and F ∗W ( · ) represent respectively the exact and near-exact cumulative
distribution functions of W , corresponding respectively to ΦW (t) and ΦW,1(t)Φ∗(t).

In Tables 1-3 we may analyze values of ∆ for different combinations of values of m, u and v and different
sample sizes. For each combination of values of m, u and v, at least three different sample sizes, that is,
values of n, are used, exceeding the total number of variables muv by 2, 30 and 100. For larger combinations
of values of m, u and v, some larger values of n are also used to illustrate the asymptotic behavior of the
near-exact distributions in what concerns the sample size. For all near-exact distributions, values of m∗

equal to 4, 6 and 10 are used, that is, we used for each case near-exact distributions matching 4, 6 and 10
exact moments of W . Smaller values of ∆ indicate a closer agreement with the exact distribution and as
such, a better performance of the corresponding near-exact distribution.

We may see how the near-exact distributions developed show very sharp approximations to the exact
distribution even for very small samples, that is, for sample sizes hardly exceeding the total number of
variables involved. Moreover, they also show clear asymptotic behaviors not only for increasing sample sizes,
but also for increasing values of m, u and v, with the asymptotic behavior in terms of sample size becoming
apparent for larger sample sizes as the values of m, u and v get larger.
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Table 1: Values of the measure ∆ for the near-exact distributions for m = 2

m = 2

m∗ m∗

n 4 6 10 n 4 6 10

u = 2 , v = 2 u = 2 , v = 5

10 4.23×10−12 9.00×10−15 2.64×10−19 22 7.80×10−17 8.63×10−22 8.26×10−30

38 1.68×10−14 3.06×10−18 9.23×10−25 50 2.39×10−17 2.04×10−22 1.42×10−31

108 9.17×10−17 1.97×10−21 8.66×10−30 120 4.65×10−19 9.74×10−25 5.38×10−35

u = 5 , v = 2 u = 2 , v = 10

22 1.80×10−16 4.11×10−21 1.39×10−29 42 1.73×10−19 1.88×10−25 1.07×10−36

50 6.28×10−17 6.99×10−22 6.21×10−31 70 4.23×10−19 4.80×10−25 2.73×10−36

120 1.30×10−18 2.97×10−24 1.10×10−34 140 3.16×10−20 1.19×10−26 7.31×10−39

u = 5 , v = 5 u = 5 , v = 10

52 1.78×10−20 8.05×10−27 5.49×10−39 102 6.18×10−24 1.72×10−31 2.71×10−46

80 6.71×10−20 3.77×10−26 3.56×10−38 130 5.38×10−23 2.67×10−30 1.23×10−44

150 7.77×10−21 1.71×10−27 2.37×10−40 200 2.24×10−23 7.15×10−31 1.29×10−45

250 8.33×10−22 7.33×10−29 1.58×10−42 300 4.93×10−24 8.25×10−32 3.96×10−47

u = 10 , v = 2 u = 10 , v = 5

42 1.10×10−19 1.32×10−25 8.00×10−37 102 6.53×10−24 1.80×10−31 2.77×10−46

70 2.73×10−19 3.35×10−25 1.79×10−36 130 5.69×10−23 2.80×10−30 1.26×10−44

140 2.06×10−20 8.25×10−27 4.20×10−39 200 2.37×10−23 7.50×10−31 1.32×10−45

240 1.83×10−21 2.69×10−28 1.74×10−41 300 5.22×10−24 8.66×10−32 4.06×10−47

u = 10 , v = 10

202 3.92×10−28 2.22×10−36 1.02×10−53

230 4.39×10−27 5.35×10−35 9.94×10−52

300 4.53×10−27 5.48×10−35 8.66×10−52

400 2.04×10−27 1.82×10−35 1.39×10−52

500 8.98×10−28 5.88×10−36 2.23×10−53

1000 4.50×10−29 9.29×10−38 2.99×10−56

7. A Real Data Example

To illustrate our proposed testing method, we test the hypothesis (2.1) on a real data set. The data set
is from Johnson and Wichern (2007, p. 43 and p. 353). An investigator measured the mineral content of
bones (radius, humerus and ulna) by photon absorptiometry to examine whether dietary supplements would
slow bone loss in 25 older women. Measurements were recorded for the three bones on the dominant and
non-dominant sides (Johnson and Wichern, 2007, p. 43). Thus, the data is two-level multivariate and clearly
u = 2 and m = 3.

