
THE UNIVERSITY OF TEXAS AT SAN ANTONIO, COLLEGE OF BUSINESS

Working Paper SERIES

WP # 0013IS-296-2007
May 04, 2007

Virtual Organizational Learning in
Open Source Software Development Projects

Yoris A. Au* ; Darrell Carpenter; Xiaogang Chen; Jan
G. Clark

Department of Information Systems and Technology
Management

College of Business, University of Texas at San Antonio
San Antonio, TX 78249, U.S.A.

Copyright ©2006 by the UTSA College of Busines. All rights reserved. This document can be downloaded
without charge for educational purposes from the UTSA College of Business Working Paper Series
(business.utsa.edu/wp) without explicit permission, provided that full credit, including © notice, is given to
the source. The views expressed are those of the individual author(s) and do not necessarily reflect official
positions of UTSA, the College of Business, or any individual department.

ONE UTSA CIRCLE
SAN ANTONIO, TEXAS 78249-0631
210 458-4317 | BUSINESS.UTSA.EDU

Virtual Organizational Learning in
Open Source Software Development Projects

Yoris A. Au* ; Darrell Carpenter; Xiaogang Chen; Jan G. Clark

Department of Information Systems and Technology Management
College of Business, University of Texas at San Antonio

San Antonio, TX 78249, U.S.A.

Abstract

We studied the existence of virtual organizational learning in open source software (OSS)
development projects. Specifically, our research focused on learning effects of OSS
projects and factors that affect the learning process. The number and percentage of
resolved bugs and bug resolution time of 118 SourceForge.net OSS projects were used to
measure the learning effects. Projects were characterized by project type, number and
experience of developers, number of bugs, and bug resolution time. Our results provide
evidence of virtual organizational learning in OSS development projects.

Keywords: Virtual organizational learning; Organizational learning curve; Virtual
organization; Open source software; Software development; Project performance

Acknowledgment:
The authors wish to thank the anonymous reviewers from the 18th Information Resources Management
Association International Conference (IRMA2007) for useful suggestions on an early version of this paper,
Greg Madey for providing access to SourceForge.net database, the participants in a seminar at the
University of Texas at San Antonio in 2007 for their helpful comments, and the College of Business of the
University of Texas at San Antonio for providing financial and technical support for this research.

* Corresponding author: Yoris A. Au, Information Systems and Technology Management, College of
Business, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249; Phone: 1-210-
458-6337; Fax: 1-210-458-6305; E-mail: yoris.au@utsa.edu.

Virtual Organizational Learning in
Open Source Software Development Projects

1. Introduction

Open source software (OSS) development projects exhibit many of the characteristics

that make virtual organizations successful, including self-governance, a powerful set of

mutually reinforcing motivations, effective work structures and processes, and

technology for communication and coordination [30]. Examples of thriving OSS projects

include Linux (often considered a long-term challenge to Microsoft’s operating system),

Apache (which has more than 60 percent of the Web server market share), and Mozilla

(whose Firefox Web browser is considered by many users to be superior to Microsoft’s

Internet Explorer).

 Raymond [36] described the open source method of development as “a great

babbling bazaar of differing agendas and approaches… out of which a stable and

coherent system could seemingly emerge only by a succession of miracles.” Although

seemingly disorganized, and lacking monetary incentives, the bazaar development

approach is characterized by design simplicity, team work, a visible product, and

communication [42].

Researchers have studied different aspects of this particular form of virtual

organization to identify the specific factors that make OSS development projects work.

For example, Mockus et al. [31] conducted a case study on the Apache Web server and

Mozilla Web browser projects to learn their development process characteristics. They

found that projects based on a relatively small core of developers (10 to 15 people) could

be geographically dispersed, yet communicate and function without conflict via a set of

2

implicit coordination mechanisms (i.e. informal email exchange). However, when the

number of core developers exceeded 10-15 people, other explicit coordination

mechanisms (i.e. code ownership policy) had to be adopted to maintain communication

and reduce conflict.

 In a related study, Huntley [21] attempted to explain the success of OSS projects

using organizational learning effects. He maintained that the learning effects could be

manifested in the decreased time required for fixing bugs. There were significant

debugging differences in Apache versus Mozilla, with the attributing factor being project

maturity, as opposed to other measurable factors such as project size or number of

programmers. Debugging data from Apache and Mozilla were modeled according to the

learning curve. As noted, the debugging process for Mozilla, an emerging project, was

characterized as steady with predictable improvements. The results illustrate that the

learning effects are indeed present in the Mozilla team.

Both Mockus et al. [31] and Huntley [21] focused their research on two OSS

projects—Apache and Mozilla. While they pointed out significant differences between

the two projects, there was no indication of which project was most characteristic of other

OSS projects Our research seeks to extend and refine their works by including a much

larger number of OSS development projects of varying size (in terms of the number of

developers involved) and type (from simple file management software to complex

enterprise software suite). Specifically, we included 118 OSS projects in our final

sample set. By focusing on multiple projects of varying size and type, we were better

able to characterize OSS projects overall. Our study was initiated to answer the

following main research questions:

3

(1) Are learning effects universally present in OSS projects?

(2) What are the factors that affect the learning process?

