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Abstract

Asymptotic approximation for the expected probability of misclassification is derived for the linear clas-
sifier based on two-level multivariate data using block-compound symmetric (BCS) covariance structure.
Advantages of this structure for modeling two-level multivariate data are shown in growing dimensions
asymptotics which allows the number of replicates, u to grow faster than the total number of samples,
n and only constraints the number of feature variables, m < n. Relevance and benefits of the designed
classifier are demonstrated for a number of high-dimensional scenarios using both asymptotic results and
simulations. Comparison of our findings with other existing results is considered.
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1 Introduction

Performance accuracy of the classification procedures designed for high-dimensional data is extensively studied

in the statistical literature. As the sample based classifiers usually have complex distributional expressions,

various types of asymptotic approximations of the expected probability of misclassification (EPMC) are de-

rived. Initially, the consideration was given to large sample theory, i.e., assuming that the number of feature

variables, m is fixed and the total sample size, n goes to infinity. Okamoto (1963) in his renowned article first

∗Correspondence to: Anuradha Roy, Department of Management Science and Statistics, The University of Texas at San
Antonio, One UTSA Circle, San Antonio, TX 78249, USA
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time derived the asymptotic expansion of the EPMC for linear classifier up to the second order term. Siotani

(1982) also considered the large sample approximations and asymptotic behavior of a number of statistics

related to classification accuracy. Later, Fujikoshi and Seo (1998) derived an asymptotic expansion of the

same EPMC of the linear classifier in the high-dimensional framework, i.e., assuming that m can grow at the

same rate as n. Very recently, in the same asymptotic settings Kubokawa et al. (2013) derived an expansion

of EPMC for the ridge-type linear classifier up to the second order term and investigate the asymptotic effect

of the ridge parameter on the classification accuracy. For the review of asymptotic expansions of the EPMC

both in large-sample as well as in high-dimensional asymptotics, see Fujikoshi et al. (2010).

The above-mentioned asymptotic expansions of EPMC have been established for traditional multivariate

data, or just for ‘one-level multivariate data’ in a high-dimensional setting. However, modern experimental

techniques allow to collect and store multi-level (Leiva and Roy, 2011) high-dimensional data in almost all fields

from agriculture to medical research, where the observations are collected on more than one feature variable

(m) at different locations (u) repeatedly over time (v) and at different depths (d) etc. etc. These multi-level

observations may have variances that differ across locations, time and depths, and efficient techniques for

talking into account these variations is of great importance.

In recent years, there has been a flurry of activity over development of classification rules for multi-level

multivariate data in high-dimensional setting, hitherto to the best of our knowledge no one has investigated

their asymptotic performance properties. In a series of papers by Roy and Leiva (2007) and Leiva and Roy

(2011, 2012) a number of linear and quadratic classifiers were developed for two- and three-level multivariate

data in combination with structured mean and structured variance-covariance matrix. The main advantage of

exploiting the structure underlying the data is shown in reducing the number of unknown parameters, which

in turn leads to a significant gain in the classification accuracy. This advantage is especially important for

small sample high-dimensional problems where the number of practically available observations is limited.

To investigate various effects of the covariance structure on the classification theoretically, one needs to

derive asymptotic results on the probability of misclassification (PMC) in high-dimensions. In this article we

obtain the asymptotic expansion of the EPMC up to the second order term for the linear classifier designed

for two-level multivariate data in high-dimensional situation, which is an extension of the method proposed

by Kubokawa et al. (2013) for one-level multivariate data.

To represent the two-level (m dimensional vector over u locations or time points) multivariate observations

we use blocked compound symmetric (BCS) covariance structure (defined in Section 2.1) in high-dimensional

setting and evaluate the performance of the corresponding classifier using the second order asymptotic ap-

proximation of EPMC. The designed classifier does not need the constraint n > mu, i.e., the total number of
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observations n larger than the total number of variables mu, it just needs n > m. In our high-dimensional

asymptotics we assume that m/n→ c, where 0 < c < 1, whereas u can go to infinity at the same rate as n.

It is interesting to note that the BCS covariance structure for two-level feature variables, which is a mul-

tivariate generalization of compound symmetry structure for multiple variables, has been initially introduced

by Rao (1945, 1953) while classifying genetically different groups, and then it did not attract much atten-

tion in the literature for nearly half a century. Then Leiva (2007) developed classification rules for BCS

covariance structure along with structured mean vectors in 2007. Lately, this covariance structure starts to

gain a lot of attention in the literature, especially in the area of high-dimensional estimation and hypothesis

testing (see Roy and Leiva, 2011; Coelho and Roy, 2013). An important advantage of using BCS structure

is that the number of unknown parameters is only m(m+ 1), which does not even depend on the number of

repeated measures u, whereas the number of unknown parameters in the unstructured covariance matrix is

mu(mu+1)/2, which can increase very rapidly with the increase of any one of the levels m or u. Hence, using

BCS covariance structure, one can allow the number of repeated measurements u to grow unrestrictedly and

thereby providing more information, while the number of unknown parameters remains the same.

This paper proceeds as follows. In Section 2, the BCS covariance structure is introduced, and estimation of

its matrix parameters are presented. In Section 3 the BCS linear classifier is described, pooled estimators of the

orthogonally transformed matrix parameters are derived and their distributional properties are established. In

Section 4, performance accuracy of the estimated BCS classifier is evaluated using asymptotic expansion of the

EPMC. Asymptotics for the moments of the BCS classifier are derived in Section 5. Evaluation of posterior

PMC (PPMC) and expected PMC (EPMC) are done in Section 6. Simulation studies are performed for a

number of high-dimensional scenarios and advantages of taking structured covariance matrix are numerically

verified in Section 7 and finally, conclusions and scope for the future is presented in Section 8.

2 Preliminaries

2.1 Blocked compound symmetry covariance structure

A BCS structure can be written as

Γ =


Σ0 Σ1 . . . Σ1

...
. . .

...
...

. . .
...

Σ1 Σ1 . . . Σ0


= Iu ⊗ (Σ0 −Σ1) + Ju ⊗Σ1, (2.1)

where Iu is the u×u identity matrix, 1u is a u× 1 vector of ones, Ju = 1u1′u and ⊗ represents the Kronecker

product. We assume Σ0 is a positive definite symmetric m ×m matrix, Σ1 is a symmetric m ×m matrix,
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under the constraints − 1
u−1Σ0 < Σ1 and Σ1 < Σ0

(
for a proof, see Lemma 2.1 in Roy and Leiva (2011)

)
, so

that the mu×mu matrix Γ is positive definite. Leiva (2007) named Σ0 and Σ1 as the equicorrelated matrix

parameters. The m×m block diagonals Σ0 in Γ represent the variance-covariance matrix of the m response

variables at any given time, whereas the m×m block off diagonals Σ1 in Γ represent the covariance matrix

of the m response variables between any two time points. We also assume that Σ0 is constant for all time

points and Σ1 is constant between any two time points. Our two-level model allows for varying the strength

of dependence over time by choosing the covariance matrix Σ1.

2.2 Matrix results

Lemma 4.3 in Ritter and Gallegos (2002) and Leiva (2007) guarantee that a mu×mu dimensional matrix Γ

of the form

Γ = Iu ⊗ (Σ0 −Σ1) + Ju ⊗Σ1,

is non singular if both Σ0 −Σ1 and Σ0 + (u− 1)Σ1 are non singular matrices, and the inverse of Γ is given

by

Γ−1 = Iu ⊗ (Σ0 −Σ1)
−1

+ Ju ⊗
1

u

[
(Σ0 + (u− 1)Σ1)

−1 − (Σ0 −Σ1)
−1
]
. (2.2)

We notice that Γ−1 has the same structure as Γ. This result (2.2) generalizes the one given by Bartlett (1951)

for m = 1.

Using the above results we have the following lemma.

Lemma 1 Let Γ be a BCS covariance matrix as in equation (2.1). If

∆1 = Σ0 −Σ1,

and ∆2 = Σ0 + (u− 1) Σ1 (2.3)

are non singular matrices then Γ is a non singular matrix, and

Γ−1 = Iu ⊗∆−11 + Ju ⊗
1

u

(
∆−12 −∆−11

)
. (2.4)

The proof of this lemma is given in Appendix A in Roy and Leiva (2007). This result is used in Section 3

to obtain the BCS linear classifier. At this point we assume that we have samples from p populations Πp for

p = 1, . . . , k with the common BCS covariance matrix Γ. We estimate Γ from each Πp in the next section.