The bone mineral contents for the first 24 women one year after their participation in an experimental
program is given in Johnson and Wichern (2007, p. 353). Thus, for our analysis we take only the first 24
women in the first data set, and combine these two data sets side by side into a new one, which we analyze
in this article. Thus, this new data set has a three-level multivariate structure, with v = 2, u = 2 and m = 3.

We rearrange the variables in the new data set by grouping together the mineral content of the dominant
sides of radius, humerus and ulna as the first three variables, that is, the variables in the first location (s = 1)
and then the mineral contents for the non-dominant side of the same bones (s = 2) on the first year (t = 1)
of the experiment; and do the same thing at the second year (t = 2) of the experiment.
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Table 2: Values of the measure ∆ for the near-exact distributions for m = 5

m = 5

m∗ m∗

n 4 6 10 n 4 6 10

u = 2 , v = 2 u = 2 , v = 5

22 8.71×10−16 1.35×10−19 5.78×10−27 52 7.45×10−21 7.79×10−27 5.53×10−38

50 2.88×10−16 2.22×10−20 1.28×10−27 80 3.98×10−20 1.16×10−25 7.02×10−37

120 5.50×10−18 8.15×10−23 1.98×10−31 150 1.12×10−20 8.20×10−27 1.09×10−38

250 1.52×10−21 4.06×10−28 9.06×10−41

350 3.47×10−22 4.79×10−29 3.05×10−42

u = 5 , v = 2 u = 2 , v = 10

52 2.14×10−19 2.56×10−25 9.77×10−38 102 3.31×10−22 3.53×10−29 4.93×10−43

80 7.41×10−19 1.11×10−24 9.36×10−37 130 2.76×10−21 5.32×10−28 2.25×10−41

150 7.86×10−20 4.64×10−26 1.32×10−38 200 1.09×10−21 1.36×10−28 2.38×10−42

250 8.06×10−21 1.91×10−27 1.04×10−40 300 2.31×10−22 1.53×10−29 7.36×10−44

350 1.66×10−21 2.09×10−28 3.40×10−42 500 2.43×10−23 6.50×10−31 5.05×10−46

u = 5 , v = 5 u = 5 , v = 10

127 5.22×10−23 2.70×10−30 8.95×10−45 252 4.03×10−26 1.58×10−34 2.67×10−51

155 5.10×10−22 5.07×10−29 5.83×10−43 280 4.72×10−25 3.93×10−33 2.85×10−49

225 2.91×10−22 2.16×10−29 1.35×10−43 350 6.35×10−25 5.45×10−33 4.19×10−49

450 2.07×10−23 5.13×10−31 3.55×10−46 450 3.70×10−25 2.46×10−33 1.13×10−49

650 3.99×10−24 5.10×10−32 9.27×10−48 1000 1.70×10−26 3.15×10−35 1.11×10−52

u = 10 , v = 2 u = 10 , v = 5

102 3.18×10−22 3.16×10−29 4.45×10−43 252 4.41×10−26 1.76×10−34 3.14×10−51

130 2.70×10−21 4.83×10−28 2.05×10−41 280 5.16×10−25 4.38×10−33 3.34×10−49

200 1.09×10−21 1.26×10−28 2.21×10−42 350 6.94×10−25 6.09×10−33 4.92×10−49

500 2.49×10−23 6.13×10−31 4.78×10−46 450 4.05×10−25 2.75×10−33 1.32×10−49

1000 1.86×10−26 3.52×10−35 1.30×10−52

u = 10 , v = 10

502 3.22×10−29 1.01×10−38 9.76×10−58

530 3.52×10−28 2.35×10−37 9.82×10−56

600 7.50×10−28 6.22×10−37 3.97×10−55

1000 3.27×10−28 1.76×10−37 4.67×10−56

5000 3.02×10−31 9.42×10−42 8.31×10−63

The resulting m.l.e. of Σ is

A+
=



0.01278 0.02180 0.00861 0.01001 0.01967 0.00742 0.01271 0.02461 0.00840 0.01019 0.01937 0.00820