Similar to Huntley [21], we use the number and percentage of resolved bugs and bug

resolution time to measure the learning effects. However, we also look at how different

project types, number of developers (project team size) and their experience, and the

intensity of assigned bugs affect the learning rates. Data for this study were obtained

from the SourceForge.net1 database. Our study contributes to the information systems

literature by providing empirical evidence of virtual organizational learning and of the

factors that affect it.

2. Theoretical framework and hypotheses

We developed several hypotheses based on theories that relate to virtual

organizational learning. Our first hypothesis seeks to show that organizational learning

exists in OSS development projects. The subsequent hypotheses seek to explain the

variation of learning rates observed across projects.

2.1 Organizational learning curves

Group learning curves were first observed in the 1940’s during construction of ships

and aircraft [46]. It was noted that the time required to build a ship or airplane typically

decreased at a diminishing rate as more products were produced. The organizational

learning curve is based on a combination of effort and learning. Moderating factors may

include skill level, prior experience, motivation, and work complexity. An early

Details on SourceForge.net’s database are avalaible at http://zerlot.cse.nd.edu/mywiki/ ("SourceForge Research Data
Archive: A Repository of FLOSS Research Data"). Christley and Madey [7] provide further descriptions of the
SourceForge.net data set and discuss various data mining techniques that can be applied to the data.

4

1

discussion on organizational learning curves can be found in Wright [44], and reviews in

Yelle [46] and Dutton and Thomas [11].

Although there is little empirical evidence about what contributes to the

organizational learning curve phenomenon [11,12,28,46], researchers have suggested

several factors: increased proficiency of individuals, greater standardization of

procedures, improvements in scheduling, improvements in product design, better

coordination, and division of labor and specialization [19,20,22,44]. Fiol and Lyles [15]

postulate there are two levels of organizational learning: higher-level and lower-level.

Higher-level learning focuses on re-defining the overall organizational strategy under ill-

defined context. Examples of such learning include developing a new organizational

culture and re-establishing organizational priorities [2]. Conversely, lower-level learning

is focused on specific organizational behaviors and constraints within existing

organizational rules. Minor managerial adjustments, improved problem-solving skills,

and the development of formal rules are examples of lower-level learning [15]. This type

of learning is primarily a process of repetition [8].

In OSS development projects, debugging can be considered as a means in which

organizational experience is accumulated, thus helping to establish the software

development learning curve [21]. As such, learning during the debugging process can be

classified as lower-level learning since it often improves problem-solving skills by

repeatedly requiring the developers to scan, review, and/or modify program code. It is

expected that, as a development team gains experience with problem domains,

techniques, technologies, and tools, it will exhibit the learning curve effect by decreasing,

over time, the average time needed to resolve bugs. It is also expected that the team will

5

become more familiar with the debugging process, leading to more efficient debugging.

Therefore, we hypothesize that:

H1: As the number of bugs resolved to date increases, the average bug resolution

time decreases.

2.2 Cognitive capital and developer experience

Cognitive capital refers those resources that provide shared representations,

interpretations and systems of meaning among parties [32]. It is comprised of both

expertise and the knowledge about how to apply the expertise in solving a problem.

Over time, people develop cognitive capital as they learn the skills, knowledge,

specialized dialogue, and norms of the practice and interact with others who share the

same practice [43]. Consequently, it is expected that individuals with longer tenure in a

shared practice have greater cognitive capital and are thus better able to share their

knowledge with others.

OSS developers can be concurrently involved in more than one project, allowing

them a greater opportunity to work with other developers, learn about the norms of OSS

development practice, and accumulate longer tenure and more experience. Overall, the

greater the number of projects in which a developer is involved, the greater the developer

expertise. This translates into larger cognitive capital, which the developer may share

with other team members to help improve project team performance [23]. Under some

circumstances, individuals may be unwilling to share their cognitive capital because they

may fear the loss of power associated with unique knowledge [9,34]. However, this is

not expected within the OSS community. Instead, the OSS community exhibits factors

such as altruism, pro-sharing norms, and reciprocity [23] that are positively related to

6

knowledge transfer behavior. These same factors have also been identified as the major

reasons why OSS developers voluntarily join the OSS community [37,39]. This leads us

to the following hypothesis:

H2: Teams with more experienced developers resolve bugs faster.

2.3 Task ownership

Task ownership is a psychological state in which a task performer takes personal

interest and responsibility for the task. The degree of task ownership can impact how the

task is accomplished [10]. Researchers generally agree that task ownership improves

team effectiveness [6] and facilitates individual learning in both traditional and computer-

support collaborative learning environments [5,25]. For example, students exhibit a

sense of individual accountability when their grade is based on individual efforts in a

group project [25]. This also helps to eliminate free-riders and hitch-hikers [40].

The relationship between task ownership and individual/team performance can be

explained by Goal-Setting Theory from organizational psychology. The theory maintains

task ownership helps task performers clarify their task goals [29]. In turn, the clarified

goal enables the performers to focus attention on goal-related activities, thus improving

performance. However, goal clarity cannot be achieved if the task performer deems the

task too difficult. Rasch and Tosi [35] validated Goal-Setting Theory in software

development teams.