2.3 Estimation of the equicorrelated parameters Σ0 and Σ1 in Πp

Let x
(p)
r,s be an m-variate vector of measurements on the rth observation at the sth time point; r = 1, . . . , n,

s = 1, . . . , u from the pth population, p = 1, . . . , k. Let x
(p)
r = (x

(p)′
r,1 , . . . ,x

(p)′
r,u )′ be the mu-variate vector of
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all measurements corresponding to the rth observation. Finally, let x
(p)
1 ,x

(p)
2 , . . . ,x

(p)

n(p) be a random sample

of size n(p) drawn from the pth population Πp represented by Nmu

(
ν(p),Γ

)
, where ν(p) ∈ Rmu and Γ is an

mu×mu positive definite BCS structure defined in Section 2.1.

Following Roy and Leiva (2013) unbiased estimates of Σ0 and Σ1 for Πp are

Σ̂
(p)

0 =
1(

n(p) − 1
)
u

n(p)∑
r=1

u∑
s=1

(
x(p)
r,s − ν̂

(p)

•s

)(
x
(p)
r,s∗ − ν̂

(p)

•s∗
)′
,

and Σ̂
(p)

1 =
1(

n(p) − 1
)
u (u− 1)

n(p)∑
r=1

u∑
s=1

u∑
s∗=1

s6=s∗

(
x(p)
r,s − ν̂

(p)

•s

)(
x
(p)
r,s∗ − ν̂

(p)

•s∗
)′
,

respectively. Consequently, an unbiased estimate of Γ for the pth population is as follows

Γ̂
(p)

= Iu ⊗
(

Σ̂
(p)

0 − Σ̂
(p)

1

)
+ Ju ⊗ Σ̂

(p)

1 , p = 1, . . . , k.

3 Linear classifier under BCS covariance structure

Assuming that Πp’s are represented by Nmu

(
ν(p),Γ

)
we assign a new observation x to Πp′ whenever p′ =

arg max
p=1,...,k

C
(
x;ν(p),Γ−1

)
, where

C
(
x;ν(p),Γ−1

)
= x′ · Γ−1 · ν(p) − 1

2
ν(p)′ · Γ−1 · ν(p) + log πp, (3.5)

is the linear score for Πp, Γ−1 is given in (2.4) and
∑k

p=1 πp = 1 with πp denoting the prior probability of Πp.

This classifier is analogous to the well-known Fisher linear discriminant rule that is optimal in a sense of

minimum overall misclassification probability
(
Anderson 2003; Srivastava, 1979

)
.

Evaluation of the performance accuracy of the sample based version of (3.5) requires its distributional

properties which in turn depends on the distribution of the sample counterpart Γ̂
−1

of Γ−1. A desirable

property of the classifier is normality, however it cannot be achieved when the distribution of Γ̂ is not Wishart.

In this study we circumvent this situation by applying the canonical transformation of the data which is

presented in the next section.

3.1 Canonical transformation of the feature data

Let Ξ = H ′
u×u
⊗ Im be an orthogonal matrix with H an orthogonal Helmert matrix whose first column is

proportional to a vector of 1’s. Making the canonical transformation of the data as,

y(p) = Ξx(p),

we have y(p) distributed as mu−dimensional normal with

E(y(p)) = µ(p) = ΞE(x(p)) = Ξν(p), (3.6)

5



and

Cov(y(p)) = ΓΞ = ΞΓΞ′ =

[
∆2 0
0 Iu−1 ⊗∆1

]
, (3.7)

where

∆1 = Σ0 −Σ1,

and ∆2 = Σ0 + (u− 1) Σ1.

See Lemma 3.1 in Roy and Fonseca (2012) for a proof. Positive definiteness of ∆1 and ∆2 is guaranteed as

Γ is positive definite
(
see Lemma 2.1 in Roy and Leiva (2011)

)
. We should note that ΓΞ is a block diagonal

matrix and Ξ is not a function of either Σ0 nor Σ1.

Let Tn = {y(p)
1 , . . . ,y

(p)
np }p∈{1,...,k} denote the orthogonally transformed sample data. By noticing the

structure of ΓΞ the vectors y
(p)
r and µ(p) are partitioned in u subvectors as y

(p)
r =

(
y
(p)′
r,1 , . . . ,y

(p)′
r,u

)′
and

µ(p) =
(
µ

(p)′
1 , . . . ,µ

(p)′
u

)′
. Then y

(p)
r,1 ,y

(p)
r,2 , . . . ,y

(p)
r,u are independently normally distributed as

y
(p)
r,1 ∼ Nm

(
µ

(p)
1 ; ∆2

)
,

and y(p)
r,s ∼ Nm

(
µ(p)

s ; ∆1

)
for fixed s = 2, . . . , u and fixed r = 1, . . . , n.

Now, for each fixed r, we observe that the vector y
(p)
r can be partitioned as y

(p)
r =

(
y
(p)′
r,1 ,y

(p)′
r,−1

)′
, where

we denote y
(p)
r,−1 =

(
y
(p)′
r,2 , . . . ,y

(p)′
r,u

)′
, i.e., y

(p)
r,−1 is the u − 1 components of the vector y

(p)
r except the first

component y
(p)
r,1 . Similarly, µ̂(p) =

(
µ̂

(p)′
•1 , . . . , µ̂(p)′

•u

)′
with µ̂(p)

•s = 1
n(p)

∑n(p)

r=1 y
(p)
r,s for s = 1, . . . , u. We denote

µ(p) = (µ
(p)′
1

1×m
, µ

(p)′
−1

1×(u−1)m
)′, where µ

(p)
−1 is the u − 1 components of the vector µ(p) except the first component

µ
(p)
1 .

3.2 Estimation of the Transformed Matrix Parameters ∆0 and ∆1

From this section onwards we will focus on two population case, i.e., k = 2. Now, using the results of Section

2.3, unbiased estimates ∆̂
(p)

1 and ∆̂
(p)

2 of ∆1 and ∆2 respectively for the pth population are

∆̂
(p)

1 = Σ̂
(p)

0 − Σ̂
(p)

1 ,

and ∆̂
(p)

2 = Σ̂
(p)

0 + (u− 1) Σ̂
(p)

1 , for p = 1, 2.

In the next section we obtain the pooled estimates ∆̂1 and ∆̂2 of ∆1 and ∆2 respectively from both ∆̂
(p)

1

and ∆̂
(p)

2 . We also obtain the distributions of ∆̂1 and ∆̂2.

3.3 Pooled Estimates and Distributions of ∆̂1 and ∆̂2

Since Γ̂
(p)

does not follow Wishart distribution, we focus on the distributions of ∆̂
(p)

1 and ∆̂
(p)

2 , p = 1, 2 which

fortunately are both Wishart. Following Theorem 1 in Roy et al. (2013) it can be shown that distributions
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of (n(p) − 1)(u− 1)∆̂
(p)

1 and (n(p) − 1)∆̂
(p)

1 are independent, and

S
(p)
1 = (n(p) − 1)(u− 1)∆̂

(p)

1 ∼ Wishartm
(
∆1, (n

(p) − 1)(u− 1)
)
, (3.8a)

and S
(p)
2 = (n(p) − 1)∆̂

(p)

2 ∼ Wishartm
(
∆2, n

(p) − 1
)
, (3.8b)

for p = 1, 2. Now, from the property of Wishart distribution the unbiased estimates of ∆1 and ∆2 are ∆̂
(p)

1

and ∆̂
(p)

2 respectively for the pth population. The following lemma yields the pooled estimates of ∆̂1 and

∆̂2.

Lemma 2 The pooled estimates of ∆̂1 and ∆̂2 are given by

∆̂1 =
S1

(n− 2)(u− 1)
.

and ∆̂2 =
S2

(n− 2)
,

where

S1 =

2∑
p=1

(n(p) − 1)(u− 1)∆̂
(p)

1 ,

S2 =
2∑

p=1

(n(p) − 1)∆̂
(p)

2 ,

and n = n(1) + n(2).