0.02180 0.07898 0.01556 0.01762 0.06574 0.01150 0.02469 0.08474 0.01837 0.01868 0.06899 0.01424

0.00861 0.01556 0.01039 0.00769 0.01678 0.00683 0.00820 0.02036 0.01026 0.00834 0.01713 0.00698

0.01001 0.01762 0.00769 0.01082 0.02041 0.00802 0.01025 0.02081 0.00777 0.01068 0.02072 0.00889

0.01967 0.06574 0.01678 0.02041 0.06870 0.01578 0.02212 0.07380 0.01974 0.02184 0.07289 0.01869

0.00742 0.01150 0.00683 0.00802 0.01578 0.00928 0.00823 0.01540 0.00678 0.00853 0.01630 0.00960

0.01271 0.02469 0.00820 0.01025 0.02212 0.00823 0.01487 0.02827 0.00860 0.01070 0.02315 0.00890

0.02461 0.08474 0.02036 0.02081 0.07380 0.01540 0.02827 0.10068 0.02296 0.02251 0.08056 0.01756

0.00840 0.01837 0.01026 0.00777 0.01974 0.00678 0.00860 0.02296 0.01103 0.00832 0.02033 0.00723

0.01019 0.01868 0.00834 0.01068 0.02184 0.00853 0.01070 0.02251 0.00832 0.01127 0.02259 0.00928

0.01937 0.06899 0.01713 0.02072 0.07289 0.01630 0.02315 0.08056 0.02033 0.02259 0.08083 0.01884

0.00820 0.01424 0.00698 0.00889 0.01869 0.00960 0.00890 0.01756 0.00723 0.00928 0.01884 0.01202



.
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Table 3: Values of the measure ∆ for the near-exact distributions for m = 10