On SourceForge.net, when a bug is submitted into the tracking system, the

administrator assigns the bug to a developer who may or may not accept the assignment

(based on interest, time available, and/or ability). At the time of assignment, the

administrator will also add comments about the expected bug turn-around-time. If the

7

developer rejects the assignment, the administrator must either find another developer

willing to accept the bug assignment or it remains unassigned. Essentially, the bug

assigning process is an ownership determination process. Once determined, the owner

has full responsibility for the bug. We presume that as more bugs are assigned to specific

developers, their average bug resolution time decreases. Therefore, we hypothesize that:

H3: There is an inverse relationship between increasing the percentage of bugs

assigned to specific developers and average bug resolution time.

2.4 Project category

At the time this research was conducted, Sourceforge.net classified its projects into

thirteen categories. These categories include Clustering, Database, Desktop,

Development, Enterprise, Financial, Games, Hardware, Multimedia, Networking,

Security, SysAdmin, and VoIP. We posit that these projects differ in other areas than just

category. Project complexity and timeliness, among others, may also relate to significant

differences among the project categories. Complexity can be defined in terms of the

number of interconnected components and the degree of interdependency between these

components [3]. It has been empirically proven to lengthen project time [18,45].

Timeliness refers to the implicit time (i.e., “deadline) pressure a project experiences. It

has been found to cause teams to enhance their efforts on a given task [15,16], and thus

leads to improved performance. We therefore hypothesize that:

H4: Different project categories have different average bug resolution times.

2.5 Project team size

Research on teams under traditional co-located situations suggests that the

appropriate size of a team depends on the nature of the task [24]. It is also commonly

8

agreed that the association between team performance and team size has an inverted U-

shape [33,41]. If a team is too small, it does not have sufficient human resources to share

the workload. On the other hand, if a team is too large, coordination overhead becomes

extremely high and social loafing becomes a real concern [27].

Similar findings have been reported in the software development domain. Brooks’

Law indicates that the capability of a programming team does not necessarily improve as

more developers join in the team. Instead, “adding manpower to a late software project

makes it later” [4, p. 25]. When the number of developers in a team increases linearly,

the potential communication paths increase exponentially. For instance, if N developers

work on a project, the possible communication paths are (N2 – N)/2 [4], increasing the

chance of communication breakdown occurring within the project team.

The relationship between team size and team performance in OSS communities might

exhibit a different pattern than that in the traditional software development team. This is

because the communication structure of the OSS project team is different. An OSS

project team is typically composed of two sub-groups of developers: core developers and

code contributors [31,36]. Core developers are largely responsible for making critical

decisions regarding project development (i.e., when to release the next version and

whether or not to implement a new feature). In order to reach consensus on such

decisions, intensive communication among the core developers is critical. Raymond [36]

recommends that there be no more than three core developers per project.

Code contributors are the labor force for coding. They receive well-defined subtasks

(i.e. bugs) from core developers, work on the subtasks independently, and then report

finished tasks back to core developers. As a result, the communication structure within

9

an OSS project follows a star topology. The core developers are the central “hub,” and

all the contributors connect to and through the “hub”. Raymond [36] recommends as

many code contributors as possible. This is echoed by Huntley [21], who maintains that

a well-controlled debugging process can be distributed among a large number of

programmers without significantly increasing communication costs because most bugs

are somewhat limited in scope and involve a small fraction of the code. We argue that

different team sizes have different challenges. A large team may have coordination

problems, whereas a small team may encounter resource problems, affecting the overall

team performance. This leads us to the following hypothesis:

H5: Average bug resolution time varies among project team size.

3. Research Method

To study the constructs of interest, it was necessary to collect data on a wide variety

of project-related measures. These measures included development status, rank, bugs

reported, patches, feature requests, support requests, developer registrations and other

data associated with an open source software project. We chose SourceForge.net as our

data source. SourceForge.net hosts over 100,000 projects for Open Source Code. It

provides a multitude of tools to support collaborative development and allows developers

to register their projects at no charge. These properties make it equally attractive to both

large and small development efforts. Furthermore, the number of projects, the wide

variety in terms of size and expertise, and the availability of event data make it an ideal

data source for this research.

10

3.1 Empirical model

Based on the production function and motivated by Argote et al. [1] and Huntley [21]

we developed a log-log regression model with both qualitative and quantitative variables:

ln MeanRe sTimeit =α 0 +α1 lnCumRe sBugs +α 2 ln DevExp Avg +α3 ln dBugsPctAssigne it i it

12 3

+∑β Pr ojCat + + ∑γ j Pr ojSizeij + ε iti i
i=1 j =1

…………………...…..… (1)

Where:

MeanResTime it = Mean time to resolve the bugs of Project i reported in Week t

CumResBugs it = Cumulative resolved bugs of Project i, including Week t

AvgDevExpi = Average number of other projects each developer in Project i

has worked on

PctAssignedBugs it= Percentage of assigned bugs in Week t of Project i

ProjCati = Category of Project i

ProjSizei = Size of Project i, measured in terms of the number of

developers in the project (1-2 developers; 3-7 developers; 8-15

developers; >15 developers)

The descriptive statistics for the model variables are provided in Table 1.