Proof : Applying the additive property of two independent Wishart distributions from (3.8a) we get

S1 = S
(1)
1 + S

(2)
1 ∼ Wishartm

(
∆1, (n− 2)(u− 1)

)
,

and similarly from (3.8b) we get

S2 = S
(1)
2 + S

(2)
2 ∼ Wishartm

(
∆2, n− 2

)
,

Now, again from (3.8a) we get

S1 =
2∑

p=1

(n(p) − 1)(u− 1)∆̂
(p)

1 .

Therefore,

∆̂1 =

∑2
p=1(n(p) − 1)(u− 1)∆̂

(p)

1∑2
p=1(n(p) − 1)(u− 1)

=
S1

(n− 2)(u− 1)
. (3.9)

Similarly, from (3.8b) we get

S2 =
2∑

p=1

(n(p) − 1)∆̂
(p)

2 .
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Therefore,

∆̂2 =

∑2
p=1(n(p) − 1)∆̂

(p)

2∑2
p=1(n(p) − 1)

=
S2

(n− 2)
. (3.10)

Hence, the Lemma follows. This Lemma can easily be extended to more than two populations.

Now, taking inverse of both sides of the equations (3.9) and (3.10) separately we get

∆̂
−1
1 = (n− 2)(u− 1)S−11 , (3.11a)

and ∆̂
−1
2 = (n− 2)S−12 . (3.11b)

Therefore,

E(∆̂
−1
1 ) = (n− 2)(u− 1)E(S−11 ), (3.12a)

and E(∆̂
−1
2 ) = (n− 2)E(S−12 ). (3.12b)

4 Performance accuracy of BCS classifier

As the goal of classification problem is to derive the decision rule that optimizes some measure of performance

accuracy, we consider the PMC as its measure. By partitioning the new observed vector y = ( y′1
1×m

, y′−1
1×(u−1)m

)′

and by substituting ΓΞ from (3.7) into (3.5), the theoretical classifier (3.5) becomes

C(y;µ(i),∆−11 ,∆−12 ) = C1(y1;µ(i),∆−12 ) + C−1(y−1;µ(i),∆−11 )

=
(
y1 −

1

2
(µ

(1)
1 + µ

(2)
1 )
)′

∆−12 (µ
(1)
1 − µ

(2)
1 )

+
(
y−1 −

1

2
(µ

(1)
−1 + µ

(2)
−1)
)′

(Iu−1 ⊗∆−11 )(µ
(1)
−1 − µ

(2)
−1). (4.13)

Plugging the estimators of µ(i) and ∆i into (4.13) leads to the sample based classifier

C(y; µ̂(i), ∆̂
−1
1 , ∆̂

−1
2 ) =

(
y1 −

1

2
(µ̂

(1)
1 + µ̂

(2)
1 )
)′

∆̂
−1
2 (µ̂

(1)
1 − µ̂

(2)
1 )

+
(
y−1 −

1

2
(µ̂

(1)
−1 + µ̂

(2)
−1)
)′

(Iu−1 ⊗ ∆̂
−1
1 )(µ̂

(1)
−1 − µ̂

(2)
−1). (4.14)

Given that the prior probabilities are the same for both populations, a new observation y is to be assigned

to Π1 whenever C(y;µ(i),∆−11 ,∆−12 ) > 0 or C(y; µ̂(i), ∆̂
−1
1 , ∆̂

−1
2 ) > 0. Assume henceforth that y is coming

from Π1, i.e y ∈ N(µ(1),ΓΞ). The symmetry of our classification rule makes posterior PMC if the mean of y

is µ(1) the same as that under the assumption if mean of y is µ(2).

Throughout the paper we shall consider the following definitions of PMC:

OPMC : Optimal or Bayes PMC of C0(y;µ(i),∆−11 ,∆−12 ) is defined as

EO = Pr
(
C0(y;µ(i),∆−11 ,∆−12 ) ≤ 0|y ∈ N(µ(1),ΓΞ)

)
.
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PPMC : Posterior PMC of C(y; µ̂(i), ∆̂
−1
1 , ∆̂

−1
2 ) is defined for a single training sample Tn of size n = n(1) +n(2)

from populations Π1 and Π2

ECn = Pr
(
C(y; µ̂(i), ∆̂

−1
1 , ∆̂

−1
2 ) ≤ 0|Tn,y ∈ N(µ(1),ΓΞ)

)
.

EPMC : Expected PMC of C(y; µ̂(i), ∆̂
−1
i ) is defined as the average of ECn over arbitrary training samples Tn of

size n,

EECn = ETn

[
Pr
(
C(y; µ̂(i), ∆̂

−1
1 , ∆̂

−1
2 ) ≤ 0|Tn,y ∈ N(µ(1),ΓΞ)

)]
.

It should be noted that for any sample based classifier C(y; µ̂(i), ∆̂
−1
1 , ∆̂

−1
2 ) both PPMC and EPMC will

always be strictly larger than OPMC.

In what follows we use notations δ = (δ′1, . . . , δ
′
u)′ = ( δ′1

1×m
, δ′−1
1×(u−1)m

)′, with δ1 = µ
(1)
1 − µ

(2)
1 and δ−1 =

µ
(1)
−1 − µ

(2)
−1, and observe that due to the normality of y, OPMC can easily be computed as E0 = Φ

(
−D2/2

)
where Φ(·) is the cumulative distribution function of the standard normal distribution and D2 is the Ma-

halanobis (squared) distance between Π1 and Π2 which by the structure of µ(i)’s and ΓΞ can represented

as

D2 = (µ
(1)
1 − µ

(2)
1 )′Γ−1Ξ (µ

(1)
1 − µ

(2)
1 )

= δ′1∆
−1
2 δ1 + δ′−1(Iu−1 ⊗∆−11 )δ−1 = D2

1 +D2
−1,

with

D2
1 = δ′1∆

−1
2 δ1, (4.15a)

and D2
−1 = δ′−1(Iu−1 ⊗∆−11 )δ−1

=
u∑

k=2

δ′k∆−11 δk =
u∑

k=2

D2
k. (4.15b)

Observe that D2
1 depends on u, which is important for our asymptotic considerations.

The advantage of considering OPMC is that it relates the Mahalanobis distance D2, i.e., a measure of

classification complexity for the true underlying model and the optimal performance accuracy which can be

achieved by C(y). By the strict monotonicity of Φ(·) one can see that D2 = −2Φ−1(EO), and hence under

normality of y, EO and D2 provide equivalent information about the classification performance.

5 Asymptotics for the moments of C(y; µ̂(i), ∆̂
−1

1 , ∆̂
−1

2 )

To obtain PPMC and EPMC of C(y; µ̂(i), ∆̂
−1
1 , ∆̂

−1
2 ), we need to obtain its conditional distribution given the

data Tn. We begin by the following
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Lemma 3 Under the model (4.14) and estimators (3.11a) and (3.11b) the PPMC is given by ECn = (Φ(−U/
√
V )|Tn)

where U and V are conditional mean and conditional variance of the classifier C(y; µ̂(i), ∆̂
−1
1 , ∆̂

−1
2 ).

Proof: To derive the distribution of C(y; µ̂(i), ∆̂
−1
1 , ∆̂

−1
2 ) we first define the following statistics

U1 =
(
µ̂

(1)
1 − µ̂

(2)
1

)′
∆̂
−1
2

(
µ̂

(1)
1 − µ

(1)
1

)
− 1

2

(
µ̂

(1)
1 − µ̂

(2)
1

)′
∆̂
−1
2

(
µ̂

(1)
1 − µ̂

(2)
1

)
,

U−1 =
(
µ̂

(1)
−1 − µ̂

(2)
−1

)′
(Iu−1 ⊗ ∆̂

−1
1 )

(
µ̂

(1)
−1 − µ

(1)
−1

)
− 1

2

(
µ̂

(1)
−1 − µ̂

(2)
−1

)′
(Iu−1 ⊗ ∆̂

−1
1 )

(
µ̂

(1)
−1 − µ̂

(2)
−1

)
,

V1 =
(
µ̂

(1)
1 − µ̂

(2)
1

)′
∆̂
−1
2 ∆2∆̂

−1
2

(
µ̂

(1)
1 − µ̂

(2)
1

)
,

V−1 =
(
µ̂

(1)
−1 − µ̂

(2)
−1

)′
(Iu−1 ⊗ ∆̂

−1
1 ∆1∆̂

−1
1 )

(
µ̂

(1)
−1 − µ̂

(2)
−1

)
,

Z1 = V
−1/2
1

(
µ̂

(1)
1 − µ̂

(2)
1

)′
∆̂
−1
2

(
y1 − µ

(1)
1

)
,

and Z−1 = V
−1/2
−1

(
µ̂

(1)
−1 − µ̂

(2)
−1

)′
∆̂
−1
1

(
y−1 − µ

(1)
−1

)
.