m = 10

m∗ m∗

n 4 6 10 n 4 6 10

u = 2 , v = 2 u = 2 , v = 5

42 1.43×10−17 1.45×10−22 3.20×10−32 102 1.30×10−23 2.68×10−31 1.27×10−46

70 2.03×10−17 2.06×10−22 4.03×10−32 130 8.59×10−22 1.96×10−28 1.48×10−41

140 7.01×10−19 2.26×10−24 4.43×10−35 200 2.98×10−22 4.60×10−29 1.49×10−42

300 5.74×10−23 4.83×10−30 4.44×10−44

500 5.53×10−24 1.94×10−31 2.95×10−46

750 7.93×10−25 1.33×10−32 4.45×10−48

1000 1.95×10−25 1.90×10−33 2.13×10−49

u = 5 , v = 2 u = 2 , v = 10

102 2.49×10−24 3.43×10−31 2.19×10−45 202 2.19×10−26 5.75×10−35 3.99×10−52

130 1.57×10−23 5.03×10−30 1.02×10−43 230 2.57×10−25 1.40×10−33 4.03×10−50

200 3.21×10−24 1.21×10−30 1.09×10−44 300 2.86×10−25 1.46×10−33 3.73×10−50

300 2.45×10−25 1.30×10−31 3.41×10−46 500 6.25×10−26 1.61×10−34 1.04×10−51

500 1.37×10−26 5.31×10−33 2.34×10−48 1000 3.37×10−27 2.58×10−36 1.49×10−54

u = 5 , v = 5 u = 5 , v = 10

252 6.13×10−26 2.94×10−34 9.95×10−51 502 5.33×10−30 7.80×10−40 1.50×10−59

280 7.19×10−25 7.31×10−33 1.06×10−48 530 5.84×10−29 1.81×10−38 1.51×10−57

350 9.71×10−25 1.02×10−32 1.56×10−48 600 1.25×10−28 4.80×10−38 6.12×10−57

750 8.94×10−26 3.32×10−34 6.30×10−51 1000 5.49×10−29 1.37×10−38 7.25×10−58

1500 4.19×10−27 4.47×10−36 6.99×10−54 2000 3.55×10−30 2.85×10−40 1.55×10−60

u = 10 , v = 2 u = 10 , v = 5

202 1.20×10−26 3.09×10−35 1.91×10−52 502 4.91×10−29 1.64×10−38 2.66×10−57

230 1.37×10−25 7.41×10−34 1.90×10−50 530 5.38×10−28 3.81×10−37 2.67×10−55

300 1.47×10−25 7.51×10−34 1.72×10−50 600 1.15×10−27 1.01×10−36 1.08×10−54

500 3.03×10−26 7.93×10−35 4.68×10−52 1000 5.08×10−28 2.87×10−37 1.27×10−55

1000 1.57×10−27 1.24×10−36 6.54×10−55 2000 3.30×10−29 5.97×10−39 2.70×10−58

5000 4.77×10−31 1.55×10−41 2.26×10−62

u = 10 , v = 10

1002 4.36×10−33 4.29×10−44 4.19×10−66

1030 4.03×10−32 8.04×10−43 3.14×10−64

1100 1.03×10−31 2.74×10−42 1.92×10−63

2000 6.59×10−32 1.25×10−42 4.37×10−64

5000 1.60×10−33 6.46×10−45 1.03×10−67

We see that the variance-covariance matrices (U0) of the three mineral contents for the dominant and
non-dominant sides appear very similar for the first as well as for the second years. Also, the covariance
matrices (U1) of the three bones between the dominant and non-dominant sides seem to be fairly similar
for both the years. Finally, the covariance matrices (W ) of the three bones between the two years seem to
be similar too.

Thus, we may think about testing the hypothesis that the population covariance matrix has a doubly
exchangeable covariance structure. As stated in Section 2, this is equivalent to test the hypothesis in (2.2).
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We thus compute the m.l.e. of Σ∗, that is the matrix

A = Γ•Γ∗A+Γ∗′Γ•′

=



0.04470 0.08722 0.03335 0.00241 0.00228 0.00038 0.00098 0.00380 0.00083 0.00044 0.00291 0.00070

0.08722 0.30566 0.06989 0.00462 0.01345 0.00573 0.00470 0.01587 0.00548 0.00168 0.00480 0.00031

0.03335 0.06989 0.03452 0.00007 0.00191 0.00036 0.00085 0.00455 0.00105 0.00020 0.00375 0.00062

0.00241 0.00462 0.00007 0.00356 0.00525 0.00092 0.00038 0.00024 0.00001 0.00029 0.00007 0.00008

0.00228 0.01345 0.00191 0.00525 0.01657 0.00355 0.00006 0.00001 0.00032 0.00022 0.00105 0.00005

0.00038 0.00573 0.00036 0.00092 0.00355 0.00670 0.00036 0.00061 0.00043 0.00050 0.00047 0.00064

0.00098 0.00470 0.00085 0.00038 0.00006 0.00036 0.00087 0.00079 0.00007 0.00037 0.00009 0.00019

0.00380 0.01587 0.00455 0.00024 0.00001 0.00061 0.00079 0.00523 0.00023 0.00025 0.00161 0.00025

0.00083 0.00548 0.00105 0.00001 0.00032 0.00043 0.00007 0.00023 0.00090 0.00018 0.00016 0.00030

0.00044 0.00168 0.00020 0.00029 0.00022 0.00050 0.00037 0.00025 0.00018 0.00060 0.00019 0.00018

0.00291 0.00480 0.00375 0.00007 0.00105 0.00047 0.00009 0.00161 0.00016 0.00019 0.00173 0.00006

0.00070 0.00031 0.00062 0.00008 0.00005 0.00064 0.00019 0.00025 0.00030 0.00018 0.00006 0.00060