INSERT TABLE 1 ABOUT HERE

4. Data collection

Data collection began by selecting representative projects for analysis. We identified

the top 50 projects in each of SourceForge.net’s 13 primary software categories. These

11

categories include Clustering, Database, Desktop, Development, Enterprise, Financial,

Games, Hardware, Multimedia, Networking, Security, SysAdmin, and VoIP. Developers

use these categories to describe their projects and help potential users and contributors

find relevant projects. Because these categories were widely used for classification, they

were determined to be the most appropriate method of ensuring a good cross-section of

all open source projects that were selected for our sample.

The top 50 projects were identified based on two factors, development status and site

rank. The first factor limited projects to those that had produced a production/stable

version of the application. This was determined using SourceForge.net’s development

status field which lists project status as 1) planning stage, 2) pre-alpha, 3) alpha version,

4) beta version, 5) production/stable version, or 6) mature. This factor was necessary to

ensure that “conceptual” projects with no event reports would not reduce the set of usable

responses. Additionally, those projects that reached alpha or beta versions but had not yet

produced production/stable versions needed to be excluded. In some cases, the

developers were unresponsive to externally reported events (such as bug reports) and thus

no inferences could be made from those projects.

The second factor for selection was SourceForge.net’s internal ranking system. The

ranking system used three sub-factors 1) traffic, 2) communication, and 3) development

to determine an overall rank of projects. The traffic sub-factor included web traffic to the

project’s main SourceForge.net page, web traffic to all project sub-pages, and project-

related file downloads. The communication sub-factor consisted of the number of opened

or closed events, number of posts in the project’s mailing lists, and number of posts in the

project’s discussion forums. The development sub-factor encompassed the number of

12

project commits made to SourceForge.net’s proprietary versioning system, the age of the

last file release, and how recently the project’s administrators had logged on to the

SourceForge.net site. This multi-factor ranking system has several desirable qualities that

enhance the sample validity. One of the primary benefits of using the ranking system as a

selection criterion is that older projects tend to drop in activity along several dimensions

and thus ultimately drop in ranking. Using the rank criterion ensured that the projects

selected reflect the current state of Open Source development. Based on the factors of

development status and site rank, a “snapshot” of the top 50 projects in each category was

collected on March 9, 2006. One category, VoIP, had only 47 projects that had developed

a production/stable version of their product. This resulted in an initial identification of

647 projects for the potential sample pool.

The final data set was determined by applying three additional criteria necessary to

produce a sample appropriate for testing the research hypotheses. These criteria include:

1) assigning projects registered in more than one of SourceForge.net’s 13 software

categories to their most appropriate category, 2) limiting projects to those that were at

least two years old, and 3) limiting projects to those with a minimum of 100 bugs

reported.

The first criterion was used to resolve data duplication issues when a project was

listed in the SourceForge.net database as belonging to two or more software categories.

For this study, a project was only included in its highest ranked category. For example, if

a project was listed as the 5th ranked project in the networking category and the 12th

ranked project in the clustering category, it was only included in the networking category.

In one instance, a project was ranked as the top project in two categories. When

13

independently examined by two researchers, each researcher selected the same category

as being most appropriate for this project. The project was therefore included in the

category selected by the researchers. Within the sample, there were 51 projects listed in

two categories, and 5 projects listed in 3 categories. No projects were listed in more than

3 categories. Removing the duplicate data reduced the potential sample size by 61

projects to 586 projects.

 The minimum project duration of two years was established to select projects

appropriate for comparison with Huntley [21]. As expected, many of the top ranked

projects did not meet this longevity requirement. This is not surprising given that projects

often experience a flurry of activity and a resulting rise in rank early in the project

lifecycle. Many of these projects will suffer a severe reduction in activity and ranking

once the initial project setup activity has subsided. The large size of the potential sample

pool was intended to allow for a substantial loss of projects when this setup activity was

culled from the data set. Applying the two year criterion reduced the sample size from

586 projects to 140 projects. It is important to note that although we set our minimum

threshold for inclusion at 2 years or 104 weeks, all selected projects had at least 112

weeks of data. This enabled us to use the same 108 week horizontal-axis scale as Huntley

[21] did in graphs for comparison.

Some projects had no usable event reports available despite their high ranking. We set

a requirement of at least 100 reported bugs per project to address this issue and ensure

that each project had sufficient bug data for analysis. While it might seem unusual for

projects with no usable event reports to be ranked highly, there is a specific feature of

SourceForge.net that makes this possible. SourceForge.net allows the developer to turn

14

off the external event reporting features or redirect users to an alternative event reporting

system such as Bugzilla. However, despite the ability to turn off event reporting or

redirect users to other reporting systems, the majority of projects chose to use the

SourceForge.net site for these purposes. This is partially influenced by SourceForge.net’s

ranking system and its use of an activity statistic. Those projects using other sites for

event reporting will generally have lower levels of activity. This is an intended

consequence and SourceForge.net purposefully implements its ranking system to

encourage developers to keep all project resources in one location. Applying the

requirement for a minimum of 100 reported bugs reduced the sample by 22 projects to

produce the final sample size of 118 projects.

