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Abstract 

We studied the existence of virtual organizational learning in open source software (OSS) 
development projects.  Specifically, our research focused on learning effects of OSS 
projects and factors that affect the learning process.  The number and percentage of 
resolved bugs and bug resolution time of 118 SourceForge.net OSS projects were used to 
measure the learning effects.  Projects were characterized by project type, number and 
experience of developers, number of bugs, and bug resolution time.  Our results provide 
evidence of virtual organizational learning in OSS development projects. 
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Virtual Organizational Learning in 
Open Source Software Development Projects 

1. Introduction 

Open source software (OSS) development projects exhibit many of the characteristics 

that make virtual organizations successful, including self-governance, a powerful set of 

mutually reinforcing motivations, effective work structures and processes, and 

technology for communication and coordination [30].  Examples of thriving OSS projects 

include Linux (often considered a long-term challenge to Microsoft’s operating system), 

Apache (which has more than 60 percent of the Web server market share), and Mozilla 

(whose Firefox Web browser is considered by many users to be superior to Microsoft’s 

Internet Explorer).   

   Raymond [36] described the open source method of development as “a great 

babbling bazaar of differing agendas and approaches… out of which a stable and 

coherent system could seemingly emerge only by a succession of miracles.”  Although 

seemingly disorganized, and lacking monetary incentives, the bazaar development 

approach is characterized by design simplicity, team work, a visible product, and 

communication [42]. 

Researchers have studied different aspects of this particular form of virtual 

organization to identify the specific factors that make OSS development projects work.  

For example, Mockus et al. [31] conducted a case study on the Apache Web server and 

Mozilla Web browser projects to learn their development process characteristics.  They 

found that projects based on a relatively small core of developers (10 to 15 people) could 

be geographically dispersed, yet communicate and function without conflict via a set of 
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implicit coordination mechanisms (i.e. informal email exchange).  However, when the 

number of core developers exceeded 10-15 people, other explicit coordination 

mechanisms (i.e. code ownership policy) had to be adopted to maintain communication 

and reduce conflict. 

 In a related study, Huntley [21] attempted to explain the success of OSS projects 

using organizational learning effects.  He maintained that the learning effects could be 

manifested in the decreased time required for fixing bugs.  There were significant 

debugging differences in Apache versus Mozilla, with the attributing factor being project 

maturity, as opposed to other measurable factors such as project size or number of 

programmers.  Debugging data from Apache and Mozilla were modeled according to the 

learning curve. As noted, the debugging process for Mozilla, an emerging project, was 

characterized as steady with predictable improvements.  The results illustrate that the 

learning effects are indeed present in the Mozilla team.   

Both Mockus et al. [31] and Huntley [21] focused their research on two OSS 

projects—Apache and Mozilla. While they pointed out significant differences between 

the two projects, there was no indication of which project was most characteristic of other 

OSS projects Our research seeks to extend and refine their works by including a much 

larger number of OSS development projects of varying size (in terms of the number of 

developers involved) and type (from simple file management software to complex 

enterprise software suite). Specifically, we included 118 OSS projects in our final 

sample set.  By focusing on multiple projects of varying size and type, we were better 

able to characterize OSS projects overall.  Our study was initiated to answer the 

following main research questions: 
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(1) Are learning effects universally present in OSS projects?   

(2) What are the factors that affect the learning process? 

Similar to Huntley [21], we use the number and percentage of resolved bugs and bug 

resolution time to measure the learning effects.  However, we also look at how different 

project types, number of developers (project team size) and their experience, and the 

intensity of assigned bugs affect the learning rates.  Data for this study were obtained 

from the SourceForge.net1 database. Our study contributes to the information systems 

literature by providing empirical evidence of virtual organizational learning and of the 

factors that affect it. 

2. Theoretical framework and hypotheses 

We developed several hypotheses based on theories that relate to virtual 

organizational learning. Our first hypothesis seeks to show that organizational learning 

exists in OSS development projects. The subsequent hypotheses seek to explain the 

variation of learning rates observed across projects. 