Then C(y; µ̂(i), ∆̂
−1
1 , ∆̂

−1
2 ) can be written as

C(y; µ̂(i), ∆̂
−1
1 , ∆̂

−1
2 ) = C(y1; µ̂

(i)
1 , ∆̂

−1
2 ) + C(y−1; µ̂

(i)
−1, ∆̂

−1
1 ) = V

1/2
1 Z1 − U1 + V

1/2
−1 Z−1 − U−1.

Now, by the distributional properties of ∆̂
−1
1 and ∆̂

−1
2 (see Section 3.3) one can see that Z1 and Z−1 are

independent and follow the standard normal distributions given Tn (i.e., given µ̂(i), ∆̂
−1
1 and ∆̂

−1
2 ) and

assuming that y ∈ Π1. Hence

C(y; µ̂(i), ∆̂
−1
1 , ∆̂

−1
2 )|Tn,y ∈ N(µ(1),ΓΞ) ∼ Nmu(−U, V ), (5.16)

where U = U1 + U−1 and V = V1 + V−1, from which the lemma directly follows.

By (5.16) we found that EPMC is EECn = ETn

[
Φ
(
−U/

√
V
)]

. Both ECn and EECn provide exact results on

the classification performance, however getting the closed-form expressions for them is too demanding. We

instead focus on the asymptotic approximation of EECn within the following high-dimensional framework:

A1 : n(p) →∞, (p = 1, 2),
u

n
→ c1 ∈ (0,∞), (n(1) + n(2) = n),

m

n− 2
→ c2 ∈ (0, 1),

and A2 : D2 = O(1).

The conditionA1 relates the BCS structure to the sample size and formu→∞ implies that q = n−m−2→∞.

The condition A2 is to guarantee that the classification problem does not degenerate, i.e., to ensure that the

Mahalanobis distance between the Π1 and Π2 is bounded as 0 < d1 ≤ D2 ≤ d2 < ∞. Also, to fulfill A2 we

require that D2
k = O( 1

n ) for k = 2, . . . , u, and D2
1 = O( 1

n ).
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Further, we turn to stochastic expansion of the conditional moments of C(y; µ̂(i), ∆̂
−1
1 ,∆−12 ) under A1

and define two random variables ζ and η as follows

ζ =
1√
n

[
n(1)(µ̂(1) − µ(1)) + n(2)(µ̂(2) − µ(2))

]
,

and η =

√
n(1)n(2)

n

[
(µ̂(1) − µ̂(2))− (µ(1) − µ(2))

]
.

Since ζ and η are independent and distributed as Nmu(0,ΓΞ), using the BCS structure of ΓΞ we can express

U and V as follows

U = −1

2

[
(δ′1∆̂

−1
2 δ1) +

(
δ′−1(Iu−1 ⊗ ∆̂

−1
1 )δ−1

)]
− n(1) − n(2)

2n(1)n(2)

[
η′1∆̂

−1
2 η1 + η′−1(Iu−1 ⊗ ∆̂

−1
1 )η−1

]
− 1√

n(1)n(2)

[
δ′1∆̂

−1
2 η1 + δ′−1(Iu−1 ⊗ ∆̂

−1
1 )η−1

]
+

1√
n

[
δ′1∆̂

−1
2 ζ1 + δ′−1(Iu−1 ⊗ ∆̂

−1
1 )ζ−1

]
+

1√
n(1)n(2)

[
ζ′1∆̂

−1
2 η1 + ζ′−1(Iu−1 ⊗ ∆̂

−1
1 )η−1

]
, (5.17)

and V = δ′Γ̂
−1
Ξ ΓΞΓ̂

−1
Ξ δ +

n

n(1)n(2)
η′Γ̂

−1
Ξ ΓΞΓ̂

−1
Ξ η + 2

√
n

n(1)n(2)
δ′Γ̂
−1
Ξ ΓΞΓ̂

−1
Ξ η, (5.18)

where

Γ̂
−1
Ξ ΓΞΓ̂

−1
Ξ =

[
∆̂
−1
2 ∆2∆̂

−1
2 0

0 Iu−1 ⊗ ∆̂
−1
1 ∆1∆̂

−1
1

]
.

We now proceed by expanding both U and V stochastically.

5.1 Stochastic expansion of the conditional mean

Following the technique as in Section 3.1 we partition ζ and η as ζ = (ζ′1, . . . , ζ
′
u) = ( ζ′1

1×m
, ζ′−1
1×(u−1)m

)′ and η

as η = (η′1, . . . ,η
′
u) = ( η′1

1×m
, η′−1
1×(u−1)m

)′.

To evaluate the first term in U we need E(∆̂
−1
1 ) and E(∆̂

−1
2 ) that are derived in (3.12a) and (3.12b)

respectively. Now using D2
1 and D2

−1 from (4.15a) and (4.15b) it is seen that the first term in (5.17) have the

following representation

−1

2

[
E(δ′1∆̂

−1
2 δ1) + E

(
δ′−1(Iu−1 ⊗ ∆̂

−1
1 )δ−1

)]
= −1

2

[
(n− 2)E(δ′1S

−1
2 δ1) + (n− 2)(u− 1)

u∑
k=2

E(δ′kS
−1
1 δk)

= −1

2

[
(n− 2)E(trW−1

2 ξ2ξ
′
2) +

u∑
k−2

(n− 2)E(trW−1
1 ξ1kξ

′
1k)
]

= − (n− 2)

2

[(1

q
+

1

q2

)
D2

1 +
(1

q
+

1

q2

)
D2
−1

]
+O(n−2)

= − (n− 2)

2

[(1

q
+

1

q2

)
D2

]
+O(n−2), (5.19)
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where ξ2 = ∆
−1/2
2 δ1 and ξ1k = ∆

−1/2
1 δk for k = 1, . . . , u, and

W 1 =
1

(u− 1)
∆
−1/2
1 S1∆

−1/2
1 , (5.20a)

and W 2 = ∆
−1/2
2 S2∆

−1/2
2 . (5.20b)

Now, using the expressions of ∆̂
−1
1 and ∆̂

−1
2 from (3.11a) and (3.11b), W 1 and W 2 from (5.20a) and (5.20b),

and also using the higher order moments of inverse Wishart matrix
(
see the appendix A.2 in Kubokawa et al.

(2013)
)

we express the expectation of the second term in (5.17) as follows

−n
(1) − n(2)

2n(1)n(2)
E
[
η′1∆̂

−1
2 η1 + η′−1(Iu−1 ⊗ ∆̂

−1
1 )η−1

]
= −n

(1) − n(2)

2n(1)n(2)

[
E
(
η′1∆̂

−1
2 η1

)
+ E

(
η′−1(Iu−1 ⊗ ∆̂

−1
1 )η−1

)]
= −n

(1) − n(2)

2n(1)n(2)

[
(n− 2)E

(
tr(η′1S

−1
2 η1)

)
+ (n− 2)(u− 1)E

(
η′−1(Iu−1 ⊗ S−11 )η−1

)]
= −n

(1) − n(2)

2n(1)n(2)

[
(n− 2)E

(
tr(W−1

2 )
)

+ (n− 2)(u− 1)
u∑

k=2

E
(
η′kS

−1
1 ηk

)]

= −n
(1) − n(2)

2n(1)n(2)

[
(n− 2)E

(
tr(W−1

2 )
)

+ (n− 2)
u∑

k=2

E
(
tr(W−1

1 )
)]

= −n
(1) − n(2)

2n(1)n(2)
(n− 2)mu

[
1

q
+

1

q2

]
+O(n−2). (5.21)

Using the above expansions (5.19) and (5.21), and using the facts that E(ζ) = 0 and E(η) = 0 we can now

express U as U = U0 + U1 + U2 +OP (n−2) where

U0 = −n− 2

2

[1

q
+

1

q2

] [
D2 +

n(1) − n(2)

n(1)n(2)
mu

]
,

U1 = −
√
n(1)√
nn(2)

(
δ′1∆̂

−1
2 η1 + δ′−1

(
Iu−1 ⊗ ∆̂

−1
1

)
η−1

)
+

1√
n

[
δ′1∆̂

−1
2 ζ1 + δ′−1(Iu−1 ⊗ ∆̂

−1
1 )ζ−1

]
+

1√
n(1)n(2)

[
ζ′1∆̂

−1
2 η1 + ζ′−1(Iu−1 ⊗ ∆̂

−1
1 )η−1

]
,

and U2 = −1

2

[(
δ′1∆̂

−1
2 δ1 + δ′−1

(
Iu−1 ⊗ ∆̂

−1
1

)
δ−1

)
− (n− 2)

(1

q
+

1

q2

)(
D2

1 +D2
−1(u)

)]

−n
(1) − n(2)

2n(1)n(2)

[
η′1∆̂

−1
2 η1 + η′2

(
Iu−1 ⊗ ∆̂

−1
1

)
η2 − (n− 2)mu

(1

q
+

1

q2

)]
.