SourceForge.net provides developers with tools for tracking four primary types of

events: 1) bugs, 2) support requests, 3) patches, and 4) feature requests. We included data

on all of these event types in our data set. These events are often referred to collectively

as bug reports [21]. For continuity’s sake, we will refer to all of these events collectively

as bugs throughout the paper. Each bug can also be given a status such as open, closed,

deleted, or pending. An important measure of organizational learning is a comparison of

the ratio between reported bugs and closed bugs. After applying all project selection

criteria our final pool of bugs across the 118 projects in the sample consisted of 91,745

reported bugs and 73,253 closed or resolved bugs. The data was then aggregated to

produce weekly averages for each project. The result was a data set capturing 16,175

project-weeks of information across the 118 projects.

We also collected information about the developers associated with a given project.

For each project we counted the number of registered developers. We also looked at each

15

individual developer to ascertain whether they were registered developers of other

projects. This data was used to test our hypotheses that the ratio of developers to bugs is

negatively related to bug resolution time and that the average number of projects that a

developer participates in is negatively related to bug resolution time.

5. Data analysis and discussions

The distribution of projects and project-weeks across project categories are shown in

Table 2. We ran an ordinary least squares regression based on the model in Equation (1)

using SPSS 15.0. The Durbin-Watson statistic obtained from this regression was 1.528,

which indicated there was a serial correlation problem with our data. This makes sense

because our data set consists of repeated measurements of projects over time. Based on

our sample size of 16,175 and model with 18 regressors, the critical values of the upper

and lower bounds are du = 1.967 and dl = 1.576 respectively [38]. To correct for this

problem, we performed the Cochran-Orcutt procedure available in SPSS 15.0.

INSERT TABLE 2 ABOUT HERE

The model summary results and coefficient estimates, shown in Table 3, indicate that

the model has a modest ability to predict average bug resolution times. This is not

unexpected given the wide variability among open source development projects.

However, the analysis is well suited for the intended purpose and provides valuable

insight into the effects of the various hypothesized predictor variables as described

below.

16

INSERT TABLE 3 ABOUT HERE

5.1 Learning curve effect

The literature suggests that the cumulative number of bugs resolved to date will have

an effect on the current average bug resolution time [21]. The negative coefficient for

CumBugsResolved (Table 3) indicates that average bug resolution time decreases as the

cumulative number of bugs resolved increases, providing support for our hypothesis H1:

As the number of bugs resolved to date increases, the average bug resolution time

decreases. This indicates the presence of a learning curve effect.

In addition to learning curve effect, we also investigated the presence of adaptive

learning in the projects in our sample by examining the ratio of cumulative resolved bugs

to cumulative reported bugs. We plotted a graph of project effectiveness to show the

effect of adaptive learning. The graph (Figure 1) indicates that there was an adaptive

learning process, but the process varied based on the number of developers. In particular,

projects with 1-2 developers learned faster but became less effective over time. Projects

with >15 developers demonstrated the best efficiency over time, followed by projects

with 3-7 developers. It is interesting to note that the variability of efficiency decreased

substantially as the number of developers increased.

INSERT FIGURE 1 ABOUT HERE

17

5.2 Effect of developer experience

H2 states that teams with more experienced developers resolve bugs faster. The

negative coefficient for developer experience supports this hypothesis. Average bug

resolution time did decrease as developer experience increased. For this study, we

measured experience as the number of projects in which a developer was registered.

Based on this metric, the finding is consistent with previous research that suggests that

teams comprised of more experienced developers were more effective [14]. We

speculate that developers who worked on multiple projects learned new coding

techniques and other “best practices” from those projects and conveyed that knowledge to

other teams to which they belonged [23]. As a result, each team benefits from the

developer’s involvement with other teams.

5.3 Effect of bug assignment (task ownership)

H3 states there is an inverse relationship between increasing the percentage of bugs

assigned to specific developers and average bug resolution time. The results support this

hypothesis with a negative coefficient for CumPctBugsAssigned (Table 3). This finding is

consistent with previous research that indicated task assignment or ownership is a

mitigating factor in reducing project risk [13]. The specific project risk in this case is that

without task ownership project developers might simply avoid resolving bugs that had

not been assigned to them.

5.4 Effect of project category

It was hypothesized that different project categories have different bug resolution

times (H4). To study this effect, we divided the projects into the 13 primary categories

used to classify projects on SourceForge.net. We coded the project categories using

18

binary dummy variables [26]. The analysis compared projects in the Clustering category

(which is the reference category) to the other 12 categories. The positive coefficients for

project category (Table 3) show that most project types had significantly higher bug

resolution times than the reference category. Only SysAdmin projects had a moderately

lower average bug resolution time than Clustering projects. The average bug resolution

time for Hardware projects was not significantly different from that of Clustering

projects. The other 10 project categories have coefficients that are different in value and

statistically significant. This indicates that each of these project categories had a different

average bug resolution times, supporting our hypothesis H4.

5.5 Effect of number of developers or team size

 We also hypothesized that bug resolution time varies among project team size (H5).