2.1 Organizational learning curves 

Group learning curves were first observed in the 1940’s during construction of ships 

and aircraft [46]. It was noted that the time required to build a ship or airplane typically 

decreased at a diminishing rate as more products were produced. The organizational 

learning curve is based on a combination of effort and learning.  Moderating factors may 

include skill level, prior experience, motivation, and work complexity. An early 

Details on SourceForge.net’s database are avalaible at http://zerlot.cse.nd.edu/mywiki/ ("SourceForge Research Data 
Archive: A Repository of FLOSS Research Data").  Christley and Madey [7] provide further descriptions of the 
SourceForge.net data set and discuss various data mining techniques that can be applied to the data.  

4 
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discussion on organizational learning curves can be found in Wright [44], and reviews in 

Yelle [46] and Dutton and Thomas [11]. 

Although there is little empirical evidence about what contributes to the 

organizational learning curve phenomenon [11,12,28,46], researchers have suggested 

several factors: increased proficiency of individuals, greater standardization of 

procedures, improvements in scheduling, improvements in product design, better 

coordination, and division of labor and specialization [19,20,22,44].  Fiol and Lyles [15] 

postulate there are two levels of organizational learning: higher-level and lower-level.  

Higher-level learning focuses on re-defining the overall organizational strategy under ill-

defined context. Examples of such learning include developing a new organizational 

culture and re-establishing organizational priorities [2].  Conversely, lower-level learning 

is focused on specific organizational behaviors and constraints within existing 

organizational rules. Minor managerial adjustments, improved problem-solving skills, 

and the development of formal rules are examples of lower-level learning [15].  This type 

of learning is primarily a process of repetition [8].   

In OSS development projects, debugging can be considered as a means in which 

organizational experience is accumulated, thus helping to establish the software 

development learning curve [21].  As such, learning during the debugging process can be 

classified as lower-level learning since it often improves problem-solving skills by 

repeatedly requiring the developers to scan, review, and/or modify program code.  It is 

expected that, as a development team gains experience with problem domains, 

techniques, technologies, and tools, it will exhibit the learning curve effect by decreasing, 

over time, the average time needed to resolve bugs.  It is also expected that the team will 
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become more familiar with the debugging process, leading to more efficient debugging.  

Therefore, we hypothesize that: 

H1: As the number of bugs resolved to date increases, the average bug resolution 

time decreases. 

2.2 Cognitive capital and developer experience 

Cognitive capital refers those resources that provide shared representations, 

interpretations and systems of meaning among parties [32]. It is comprised of both 

expertise and the knowledge about how to apply the expertise in solving a problem.   

Over time, people develop cognitive capital as they learn the skills, knowledge, 

specialized dialogue, and norms of the practice and interact with others who share the 

same practice [43].  Consequently, it is expected that individuals with longer tenure in a 

shared practice have greater cognitive capital and are thus better able to share their 

knowledge with others. 

OSS developers can be concurrently involved in more than one project, allowing 

them a greater opportunity to work with other developers, learn about the norms of OSS 

development practice, and accumulate longer tenure and more experience.  Overall, the 

greater the number of projects in which a developer is involved, the greater the developer 

expertise. This translates into larger cognitive capital, which the developer may share 

with other team members to help improve project team performance [23].  Under some 

circumstances, individuals may be unwilling to share their cognitive capital because they 

may fear the loss of power associated with unique knowledge [9,34].  However, this is 

not expected within the OSS community.  Instead, the OSS community exhibits factors 

such as altruism, pro-sharing norms, and reciprocity [23] that are positively related to 
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knowledge transfer behavior. These same factors have also been identified as the major 

reasons why OSS developers voluntarily join the OSS community [37,39].  This leads us 

to the following hypothesis: 

H2: Teams with more experienced developers resolve bugs faster. 

2.3 Task ownership 

Task ownership is a psychological state in which a task performer takes personal 

interest and responsibility for the task.  The degree of task ownership can impact how the 

task is accomplished [10].  Researchers generally agree that task ownership improves 

team effectiveness [6] and facilitates individual learning in both traditional and computer-

support collaborative learning environments [5,25].  For example, students exhibit a 

sense of individual accountability when their grade is based on individual efforts in a 

group project [25]. This also helps to eliminate free-riders and hitch-hikers [40].   