,

where the orthogonal matrices Γ• and Γ∗ are

Γ• = Iv ⊗ (C∗′
u×u
⊗ Im) =



1√
2

0 0 1√
2

0 0 0 0 0 0 0 0

0 1√
2

0 0 1√
2

0 0 0 0 0 0 0

0 0 1√
2

0 0 1√
2

0 0 0 0 0 0
1√
2

0 0 − 1√
2

0 0 0 0 0 0 0 0

0 1√
2

0 0 − 1√
2

0 0 0 0 0 0 0

0 0 1√
2

0 0 − 1√
2

0 0 0 0 0 0

0 0 0 0 0 0 1√
2

0 0 1√
2

0 0

0 0 0 0 0 0 0 1√
2

0 0 1√
2

0

0 0 0 0 0 0 0 0 1√
2

0 0 1√
2

0 0 0 0 0 0 1√
2

0 0 − 1√
2

0 0

0 0 0 0 0 0 0 1√
2

0 0 − 1√
2

0

0 0 0 0 0 0 0 0 1√
2

0 0 − 1√
2



,

and

Γ∗ = C ′
v×v
⊗ Imu =



1√
2

0 0 0 0 0 1√
2

0 0 0 0 0

0 1√
2

0 0 0 0 0 1√
2

0 0 0 0

0 0 1√
2

0 0 0 0 0 1√
2

0 0 0

0 0 0 1√
2

0 0 0 0 0 1√
2

0 0

0 0 0 0 1√
2

0 0 0 0 0 1√
2

0

0 0 0 0 0 1√
2

0 0 0 0 0 1√
2

1√
2

0 0 0 0 0 − 1√
2

0 0 0 0 0

0 1√
2

0 0 0 0 0 − 1√
2

0 0 0 0

0 0 1√
2

0 0 0 0 0 − 1√
2

0 0 0

0 0 0 1√
2

0 0 0 0 0 − 1√
2

0 0

0 0 0 0 1√
2

0 0 0 0 0 − 1√
2

0

0 0 0 0 0 1√
2

0 0 0 0 0 − 1√
2



,

with

C = C∗ =

( 1√
2

1√
2

1√
2

− 1√
2

)
.
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Now, from (2.9) we have

Λ =

(
26 |A|
|A1| |A2 +A4| |A3|

)n/2
,

where A1, . . . ,A4 denote the four diagonal blocks of dimension 3×3 of A and where n = 24. The calculated
value of Λ is λ = 6.18767×10−35.

Using then the near-exact distribution for Λ which matches m∗ = 4 exact moments, with probability
density and cumulative distribution functions given by (5.4) and (5.5), with r = 2, as given by (5.3), and
the other shape parameters µ∗j (j = 2, . . . ,muv = 12) given by (3.20), with

r+
j = {0, 1, 5, 4, 4, 3, 3, 2, 2, 1, 1}
s+
j = {1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0}
µ∗j = {1, 2, 5, 4, 4, 3, 3, 2, 2, 1, 1} = r+

j + s+
j ,

we obtain a near-exact p-value of 0.000039. Thus, we should reject the null hypothesis that the covariance
structure is of the doubly exchangeable type, even though at first sight this appeared to be a plausible
hypothesis.

In case we had used the common chi-square approximation for the distribution of l.r.t. statistics, we
would have −2 log Λ

a∼ χ2
{uvm(uvm+1)/2}−{3m(m+1)/2} ≡ χ2

60, which would give a p-value of 1.08083×10−10.
Although for common values of the level α this p-value would lead to the same decision, in terms of the
rejection of the null hypothesis, it also shows that the chi-square approximation really yields p-values which
are far away from the exact value. This indeed happens even for quite large sample sizes. In case this fact
may not seem of that much great significance, we should note that while the near-exact distribution that
we used to compute the near-exact p-value yields a value of 2.32×10−13 for the measure ∆ in (6.1), the
chi-square approximation yields for this same measure the value of 5.59×10−02. Furthermore, while for a
computed value of Λ of 2.067×10−24 the near-exact distribution yields a p-value which rounded to five decimal
places is equal to 0.05000, the chi-square approximation yields a p-value of 0.00011, which clearly shows that
the common chi-square approximation, opposite to the near-exact approach, leads, for the classical testing
approach, to too many rejections of the null hypothesis, or, equivalently, in general, to too low p-values,
clearly inadequate for any practical purposes.

In Figure 1 we may analyze the plots of the cumulative distribution function for the near-exact distribution
for − log Λ and for the Γ(30, 1) distribution which corresponds to the χ2

60 approximation for −2 log Λ, to
see how much they differ.