Remark 1 By setting u = 1, our two-level model reduces to one-level model, consequently U0 reduces to

U0 = −n− 2

2

[1

q
+

1

q2

] [
D2 +

n(1) − n(2)

n(1)n(2)
m

]
.

This is the expression of U0 up to the second order term. Now, by ignoring the second order term in this

expression it further reduces to

U0 = −n− 2

2q

[
D2 +

n(1) − n(2)

n(1)n(2)
m

]
,

which is the expression of U0 in Kubokawa et al. (2013) (see Page 498).
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5.2 Stochastic expansion of the conditional variance

Now we consider the stochastic expansion of V . Considering the first term in (5.18) and substituting the

estimators ∆̂
−1
1 and ∆̂

−1
2 from (3.11a) and (3.11b) we get

δ′Γ̂
−1
Ξ ΓΞΓ̂

−1
Ξ δ = δ′1∆̂

−1
2 ∆2∆̂

−1
2 δ1 + δ′−1

(
Iu−1 ⊗ ∆̂

−1
1 ∆1∆̂

−1
1

)
δ−1

= (n− 2)2δ′1S
−1
2 ∆2S

−1
2 δ1 + (n− 2)2(u− 1)2δ′−1

(
Iu−1 ⊗ S−11 ∆1S

−1
1

)
δ−1.

Therefore, using the expressions W 1 and W 2 from (5.20a) and (5.20b), and also using the higher order

moments of inverse Wishart matrix
(
see the appendix A.2 in Kubokawa et al. (2013)

)
the expectation of the

above expression becomes

E
[
(n− 2)2δ′1S

−1
2 ∆2S

−1
2 δ1 + (n− 2)2(u− 1)2δ′−1(Iu−1 ⊗ S−11 ∆1S

−1
1 )δ−1

]
= (n− 2)2E[δ′1S

−1
2 ∆2S

−1
2 δ1] + (n− 2)2(u− 1)2

u∑
k=2

E[δ′kS
−1
1 ∆1S

−1
1 δk]

= (n− 2)2E[trW−2
2 ξ2ξ

′
2] + (n− 2)2

u∑
k=2

E[trW−2
1 ξ1kξ

′
1k]

=
(n− 2)3

q3
D2

1 +
(n− 2)2

(
4(n− 2)− q

)
q4

D2
1

+
u∑

k=2

[
(n− 2)3

q3
D2

k +
(n− 2)2

(
4(n− 2)− q

)
q4

D2
k

]
+O(n−2)

=

[
(n− 2)3

q3
+

(n− 2)2
(
4(n− 2)− q

)
q4

]
D2 +O(n−2). (5.22)

Now, considering the second term in (5.18) and substituting the values of ∆̂
−1
1 and ∆̂

−1
2 from (3.11a) and

(3.11b) we get

n

n(1)n(2)
η′Γ̂

−1
Ξ ΓΞΓ̂

−1
Ξ η =

n

n(1)n(2)

[
η′1∆̂

−1
2 ∆2∆̂

−1
2 η1 + η′−1(Iu−1 ⊗ ∆̂

−1
1 ∆1∆̂

−1
1 )η−1

]
=

n

n(1)n(2)

[
η′1∆̂

−1
2 ∆2∆̂

−1
2 η1 + η′−1(Iu−1 ⊗ ∆̂

−1
1 ∆1∆̂

−1
1 )η−1

]
.

Now, E
[(
η′1∆̂

−1
2 ∆2∆̂

−1
2 η1 + η′−1(Iu−1 ⊗ ∆̂

−1
1 ∆1∆̂

−1
1 )η−1

)]
= E

[
η′1∆̂

−1
2 ∆2∆̂

−1
2 η1

]
+ E

[
η′−1(Iu−1 ⊗ ∆̂

−1
1 ∆1∆̂

−1
1 )η−1

]
= (n− 2)2E

[
η′1S

−1
2 ∆2S

−1
2 η1

]
+ (n− 2)2(u− 1)2E

[
η′−1(Iu−1 ⊗ S−11 ∆1S

−1
1 )η−1

]
= (n− 2)2E

[
η′1S

−1
2 ∆2S

−1
2 η1

]
+ (u− 1)2

u∑
k=2

(n− 2)2E
[
η′k(S−11 ∆1S

−1
1 )ηk

]
= (n− 2)2E

[
trW−2

2

]
+

u∑
k=2

(n− 2)2E
[
trW−2

1

]
=

[
m(n− 2)2

q3
+
m(n− 2)

(
4(n− 2)− q

)
q4

]
(n− 2)u+O(n−2).
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Therefore, the expectation of the second term in (5.18) is as follows

n

n(1)n(2)

[(
m(n− 2)2

q3
+
m(n− 2)

(
4(n− 2)− q

)
q4

)
(n− 2)u

]
+O(n−2). (5.23)

Therefore, using the above expansions (5.22) and (5.23) we can now express V as V = V0+V1+V2+OP (n−3/2)

where

V0 =

[
(n− 2)3

q3
+

(n− 2)2
(
4(n− 2)− q

)
q4

] [
D2 +

n

n(1)n(2)
mu
]
,

V1 = 2

√
n

n(1)n(2)

[
δ′1∆̂

−1
2 ∆2∆̂

−1
2 η1 + δ′−1(Iu−1 ⊗ ∆̂

−1
1 ∆1∆̂

−1
1 )η−1

]
,

and V2 = δ′1∆̂
−1
2 ∆2∆̂

−1
2 δ1 + δ′−1

(
Iu−1 ⊗ ∆̂

−1
1 ∆1∆̂

−1
1

)
δ−1 −

[
(n− 2)3

q3
+

(n− 2)2
(
4(n− 2)− q

)
q4

]
D2

+
n

n(1)n(2)

[
η′1∆̂

−1
2 ∆2∆̂

−1
2 η1 + η′−1

(
Iu−1 ⊗ ∆̂

−1
1 ∆1∆̂

−1
1

)
η−1

]

− n

n(1)n(2)

[(
(n− 2)3

q3
+

(n− 2)2
(
4(n− 2)− q

)
q4

)
mu

]
.

Remark 2 As in Remark 1, by setting u = 1, the model reduces to one-level model, consequently V0 reduces

to

V0 =

[
(n− 2)3

q3
+

(n− 2)2
(
4(n− 2)− q

)
q4

] [
D2 +

n

n(1)n(2)
m
]
.

This is the expression of V0 up to the second order term. Now, by ignoring the second order term in this

expression it further reduces to

V0 =

[
(n− 2)3

q3

] [
D2 +

n

n(1)n(2)
m
]
,

which is the expression of V0 in Kubokawa et al. (2013) (see Page 499).