To test the impact of project size (number of developers), we divided the projects into

four categories consisting of 1-2, 3-7, 8-15, and >15 developers. We used dummy

variables to represent these developer categories in the model [26]. The results indicate

that all developer categories had lower resolution times than the reference category of 1-2

developers. The coefficients indicate a curvilinear pattern with projects utilizing 3-7

developers showing improvement over those with 1-2 developers and projects with 8-15

developers having the lowest average bug resolution time. The average resolution time

then increased for projects with greater than 15 developers. The likely causes for this

curvilinear pattern in the average bug resolution time include communication complexity,

organizational complexity, management effectiveness and project complexity as the size

of the project changes.

19

6. Conclusions

In a knowledge-based economy, organizational learning is one of the most critical

aspects that an organization needs to acquire and develop to achieve outstanding and

sustained performance. As the trend towards virtual organizations continues to increase

with advances in the Internet and telecommunication technologies, virtual organizational

learning has become more and more important as well. However, although much has

been published regarding virtual organizations, there is a lack of empirical research that

shed light on the existence of learning that this type of organization can experience. Our

study contributes to the body of literature by providing empirical evidence of virtual

organizational learning in a large number of open source software (OSS) development

projects.

Our results suggest that both adaptive learning and organizational learning curves

were observed in the OSS projects. We also found that OSS development project

performance was influenced by the number of developers on the project team, the amount

of experience that those developers possessed, project category, and the percentage of

bugs assigned to a specific person. In addition, the results indicate that although smaller

teams learned faster, they suffered from greater variability in efficiency. Projects with a

large numbers of developers (>15) demonstrated the best efficiency over time.

Our research has several limitations. The sampling technique used for this effort may

not be ideal for a more in-depth analysis of the factors identified as affecting OSS team

performance. Researchers should explore other selection criteria such as matched

samples that may be more suited for studying specific factors. For example, a researcher

interested in studying team size may benefit by selecting sample data that is matched in

20

terms of project category characteristics such as complexity and time pressure. The

sample can also be controlled for developer experience and percentage of bugs assigned.

Additionally, the experience measure used in this study is a static value based on team

membership at the time of data collection. A more detailed analysis that tracks team

membership by week may provide greater insight into the effect of developer experience.

Another approach that may prove useful when measuring developer experience is to

identify core developers and those who are merely code contributors. This technique

may allow researchers to better understand optimal core team size and its effect on

performance. Finally, developer experience measures may benefit from the inclusion of

items such as formal education or years of programming experience.

While our research suggests that project performance does vary based on project type,

our research design does not allow us to explicitly test the impact of complexity,

timeliness concerns or other variables that the literature suggests as underlying causes of

performance differences. One approach to overcoming this limitation may be to survey

project team members to determine the relative complexity and time pressures associated

with specific projects. Another suggested tactic is to triangulate the results of multiple

methods or metrics that may be associated with systematic differences in performance

among project types. Examples of suitable methods for studying this phenomenon

include secondary data analysis, survey research, and observation. Metrics that may hold

insight into performance include bug resolution time, lines of code, and number of code

modules.

The results of this study suggest a number of avenues for additional inquiry. First,

additional research is needed to further determine optimal team size for both the core

21

team and ancillary code developers. This research might also explore the tendency of

projects to subdivide into functional units as they grow beyond a certain point. If support

for a subdivision phenomenon is found, researchers should attempt to identify the

underlying causes of such subdivision. While the literature strongly suggests

communication complexity as the primary determinant of optimal team size, there may

be other factors that have yet to be identified. Researchers should also seek to identify

the range of team sizes where subdivision normally occurs.

Future research may also contribute to the body of knowledge on OSS performance

by identifying other factors that affect bug resolution time. This is particularly important

in light of the modest prediction ability of the current model. Although there is a great

deal of variance expected among individual projects, other systematic factors may exist.

Along with identifying other factors that affect bug resolution time, researchers should

also seek to identify other salient measures of OSS project effectiveness. Exploration of

efficiency and effectiveness measures should include both qualitative and quantitative

items of importance to each project stakeholder.

22

References

[1]	 L. Argote, S.L. Beckman, D. Epple, The persistence and transfer of learning in
industrial settings, Management Science 36 (2), 1990, pp. 140-154.

[2]	 C. Argyris, D. A. Schŏn, Organizational Learning, Addison-Wesley, Readings,
MA, 1978.

[3]	 D. Baccarini, The concept of project complexity – a review, International Journal of
Project Management 12 (4), 1996, pp. 201-204.

[4]	 F. Brooks, The Mythical Man-Month, Addison-Wesley, 1975.

[5]	 J.S. Brown, A. Collins, P. Duguid, Situated cognition and the culture of learning,
Educational Researcher 18, 1989, pp. 32-42

[6]	 M.A. Campion, G. J. Medsker, A. C. Higgs, Relations between work group
characteristics and effectiveness: implications for designing effective work groups,
Personnel Psychology 46, 1993, pp. 823-847.

[7]	 S. Christley, G. Madey, Analysis of activity in the open source software
development communicty, in: R.H. Sprague, Jr., Proceedings of the 40th Hawaii
International Conference on System Sciences, IEEE Computer Society Press, Los
Alamitos, CA, 2007.