Gamma
(chi-square) near-exact

10 20 30 40 50 60 70

0.2

0.4

0.6

0.8

1.0

Figure 1: Plots of the cumulative distribution function for the near-exact distribution for − log Λ and for the Γ(30, 1) distribution
which corresponds to the χ2

60 approximation for −2 log Λ
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8. Conclusions

We may see how the techniques used to handle the null hypothesis in (2.1), by first bringing it to the
form in (2.2) and then using the decomposition in (2.3) enabled the development of very accurate near-exact
distributions for the l.r.t. statistic.

From the results of the numerical studies carried out we see that the near-exact distributions developed
show an interesting set of nice features. They not only have a good asymptotic behavior for increasing
sample sizes, but also an extraordinary performance for very small sample sizes, as for example for sample
sizes exceeding only by 2 the overall number of variables. Furthermore, these near-exact distributions also
display a marked asymptotic behavior for increasing values of m, u and v. All these features add up to make
the near-exact approximations developed the best choice for practical applications of the test studied.

Moreover, given the results in Sections 9.11 and 10.11 of Anderson (2003), the results presented concerning
the exact distribution of the l.r.t. statistic as well the near-exact distributions developed may be made
extensive to cases where the vector y has an elliptically contoured distribution.

For v = 1, the present test reduces to the test for block compound symmetry studied in Coelho and Roy
(2013) and for v = 1 and m = 1 to the equivariance-equicorrelation Wilks (1946) test.
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Appendix A. Expressions for the shape parameters in the moment expressions for Λb and Λc

The shape parameters sj in (3.3) are given by

sj =


s∗j−1 for j = 2, . . . ,m,

except for j = m−2α1

s∗j−1+(m⊥⊥2)(α2 − α1)
(
v(u− 1)−m−1

2 + v(u− 1)
⌊

m
2v(u−1)

⌋)
for j = m− 2α1

with

s∗j =


γj for j = 1, . . . , α+ 1

v(u− 1)
(⌊
m
2

⌋
−
⌊
j
2

⌋)
for j = α+ 2, ... ,min(m− 2α1,m− 1)
and j = 2+m−2α1, ... , 2

⌊
m
2

⌋
−1, by steps of 2

v(u− 1)
(⌊
m+1

2

⌋
−
⌊
j
2

⌋)
for j = 1+m−2α1, ... ,m−1, by steps of 2 ,

and

α =

⌊
m− 1

v(u− 1)

⌋
, α1 =

⌊
v(u− 1)− 1

v(u− 1)

m− 1

2

⌋
, α2 =

⌊
v(u− 1)− 1

v(u− 1)

m+ 1

2

⌋
,

where, for j = 1, . . . , α,

γj =

⌊
v(u− 1)

2

⌋(
(j−1)v(u−1)−2 ((v(u− 1) + 1)⊥⊥2)

⌊
j

2

⌋)
+

⌊
v(u− 1)

2

⌋⌊
v(u− 1) + j ⊥⊥ 2

2

⌋
and

γα+1 = −
(⌊m

2

⌋
− α

⌊
v(u− 1)

2

⌋)2

+ v(u− 1)

(⌊m
2

⌋
−
⌊
α+ 1

2

⌋)
+(v(u− 1)⊥⊥2)

(
α
⌊m

2

⌋
+
α ⊥⊥ 2

4
− α2

4
− α2

⌊
v(u− 1)

2

⌋)
.

The shape parameters δj in (3.4) are given by

δj =


δ∗j−1 for j = 2, . . . ,m,

except for j = m−2α1

δ∗j−1+(m⊥⊥2)(α2 − α1)
(

(v − 1)−m−1
2 + (v − 1)

⌊
m

2(v−1)

⌋)
for j = m− 2α1

with

δ∗j =


γj for j = 1, . . . , α+ 1

(v − 1)
(⌊
m
2

⌋
−
⌊
j
2

⌋)
for j = α+ 2, ... ,min(m− 2α1,m− 1)
and j = 2+m−2α1, ... , 2

⌊
m
2

⌋
−1, by steps of 2

(v − 1)
(⌊
m+1

2

⌋
−
⌊
j
2

⌋)
for j = 1+m−2α1, ... ,m−1, by steps of 2 ,

and

α =

⌊
m− 1

v − 1

⌋
, α1 =

⌊
v − 2

v − 1

m− 1

2

⌋
, α2 =

⌊
v − 2

v − 1

m+ 1

2

⌋
,

where, for j = 1, . . . , α,

γj =

⌊
v − 1

2

⌋(
(j−1)(v−1)−2 (v⊥⊥2)