6 Evaluation of PPMC and EPMC

To evaluate PPMC we first obtain expansion of the distribution function of C(y; µ̂(i), ∆̂
−1
1 , ∆̂

−1
2 ). By returning

now to Lemma 3 and (5.16), and by using the representations U = U0 + U1 + U2 + OP (n−3/2) and V =

V0 + V1 + V2 +OP (n−3/2) we consider the following Taylor series expansion

U

V 1/2
=

U0 + U1 + U2

V
1/2
0

(
1 +

V1 + V2

V0

)−1/2
=

(U0 + U1 + U2)

V
1/2
0

− (U0 + U1 + U2)

V
1/2
0

V1

2V0
− (U0 + U1 + U2)

V
1/2
0

V2

2V0

+
3

8

(U0 + U1 + U2)

V
1/2
0

V 2
1

V 2
0

+
3

8

(U0 + U1 + U2)

V
1/2
0

V 2
2

V 2
0

+
6

8

(U0 + U1 + U2)

V
1/2
0

V1V2

V 2
0

+OP (n−3/2).
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Further, by ignoring the terms of order higher than OP (n−3/2) we obtain

U

V 1/2
= γ0 + γ1 + γ2 +OP (n−3/2),

where γ0 =
U0

V
1/2
0

,

γ1 = V
−1/2
0

[
U1 −

U0

2V0
V1

]
,

and γ2 = V
−1/2
0

[
U2 −

U0

2V0
V2 +

3U0

8V 2
0

V 2
1 −

1

2V0
U1V1

]
.

The above results can be summarized in the following theorem.

Theorem 1 The cumulative distribution function of the normalized classifier
[
C(y; µ̂(i), ∆̂

−1
1 , ∆̂

−1
2 )− U)

]
/V 1/2

under y ∈ Π1 and under the condition A1 is expanded as

Φ
(
γ0 + γ1 + γ2

)
+OP (n−3/2) (6.24)

where φ(·) is the density function of N(0, 1).

Now, by considering the Taylor series expansion of Φ
(
γ0 + γ1 + γ2

)
in (6.24) around γ0 and using the fact

that φ′(x) = −xφ(x) one can see that PPMC of C(y; µ̂(i), ∆̂
−1
1 , ∆̂

−1
2 ) is expanded as follows

ECn = Φ(γ0) + φ(γ0)
(
γ1 + γ2 −

1

2
γ0γ

2
1

)
+OP (n−3/2). (6.25)

Remark 3 For u = 1, Φ(γ0) reduces to

Φ(γ0) = Φ

(
U0

V
1/2
0

)
,

which represents the corresponding expression in Kubokawa et al. (2013) (see Page 500) up to the second

order term.

Thus, from Remarks 1, 2 and 3 we see that our method is a clear extension of Kubokawa et al. (2013) for the

two-level multivariate observations.

To evaluate EPMC, we denote L = E
(
γ1 + γ2 − 1

2γ0γ
2
1

)
and observe that L can be written as

L = V
−1/2
0

[
E(U1) + E(U2)

]
− U0

2V
3/2
0

[
E(V1) + E(V2)

]
− U0

2V
3/2
0

E(U 2
1 )

+
U0

8V
5/2
0

(
3− U 2

0

V0

)
E(V 2

1 )− 1

2V
3/2
0

(
1− U 2

0

V0

)
E(U1V1).

Now, to calculate the approximate EPMC, we need to evaluate the expectation of each term in L .
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By using the fact that ζ and η are independent and identically distributed while evaluation E(U1), and

by using the expressions (5.19) and (5.21) and by keeping the second order term while evaluation E(U1)

respectively, we obtain

E(U1) = 0,

and E(U2) = − (n− 2)

2(1 + q2)2

[
D2 +

n(1) − n(2)

n(1)n(2)
mu

]
+O(n−3/2).

Again, by applying the similar arguments for V1 and V2 we obtain

E(V1) = 0,

and E(V2) =

(
(n− 2)2

(
4(n− 2)− q

)
(q)4

)(
D2 +

nmu

n(1)n(2)

)
+O(n−3/2).

Now, using the results on the higher order moments of the inverse of Wishart distribution in Appendix A2 in

the Kubokawa et al. (2013) we evaluate E(V 2
1 ) as follows.

E(V 2
1 ) = E

[
2

√
n

n(1)n(2)

(
δ′1∆̂

−1
2 ∆2∆̂

−1
2 η1 + δ′−1

(
Iu−1 ⊗ ∆̂

−1
1 ∆1∆̂

−1
1

)
η−1

) ]2
= 4

n

n(1)n(2)

[
E
(
δ′1∆̂

−1
2 ∆2∆̂

−1
2 η1η

′
1∆̂
−1
2 ∆2∆̂

−1
2 δ1 +

u∑
k=2

δ′k∆̂
−1
1 ∆1∆̂

−1
1 ηkη

′
k∆̂
−1
1 ∆1∆̂

−1
1 δk

)]
= 4

n(n− 2)

n(1)n(2)

[ (n− 2)4
{

(n− 2)m+ ((n− 2) +m)2
}

q7

]
D2 +O(n−3/2).

Further, given that the expectation of the product terms are zeros we now obtain E(U 2
1 ) as follows

E(U 2
1 ) = E

[√ n(1)

nn(2)
δ′Γ̂
−1
Ξ η +

1√
n
δ′Γ̂
−1
Ξ ζ +

1√
n(1)n(2)

ζ′Γ̂
−1
Ξ η

]2
=

n(1)

nn(2)
E(δ′Γ̂

−1
Ξ ηη′Γ̂

−1
Ξ δ) +

1

n
E(δ′Γ̂

−1
Ξ ζζ′Γ̂

−1
Ξ δ) +

1

n(1)n(2)
E(ζ′Γ̂

−1
Ξ ηη′Γ̂

−1
Ξ ζ)

= (
n(1)

nn(2)
+

1

n
)E(δ′Γ̂

−1
Ξ ΓΞΓ̂

−1
Ξ δ) +

1

n(1)n(2)
E(ζ′Γ̂

−1
Ξ ΓΞΓ̂

−1
Ξ ζ)

= (
n(1)

nn(2)
+

1

n
)E(δ′1∆̂

−1
2 ∆2∆̂

−1
2 δ1 + δ′−1(Iu−1 ⊗ ∆̂

−1
1 ∆1∆̂

−1
1 δ−1))

+
1

n(1)n(2)
E(ζ′1∆̂

−1
2 ∆2∆̂

−1
2 ζ1 + ζ′−1(Iu−1 ⊗ ∆̂

−1
1 ∆1∆̂

−1
1 ζ−1))

=

(
n(1)

nn(2)
+

1

n

)[
(n− 2)2E

(
trW−2

2 ξ2ξ
′
2

)
+ (n− 2)2

u∑
k=2

E
(
trW−2

1 ξ1kξ
′
1k

)]

+
1

n(1)n(2)

[
(n− 2)2E

(
trW−2

2

)
+ (n− 2)2

u∑
k=2

E
(
trW−2

1

)]

=

[
(n− 2)3

q3
+

(n− 2)2
(
4(n− 2)− q

)
q4

] [
D2

(
n(1)

nn(2)
+

1

n

)
+

mu

n(1)n(2)

]
+O(n−3/2).
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The above results are derived using the independence of η1 and η−1, independence of η and ζ, as well as

E(ζ) = 0. Finally, we express E(U1V1) as follows

E(U1V1) = − 2

n(2)
E
[(
δ′1∆̂

−1
2 η1 + δ′−1

(
Iu−1 ⊗ ∆̂

−1
1

)
η−1

)(
δ′1∆̂

−1
2 ∆2∆̂

−1
2 η1 + δ′−1

(
Iu−1 ⊗ ∆̂

−1
1 ∆1∆̂

−1
1

)
η−1

)]
= − 2

n(2)

[
E
(
δ′1∆̂

−1
2 η1η

′
1∆̂
−1
2 ∆2∆̂

−1
2 δ1

)
+ E

(
δ′−1

(
Iu−1 ⊗ ∆̂

−1
1

)
η−1η

′
−1
(
Iu−1 ⊗ ∆̂

−1
1 ∆1∆̂

−1
1

)
δ−1

)]

= − 2

n(2)

[
E
(
δ′1∆̂

−1
2 ∆2∆̂

−1
2 ∆2∆̂

−1
2 δ1

)
+ E

(
δ′−1

(
Iu−1 ⊗ ∆̂

−1
1

)(
Iu−1 ⊗∆1

)(
Iu−1 ⊗ ∆̂

−1
1 ∆1∆̂

−1
1

)
δ−1

)]

= − 2

n(2)

[
E
(
δ′1∆̂

−1
2 ∆2∆̂

−1
2 ∆2∆̂

−1
2 δ1

)
+ E

(
δ′−1

(
Iu−1 ⊗ ∆̂

−1
1 ∆1∆̂

−1
1 ∆1∆̂

−1
1

)
δ−1

)]

= − 2

n(2)

[
(n− 2)4

(n− 2 +m)

q5
D2

1 + (n− 2)4
(n− 2 +m)

q5

u∑
k=2

D2
k

]
+O(n−3/2)

= − 2

n(2)
(n− 2)4

(n− 2 +m)

q5
D2 +O(n−3/2).