The relationship between task ownership and individual/team performance can be 

explained by Goal-Setting Theory from organizational psychology.  The theory maintains 

task ownership helps task performers clarify their task goals [29].  In turn, the clarified 

goal enables the performers to focus attention on goal-related activities, thus improving 

performance.  However, goal clarity cannot be achieved if the task performer deems the 

task too difficult. Rasch and Tosi [35] validated Goal-Setting Theory in software 

development teams. 

On SourceForge.net, when a bug is submitted into the tracking system, the 

administrator assigns the bug to a developer who may or may not accept the assignment 

(based on interest, time available, and/or ability).  At the time of assignment, the 

administrator will also add comments about the expected bug turn-around-time. If the 
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developer rejects the assignment, the administrator must either find another developer 

willing to accept the bug assignment or it remains unassigned.  Essentially, the bug 

assigning process is an ownership determination process.  Once determined, the owner 

has full responsibility for the bug. We presume that as more bugs are assigned to specific 

developers, their average bug resolution time decreases.  Therefore, we hypothesize that: 

H3: There is an inverse relationship between increasing the percentage of bugs 

assigned to specific developers and average bug resolution time. 

2.4 Project category 

At the time this research was conducted, Sourceforge.net classified its projects into 

thirteen categories. These categories include Clustering, Database, Desktop, 

Development, Enterprise, Financial, Games, Hardware, Multimedia, Networking, 

Security, SysAdmin, and VoIP. We posit that these projects differ in other areas than just 

category. Project complexity and timeliness, among others, may also relate to significant 

differences among the project categories.  Complexity can be defined in terms of the 

number of interconnected components and the degree of interdependency between these 

components [3].  It has been empirically proven to lengthen project time [18,45].  

Timeliness refers to the implicit time (i.e., “deadline) pressure a project experiences.  It 

has been found to cause teams to enhance their efforts on a given task [15,16], and thus 

leads to improved performance.  We therefore hypothesize that: 

H4: Different project categories have different average bug resolution times. 

2.5 Project team size 

Research on teams under traditional co-located situations suggests that the 

appropriate size of a team depends on the nature of the task [24].  It is also commonly 
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agreed that the association between team performance and team size has an inverted U-

shape [33,41]. If a team is too small, it does not have sufficient human resources to share 

the workload. On the other hand, if a team is too large, coordination overhead becomes 

extremely high and social loafing becomes a real concern [27].   

Similar findings have been reported in the software development domain.  Brooks’ 

Law indicates that the capability of a programming team does not necessarily improve as 

more developers join in the team.  Instead, “adding manpower to a late software project 

makes it later” [4, p. 25].  When the number of developers in a team increases linearly, 

the potential communication paths increase exponentially.  For instance, if N developers 

work on a project, the possible communication paths are (N2 – N)/2 [4], increasing the 

chance of communication breakdown occurring within the project team. 

The relationship between team size and team performance in OSS communities might 

exhibit a different pattern than that in the traditional software development team.  This is 

because the communication structure of the OSS project team is different.  An OSS 

project team is typically composed of two sub-groups of developers: core developers and 

code contributors [31,36]. Core developers are largely responsible for making critical 

decisions regarding project development (i.e., when to release the next version and 

whether or not to implement a new feature).  In order to reach consensus on such 

decisions, intensive communication among the core developers is critical.  Raymond [36] 

recommends that there be no more than three core developers per project.   

Code contributors are the labor force for coding.  They receive well-defined subtasks 

(i.e. bugs) from core developers, work on the subtasks independently, and then report 

finished tasks back to core developers.  As a result, the communication structure within 
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an OSS project follows a star topology. The core developers are the central “hub,” and 

all the contributors connect to and through the “hub”.  Raymond [36] recommends as 

many code contributors as possible.  This is echoed by Huntley [21], who maintains that 

a well-controlled debugging process can be distributed among a large number of 

programmers without significantly increasing communication costs because most bugs 

are somewhat limited in scope and involve a small fraction of the code.  We argue that 

different team sizes have different challenges.  A large team may have coordination 

problems, whereas a small team may encounter resource problems, affecting the overall 

team performance.  This leads us to the following hypothesis:  

H5: Average bug resolution time varies among project team size. 