⌊
j

2

⌋)
+

⌊
v − 1

2

⌋⌊
v − 1 + j ⊥⊥ 2

2

⌋
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and

γα+1 = −
(⌊m

2

⌋
− α

⌊
v − 1

2

⌋)2

+ (v − 1)

(⌊m
2

⌋
−
⌊
α+ 1

2

⌋)
+((v − 1)⊥⊥2)

(
α
⌊m

2

⌋
+
α ⊥⊥ 2

4
− α2

4
− α2

⌊
v − 1

2

⌋)
.

Appendix B. Gamma distribution and some related results

We say that the random variable X follows a Gamma distribution with shape parameter r > 0 and rate
parameter λ > 0, if the probability density function of X is

fX(x) =
λr

Γ(r)
e−λx xr−1, (x > 0)

and we will denote this fact by X ∼ Γ(r, λ). Then we know that the moment generating function of X is

MX(t) = λr(λ− t)−r ,

so that if we define Z = e−X we will have

E(Zh) = E
(
e−hX

)
= MX(−h) = λr(λ+ h)−r .

Appendix C. The GIG and GNIG distributions

We will say that a r.v. Y has a GIG (Generalized Integer Gamma) distribution of depth p, with integer
shape parameters rj and rate parameters λj (j = 1, . . . , p), if

Y =

p∑
j=1

Yj

where
Yj ∼ Γ(rj , λj) , rj ∈ N, λj > 0, j = 1, . . . , p

are p independent integer Gamma or Erlang r.v.’s, with λj 6= λj′ for all j 6= j′, with j, j′ ∈ {1, . . . , p} Coelho
(1998).

The r.v. Y has probability density and cumulative distribution functions given by (see Coelho (1998)),

fGIG(y; r1, . . . , rp;λ1, . . . , λp; p) = K

p∑
j=1

Pj(y) e−λj y , (y > 0)

and

FGIG(y; r1, . . . , rp;λ1, . . . , λp; p) = 1−K
p∑
j=1

P ∗j (y) e−λj y , (y > 0)

where K =
∏p
j=1 λ

rj
j ,

Pj(y)=

rj∑
k=1

cj,k y
k−1 , P ∗j (y)=

rj∑
k=1

cj,k

k−1∑
i=0

yi (k−1)!

i!λk−ij
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with

cj,rj =
1

(rj − 1)!

p∏
i=1,i6=j

(λi − λj)−ri , j = 1, . . . , p ,

and, for k = 1, . . . , rj − 1; j = 1, . . . , p,

cj,rj−k =
1

k

k∑
i=1

(rj − k + i− 1)!

(rj − k − 1)!
R(i, j, p) cj,rj−(k−i) ,

where

R(i, j, p) =

p∑
k=1,k 6=j

rk (λj − λk)
−i

(i = 1, . . . , rj − 1) .

If Yp has a Gamma distribution with a non-integer shape parameter rp, then we will say that the r.v.
Y has a GNIG (Generalized Near-Integer Gamma) distribution of depth p. The probability density and
cumulative distribution functions of Y are, for y > 0, respectively given by Coelho (2004)

fGNIG( y | r1, . . . , rp−1; rp; λ1, . . . , λp−1;λp; p) = Kλrpp

p−1∑
j=1

e−λjy

×

rj∑
k=1

{
cj,k

Γ(k)

Γ(k+r)
yk+rp−1

1F1(rp, k+rp,−(λp−λj)y)

}
,

and

FGNIG( y | r1, . . . , rp−1; rp; λ1, . . . , λp−1;λp; p) =
λ
rp
p zrp

Γ(rp+1)
1F1(rp, rp+1,−λpz)

−Kλr
p−1∑
j=1

e−λjy

rj∑
k=1

cj,kΓ(k)

λkj

k−1∑
i=0

zrp+iλij
Γ(rp+1+i)

1F1(rp, rp+1+i,−(λp − λj)y) ,

with K =
∏p−1
j=1 λ

rj
j .
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