[8]	 R.M. Cyert, J. G. March, A Behavioral Theory of the Firm, Prentice-Hall,
Englewood Cliffs, NJ, 1963.

[9]	 T.H. Davenport, L. Prusak, L. Working Knowledge: How Organizations Manage
What They Know, Harvard Business School Press, Boston, 1998.

[10] V. Druskat, A. Pescosolido, The content of effective teamwork mental models in
self-managing teams: ownership, learning and heedful interrelating, Human
Relations 55, 2002, pp. 283-314.

[11] J.M. Dutton, A. Thomas, Treating progress functions as a managerial opportunity,
Academy of Management Review 9, 1984, pp. 235-247.

[12] D. Epple, L. Argote, R. Devadas, Organizational learning curves: a method for
investigating intra-plant transfer of knowledge acquired through learning by doing,
Organization Science 2 (1), 1991, pp. 58-70.

[13] J.M. Erikson, R. Evaristo, Risk factors in distributed projects, in: R.H. Sprague, Jr.,
Proceedings of the 39th Hawaii International Conference on System Sciences, IEEE,
Los Alamitos, CA, 2006.

23

[14] S. Faraj, L. Sproull, Coordinating Expertise in Software Development Teams,
Management Science 46 (12), 2000, pp. 1554-1568.

[15] C.M. Fiol, M.A. Lyles, Organizational learning, Academy of Management Review
10 (4), 1985, pp. 803-813.

[16] C. Gersick, Time and transition in work teams: toward a new model of group
development, Academy of Management Journal 31, 1988, pp. 9–41.

[17] D. Gladstein, Groups in context: a model of task group effectiveness,
Administrative Science Quarterly 29, 1984, pp. 499–518.

[18] A. Griffin, The effect of project and process characteristics on product development
cycle, Journal of Marketing Research 34 (1), 1997, pp. 24-35.

[19] R.H. Hayes, S.C. Wheelwright, Restoring Our Competitive Edge: Competing
through Manufacturing, Wiley, New York, NY 1984.

[20] W.Z. Hirsch, Manufacturing progress functions, Review of Economics and
Statistics 34, 1952, pp. 143-155.

[21] C.L. Huntley, Organizational learning in open-source software projects: an analysis
of debugging data. IEEE Transactions on Engineering Management 50 (4), 2003,
pp. 485-493.

[22] P.L. Joskow, N.L. Rose, The effects of technological change, experience and
environmental regulation on the construction cost of coal-burning generating units,
Rand Journal of Economics 16, 1985, pp. 1-27.

[23] A. Kankanhalli, B.C.Y. Tan, K. Wei, Contributing knowledge to electronic
knowledge repositories: an empirical investigation, MIS Quarterly 29 (1), 2005, pp.
113-143.

[24] R. Klimoski, R. Jones, Team Effectiveness and Decision Making in Organizations,
Pfeiffer & Co, San Francisco, CA, 1995.

[25] P. Kirschner, J-W. Strijbos, K. Kreijins, P. J. Beers, Designing electronic
collaborative learning environments, Educational Technology Research &
Development 52, 2004, pp. 47–66.

[26] M.H. Kutner, C.J. Nachtscheim, J. Neter, W. Li, Applied Linear Statistical Models,
5th ed., McGraw-Hill Irwin, Boston, MA, 2005.

[27] B. Latane, K. Williams, S. Harkins, Many hands make light the work: the causes
and consequences of social loafing, Journal of Personality and Social Psychology
37 (6), 1979, pp. 822-832.

24

[28] M.B. Lieberman, The learning curve and pricing in the chemical processing
industries, Rand Journal of Economics 15, 1984, pp. 213-228.

[29] E.A. Locke, G.P. Latham, Building a practically useful theory of goal setting and
task motivation, American Psychologist 57 (2), 2002, pp. 705-717.

[30] M.L. Markus, B. Manville B, C.E. Agres, What makes a virtual organization work?
Sloan Management Review 42 (1), 2000, pp. 13-26.

[31] A. Mockus, R.T. Fielding, J.D. Herbsleb, Two case studies of open source software
development: Apache and Mozilla, ACM Transactions on Software Engineering
and Methodology 11 (3), 2002, pp. 309-346.

[32] J. Nahapiet, S. Ghoshal, Social capital, intellectual capital, and the organizational
advantage, Academy of Management Review 23 (2), 1998, pp. 242-266.

[33] V.F. Nieva, E.A. Fleishman, A. Reick, Team dimensions: their identity, their
measurement, and their relationships, U.S. Army Research Institute for the
Behavioral and Social Science, Washington, D.C., Research Note 85 (12), 1985.

[34] W.J. Orlikowski, Learning from notes: organizational issues in groupware
implementation, Information Society 9 (3), 1993, pp. 237-251.

[35] R.H. Rasch, H.L. Tosi, Factors affecting software developers’ performance: an
integrated approach, MIS Quarterly (Sept.1992), pp. 395-413.

[36] E.S. Raymond, The cathedral and the bazaar, First Monday 3(3) (1998).
<www.firstmonday.org/issues/issue3_3/raymond/index.html> (accessed 04.27.07).