Now, by summarizing the above results we obtain the following theorem.

Theorem 2 Under the conditions A1 and A2 the asymptotic approximation of EPMC of C(y; µ̂(i), ∆̂
−1
1 , ∆̂

−1
2 )

is given by ETnECn = Φ(γ0) + φ(γ0)L (D2).

6.1 Relation to existing results

To compare our approximation with the existing results we apply the asymptotic approximations of the type

considered in Wyman et al. (1990) and Fujikoshi et al. (2010) to the BCS classifier. As we are mostly

interested in the asymptotic effect of u we focus on C−1 = C(y−1; µ̂
(i)
−1, ∆̂

−1
1 ). We recall that by the bounding

condition A2, we assume that D2
k = O(1/n) for all k = 2, . . . , u and observe that with u→∞, the distribution

of C−1 as a sum of growing number of independent and identically distributed random variables converges to

the normal distribution, so that EPMC can be approximated as

ETn
EC−1
n ≈ Φ

(
E (U) [E (V)]

−1/2
)
,

where

U =
u∑

k=2

[
δ̂
′

k∆̂−11

(
y0
k − µ̂

(1)
k

)]
− 1

2

u∑
k=2

D2
k and V =

u∑
k=2

δ̂
′

k∆̂−11 ∆1∆̂−11 δ̂k. (6.26)

Now, by evaluating the moments in (6.26) and by deriving the representation of ETn
EC−1
n , we obtain

ETn
EC−1
n ≈ Φ

−1

2

√
2n(0)

2n(0) −m
D2
−1(u)√

[D2
−1(u) + 2mu

n(0) ]

 = Φ

−1

2

D−1(u)√[
1 + 4mu

n(0)D2
−1(u)

] [
1 + m

2n(0)−m

]
 , (6.27)
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where we set n(1) = n(2) = n(0) and ignore the terms of order 1/n(0) and m/(n(0))2 in order to single out

effects of m and u. The second term in the denominator of (6.27) reflects increase in the misclassification

rate due to estimation of ∆−11 : for fixed u, the effect of the block size, m when n(0) grows. However, the

effect of u is much more pronounced since 4mu
n(0) D2

−1(u) grows with u thereby increasing ETn
EC−1
n . However,

the finite sample size behavior of the approximation is much more subtle because it depends on the terms of

order 1/n(0) and m/(n(0))2.

7 Simulation Studies

We now examine the performance accuracy of the linear classifiers (3.5) with the help of simulation studies.

Populations Π1 and Π2 are represented by normal distribution with the common BCS covariance matrix Γ.

The matrix parameters Σ0 and Σ1 in Γ are chosen as m×m identity matrix and m×m zero matrix with all

elements as zeros respectively; and Γ−1/2ν1 = (mu)−1/2(D,D, . . . ,D)′ for D2 = 2, 4 and ν2 = (0, 0, . . . , 0)′.

The transformed means µ1 and µ2 and the transformed variance ΓΞ are obtained by the orthogonalization

of Ξ, with u× u dimensional Helmert matrix H as described in Section 3.1. By setting D2 = 2 and D2 = 4,

we consider two types of classification complexity for two-level data, for which the OMCP EO = 0.223 and

EO = 0.159 respectively.

To see the effect of the repeated measurements over time u, the values of u are chosen as 3, 5 and 8.

Similarly to see the effect of the number of variables m, it is chosen as 2, 5, 8 and 10. The total sample size n

is chosen as 20, 40 and 80, with different combinations of the pairs of sample sizes (n(1), n(2)), to encompass

both balanced and unbalanced cases. Even though we have chosen Σ0 and Σ1 as m×m identity matrix and

m × m zero matrix, the calculated values of Φ(γ0), the limiting behavior of EPMC do not depend on the

choices of Σ0 and Σ1.

Simulation results are given in Tables 1, 2 and 3 for (n(1) = n(2)), (n(1) > n(2)) and (n(1) < n(2))

respectively. The limiting values of EPMC, Φ(γ0) are given in these tables in the first row and the approximate

EPMC values are given in the second row in both italics and parenthesis for each combination of D2, m, u

and (n(1), n(2)). Table 4 present the values of Φ(γ0) for different D2, m and (n(1), n(2)), but for fixed u = 1.

As mentioned in the various remarks in the previous sections that the our method reduces to the method of

Kubokawa et al. (2013) for u = 1, and indeed we get the exact identical values of Φ(γ0) up to the first order

term as Kubokawa et al. (2013) for different values of D2, m and (n(1), n(2)). Nevertheless, for comparison

purpose with our new extended method we also calculate the limiting values of EPMC up to the second order

term for u = 1.

In Tables 1, 2 and 3 we see that both Φ(γ0) and the approximate EPMC values increase with m and u
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for each fixed D2
(
this result is supported by (6.27)

)
and (n(1), n(2)). However, both Φ(γ0) and approximate

EPMC values decrease with n (both balanced and unbalanced cases) for each fixed D2, m and u. This is

naturally expected as increasing sample size should improve performance accuracy. It is very important to

point out that with our technique both the limiting value Φ(γ0) and approximate EPMC values work well even

for small n, however Kubokawa et al. (2013) being not designed for small sample case fails. Furthermore, for

those sample sizes when Kubokawa et al. (2013) works, our proposed method for two-level data outperforms

their results. To demonstrate the achieved gain consider for example, two following set-ups, D2 = 2, m = 2,

u = 5, (n(1), n(2)) = (15, 25), and D2 = 2, m = 5, u = 2, (n(1), n(2)) = (15, 25). Our method gives

Φ(γ0) = 0.317 and Φ(γ0) = 0.325 respectively, whereas the corresponding value in Kubokawa et al. (2013)

is 0.338. For additional comparison of the performance pattern of the two methods consider the case when

D2 = 2; with m = 10, u = 5, (n(1), n(2)) = (30, 50), in Table 3, and with m = 50, (n(1), n(2)) = (30, 50) in

Table 4, which result in 0.387 and 0.429 respectively. Observe that both limiting values are calculated using

second order term, thereby showing the gain of taking into account the covariance structure underlying the

data.

Another important observation here is that with fixed total dimensionality, larger number of replicates

(u) results in improved performance accuracy. For example, given that mu = 10, we consider the two cases,

m = 2, u = 5, and m = 5 and u = 2; which result in 0.317 and 0.325 respectively. See Table 3, for

(n(1), n(2)) = (15, 25) and D2 = 2. This is in accordance with the theory of repeated measurements where

increasing the number of replicates improves precision.

Moreover, we observe another very important fact that when n(1) > n(2) both Φ(γ0), the limiting values

of EPMC are less that their counterparts when n(1) < n(2) and n(1) = n(2). Thus, in practical applications

it is suggested that when classifying a patient with a rare disease, as a sick or healthy, one needs to choose

diseased Population as Π2.

It is also interesting to observe the effect of increasing sample size for both choices of the classification

complexity (D2 = 2 and D2 = 4); the limiting values φ(γ0) and EPMC becomes closer to each other, see

Tables 1, 2 and 3. Observe also that the difference between the first and second order representation of Φ0 is

negligible, see Table 4.

8 Conclusions and scope for the future

We have analyzed the performance accuracy of the linear classifier designed for two-level multivariate data

where the model is represented by the BCS covariance structure. The crucial advantage of this structure is its

ability to capture two types of variations in the data, where the covariance matrix Σ0 represents variation of
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feature variables within observations, and Σ1 represents variation of feature variables between any two time

replicates. Our main results are as follows:

• The asymptotic normality of the BCS classifier hinges on the distributional property of the matrix

parameters ∆1 and ∆2. We derive the pooled unbiased estimators of the matrix parameters of the BCS

structure and show that their distributions are Wishart.

• Our high-dimensional asymptotic framework allows the number of replicates (u) to grow faster than the

sample size, so that the total number of variables can be larger than the sample size.

•Main results of this paper can be extended to more general settings. In particular, two-level data can have

many other covariance structures, e.g., separable covariance structure with half structured, half unstructured

or both structured or both unstructured. An extension of the BCS classifier to more than two classes is also

possible.