[37] J.A. Roberts, I-H Hann, S.A. Slaughter, Understanding the motivations,
participation, and performance of open source software developers: a longitudinal
study of the Apache projects, Management Science 52 (7), 2006, pp. 984-999.

[38] N.E. Savin, K.J. White, The Durbin-Watson test for serial correlation with extreme
sample sizes or many regressors, Econometrica 45 (8), 1977, pp. 1989-1996.

[39] K.S. Shah, Motivation, governance, and the viability of hybrid forms in open source
software development, Management Science 52 (7), 2006, pp. 1000-1014.

[40] R.E. Slavin, Cooperative learning in teams: state of the art, Educational
Psychologist 15, 1980, pp. 93-111.

[41] I.D. Steiner, Group Process and Productivity, Academic Press, New York, NY,
1972.

25

[42] C. Wagner, Breaking the knowledge acquisition bottleneck through conversational
knowledge management, Information Resources Management Journal 19 (1), 2006,
pp. 70-83.

[43] M.M. Wasko, S. Faraj, Why should I share? 	Examining social capital and
knowledge contribution in electronic networks of practice, MIS Quarterly 29 (1),
2005, pp. 35-57.

[44] T.P. Wright, Factors affecting the cost of airplanes, Journal of the Aeronautical
Sciences 3, 1936, pp. 122-128.

[45] W. Xia, G. Lee, Grasping the complexity of IS development projects,
Communications of the ACM 47 (5), 2004, pp. 68-74.

[46] L.E. Yelle, The learning curve: historical review and comprehensive survey,
Decision Sciences, 10, 1979, pp. 302-328.

26

Table 1. Descriptive Statistics

Variable N Range Min Max Mean Std.
Dev.

1546.06
MeanResolutionTimeWeek t (DV) 16175 1 0.00 1546.061 29.882 92.399
CumBugsResolved 16175 6148 0.00 6148 474.67 878.772
DeveloperExperience 16175 6.67 1.00 7.67 2.458 1.280
CumPctBugsAssigned 16175 1.00 0.00 1.00 .558 .291
ProjectCategory

 Enterprise 16175 1 0 1 .06 .240
Desktop 16175 1 0 1 .07 .250

 SysAdmin 16175 1 0 1 .11 .311
Financial 16175 1 0 1 .01 .111
Development 16175 1 0 1 .31 .461

 Games 16175 1 0 1 .08 .266
 Security 16175 1 0 1 .08 .275
 Multimedia 16175 1 0 1 .02 .122

Database 16175 1 0 1 .07 .259
Hardware 16175 1 0 1 .05 .217

 Networking 16175 1 0 1 .09 .288
VoIP 16175 1 0 1 .01 .109

DeveloperCategory
 3-7 Developers 16175 1 0 1 .26 .441
 8-15 Developers 16175 1 0 1 .31 .464
 > 15 Developers 16175 1 0 1 .33 .470

27

Table 2. Distributions of Projects and Project-Weeks
Project Category Number of Projects Project-Weeks

Clustering 6 730
Networking 8 1481
Multimedia 4 244
Hardware 7 800
VoIP 3 194
SysAdmin 12 1751
Games 9 1244
Security 9 1333
Development 32 4943
Database 9 1171
Enterprise 8 994
Desktop 9 1088
Financial 3 202

Project Size Projects in Category
1-2 Developers 13
3-7 Developers 36
8-15 Developers 36
> 15 Developers 33

28

Table 3. Model Summary Results and Coefficient Estimates

Unstandardized Coefficients
Significanceβ Std. Error

(Constant) .307 .184 0.095*
CumBugsResolved -0.080 0.008 0.000***
DeveloperExperience -0.659 0.075 0.000***
CumPctBugsAssigned -0.063 0.006 0.000***
Ρ (Rho) 0.249 0.008 0.000***

ProjectCategory
 SysAdmin -0.280 0.166 0.092*

Hardware -0.088 0.192 0.646
 Security .592 0.173 0.001***

Enterprise 0.665 0.180 0.000***
Desktop 1.061 0.179 0.000***

Financial 1.109 0.292 0.000***
Development 1.233 0.145 0.000***
Database 1.869 0.174 0.000***

 Networking 2.121 0.167 0.000***
 Games 2.203 0.172 0.000***
 Multimedia 2.405 0.282 0.000***

VoIP 5.774 0.320 0.000***
DeveloperCategory
 3-7 Developers -1.410 0.120 0.000***
 8-15 Developers -1.709 0.115 0.000***
 > 15 Developers -1.484 0.119 0.000***
Model Summary

 R2 0.101
Adjusted R2 0.100
Model Std. Error 3.428

df Regression 18
 df Residual 16154
 df Total 16174

 Significance 0.000***
Note: Significance level = *p < 0.10; ** p < 0.05; *** p < 0.01.

29

Figure 1. Debugging Effectiveness of OSS Projects

All j
>15
8-15
3-7
1-2

E
ff

ic
ie

n
cy

 (
C

u
m

B
u

g
sR

es
o

lv
ed

 /
C

u
m

B
u

g
sR

ep
o

rt
ed

) 0.80

0.70

0.60

0.50

0.40

0.30

0.20

 Pro ects

Developers

6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96 102 108

Week

30