We extend the consideration of Kubokawa et al. (2013) to two-level data and derive the asymptotic approx-

imation of EPMC in the setting which allows the number of replicates to grow with the weaker constrain

m < n, unlike mu < n in the case of Kubokawa et al. (2013). Our results are in line with Kubokawa et al.

(2013) and reduces to their model exactly with u = 1.

To extend the measure of classification accuracy to the multi-class case, one can apply the multiple binary

comparisons in p-populations classification problem as it is suggested in Wu (2003), or to use one-against-all

approach applied in Dettling (2005) or to consider the distance based classifier, see Srivastava (2006).
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Table 1: Values of Φ(γ0) for simulated data for different choices of (n(1) = n(2)), m, u, and D2.

(n(1), n(2)) → (10,10) (20,20) (40,40)

D2 ↓ m ↓ u → 2 5 8 2 5 8 2 5 8
2 2 0.292 0.323 0.344 0.268 0.290 0.306 0.254 0.268 0.279

(0.300) (0.334) (0.354) (0.270) (0.294) (0.312) (0.255) (0.269) (0.281)

5 0.341 0.379 ‡ 0.398 ‡ 0.298 0.333 0.354 ‡ 0.272 0.297 0.315

(0.351) (0.387) (0.405) (0.302) (0.338) (0.359) (0.273) (0.300) (0.318)

8 0.378 0.412 ‡ 0.427 ‡ 0.323 0.361 ‡ 0.382 ‡ 0.287 0.319 0.340

(0.388) (0.419) (0.433) (0.327) (0.366) (0.386) (0.289) (0.322) (0.343)

10 0.399 ‡ 0.429 ‡ 0.442 ‡ 0.337 0.375 ‡ 0.395 ‡ 0.296 0.331 0.353 ‡
(0.408) (0.435) (0.447) (0.342) (0.380) (0.399) (0.298) (0.334) (0.355)

4 2 0.201 0.227 0.247 0.180 0.195 0.208 0.169 0.178 0.185

(0.210) (0.238) (0.259) (0.184) (0.200) (0.214) (0.171) (0.180) (0.188)

5 0.252 0.292 ‡ 0.318 ‡ 0.206 0.236 0.258 ‡ 0.183 0.201 0.216

(0.262) (0.305) (0.330) (0.210) (0.242) (0.265) (0.184) (0.203) (0.219)

8 0.299 0.342 ‡ 0.365 ‡ 0.230 0.269 ‡ 0.294 ‡ 0.195 0.221 0.242

(0.310) (0.353) (0.375) (0.235) (0.275) (0.300) (0.197) (0.224) (0.245)

10 0.330 ‡ 0.369 ‡ 0.390 ‡ 0.246 0.287 ‡ 0.314 ‡ 0.204 0.234 0.256 ‡
(0.340) (0.380) (0.399) (0.251) (0.294) (0.320) (0.206) (0.237) (0.259)

The notation ‡ represents failure of Kubokawa et al. (2013).
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Table 2: Values of Φ(γ0) for simulated data for different choices of (n(1) > n(2)), m, u, and D2

(n(1), n(2)) → (12,8) (25,15) (50,30)

D2 ↓ m ↓ u → 2 5 8 2 5 8 2 5 8
2 2 0.278 0.292 0.298 0.258 0.267 0.272 0.249 0.256 0.260

(0.288) (0.304) (0.310) (0.263) (0.273) (0.279) (0.251) (0.258) (0.263)

5 0.312 0.322 ‡ 0.320 ‡ 0.276 0.286 0.287 ‡ 0.260 0.270 0.275

(0.324) (0.333) (0.331) (0.282) (0.292) (0.294) (0.262) (0.273) (0.278)

8 0.342 0.343 ‡ 0.337 ‡ 0.291 0.296 ‡ 0.293 ‡ 0.269 0.279 0.282

(0.353) (0.354) (0.348) (0.297) (0.303) (0.300) (0.272) (0.282) (0.286)

10 0.361 ‡ 0.359 ‡ 0.350 ‡ 0.300 0.302 ‡ 0.296 ‡ 0.274 0.284 0.285 ‡
(0.372) (0.370) (0.361) (0.306) (0.309) (0.303) (0.277) (0.287) (0.289)

4 2 0.193 0.206 0.215 0.174 0.181 0.187 0.166 0.171 0.174

(0.204) (0.219) (0.229) (0.180) (0.188) (0.194) (0.169) (0.173) (0.177)

5 0.232 0.248 ‡ 0.255 ‡ 0.192 0.203 0.209 ‡ 0.176 0.184 0.190

(0.244) (0.262) (0.268) (0.198) (0.211) (0.217) (0.178) (0.187) (0.193)

8 0.271 0.284 ‡ 0.286 ‡ 0.209 0.221 ‡ 0.225 ‡ 0.184 0.195 0.201

(0.284) (0.298) (0.299) (0.216) (0.228) (0.232) (0.187) (0.198) (0.205)

10 0.299 ‡ 0.309 ‡ 0.307 ‡ 0.221 0.231 ‡ 0.233 ‡ 0.190 0.201 0.207 ‡
(0.312) (0.322) (0.321) (0.227) (0.239) (0.241) (0.193) (0.205) (0.211)

The notation ‡ represents failure of Kubokawa et al. (2013).
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Table 3: Values of Φ(γ0) for simulated data for different choices of (n(1) < n(2)), m, u, and D2

(n(1), n(2)) → (8,12) (15,25) (30,50)

D2 ↓ m ↓ u → 2 5 8 2 5 8 2 5 8
2 2 0.309 0.360 0.396 0.280 0.317 0.347 0.261 0.283 0.302

(0.314) (0.368) (0.403) (0.280) (0.321) (0.352) (0.260) (0.283) (0.303)

5 0.374 0.442 ‡ 0.483 ‡ 0.325 0.389 0.432 ‡ 0.287 0.331 0.364

(0.382) (0.448) (0.486) (0.327) (0.393) (0.435) (0.287) (0.332) (0.367)

8 0.419 0.485 ‡ 0.524 ‡ 0.361 0.435 ‡ 0.483 ‡ 0.310 0.367 0.408

(0.427) (0.489) (0.524) (0.364) (0.439) (0.485) (0.310) (0.369) (0.410)

10 0.442 ‡ 0.503 ‡ 0.538 ‡ 0.381 0.459 ‡ 0.507 ‡ 0.323 0.387 0.431 ‡
(0.449) (0.505) (0.537) (0.385) (0.462) (0.508) (0.325) (0.390) (0.433)

4 2 0.212 0.253 0.286 0.187 0.213 0.236 0.173 0.187 0.200

(0.219) (0.262) (0.296) (0.190) (0.217) (0.241) (0.174) (0.188) (0.201)

5 0.276 0.345 ‡ 0.393 ‡ 0.223 0.277 0.320 ‡ 0.192 0.223 0.251

(0.284) (0.355) (0.401) (0.226) (0.282) (0.325) (0.193) (0.225) (0.253)

8 0.332 0.407 ‡ 0.455 ‡ 0.257 0.328 ‡ 0.381 ‡ 0.210 0.255 0.293

(0.340) (0.415) (0.460) (0.261) (0.333) (0.385) (0.211) (0.258) (0.296)

10 0.365 ‡ 0.437 ‡ 0.482 ‡ 0.278 0.357 ‡ 0.412 ‡ 0.221 0.275 0.318 ‡
(0.373) (0.444) (0.485) (0.282) (0.362) (0.416) (0.223) (0.277) (0.321)

The notation ‡ represents failure of Kubokawa et al. (2013).
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Table 4: Comparison of first and second order values of Φ(γ0) in Kubokawa et al. (2013)

D2 m (n(1), n(2)) Φ(γ0)
Second order First order

10 (20, 20) 0.314 0.310
10 (20, 20) 0.314 0.310

2 10 (30, 10) 0.269 0.265
10 (10, 30) 0.379 0.377

10 (20, 20) 0.226 0.221
4 10 (30, 10) 0.198 0.193

10 (10, 30) 0.272 0.268

50 (40, 40) 0.392 0.389
2 50 (50, 30) 0.359 0.356

50 (30, 50) 0.429 0.427

50 (20, 20) 0.324 0.319
4 50 (30, 10) 0.299 0.294

50 (10, 30) 0.353 0.349
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