3.  Research Method 

To study the constructs of interest, it was necessary to collect data on a wide variety 

of project-related measures.  These measures included development status, rank, bugs 

reported, patches, feature requests, support requests, developer registrations and other 

data associated with an open source software project.  We chose SourceForge.net as our 

data source. SourceForge.net hosts over 100,000 projects for Open Source Code.  It 

provides a multitude of tools to support collaborative development and allows developers 

to register their projects at no charge. These properties make it equally attractive to both 

large and small development efforts.  Furthermore, the number of projects, the wide 

variety in terms of size and expertise, and the availability of event data make it an ideal 

data source for this research. 
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3.1 Empirical model 

Based on the production function and motivated by Argote et al. [1] and Huntley [21] 

we developed a log-log regression model with both qualitative and quantitative variables: 

ln MeanRe sTimeit =α 0 +α1 lnCumRe sBugs +α 2 ln DevExp Avg +α3 ln dBugsPctAssigne it i it 

12 3 

+∑β Pr ojCat + + ∑γ j Pr ojSizeij + ε iti i 
i=1 j =1 

…………………...…..… (1) 

Where: 

MeanResTime it = Mean time to resolve the bugs of Project i reported in Week t 

CumResBugs it = Cumulative resolved bugs of Project i, including Week t 

AvgDevExpi = Average number of other projects each developer in Project i 

has worked on 

PctAssignedBugs it= Percentage of assigned bugs in Week t of Project i 

ProjCati = Category of Project i 

ProjSizei = Size of Project i, measured in terms of the number of 

developers in the project (1-2 developers; 3-7 developers; 8-15 

developers; >15 developers) 

The descriptive statistics for the model variables are provided in Table 1.   

INSERT TABLE 1 ABOUT HERE 

4. Data collection 

Data collection began by selecting representative projects for analysis. We identified 

the top 50 projects in each of SourceForge.net’s 13 primary software categories. These 
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categories include Clustering, Database, Desktop, Development, Enterprise, Financial, 

Games, Hardware, Multimedia, Networking, Security, SysAdmin, and VoIP.  Developers 

use these categories to describe their projects and help potential users and contributors 

find relevant projects. Because these categories were widely used for classification, they 

were determined to be the most appropriate method of ensuring a good cross-section of 

all open source projects that were selected for our sample. 

The top 50 projects were identified based on two factors, development status and site 

rank. The first factor limited projects to those that had produced a production/stable 

version of the application. This was determined using SourceForge.net’s development 

status field which lists project status as 1) planning stage, 2) pre-alpha, 3) alpha version, 

4) beta version, 5) production/stable version, or 6) mature. This factor was necessary to 

ensure that “conceptual” projects with no event reports would not reduce the set of usable 

responses. Additionally, those projects that reached alpha or beta versions but had not yet 

produced production/stable versions needed to be excluded.  In some cases, the 

developers were unresponsive to externally reported events (such as bug reports) and thus 

no inferences could be made from those projects.  

The second factor for selection was SourceForge.net’s internal ranking system. The 

ranking system used three sub-factors 1) traffic, 2) communication, and 3) development 

to determine an overall rank of projects. The traffic sub-factor included web traffic to the 

project’s main SourceForge.net page, web traffic to all project sub-pages, and project-

related file downloads. The communication sub-factor consisted of the number of opened 

or closed events, number of posts in the project’s mailing lists, and number of posts in the 

project’s discussion forums. The development sub-factor encompassed the number of 
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project commits made to SourceForge.net’s proprietary versioning system, the age of the 

last file release, and how recently the project’s administrators had logged on to the 

SourceForge.net site. This multi-factor ranking system has several desirable qualities that 

enhance the sample validity. One of the primary benefits of using the ranking system as a 

selection criterion is that older projects tend to drop in activity along several dimensions 

and thus ultimately drop in ranking. Using the rank criterion ensured that the projects 

selected reflect the current state of Open Source development. Based on the factors of 

development status and site rank, a “snapshot” of the top 50 projects in each category was 

collected on March 9, 2006. One category, VoIP, had only 47 projects that had developed 

a production/stable version of their product. This resulted in an initial identification of 

647 projects for the potential sample pool. 

The final data set was determined by applying three additional criteria necessary to 

produce a sample appropriate for testing the research hypotheses. These criteria include: 

1) assigning projects registered in more than one of SourceForge.net’s 13 software 

categories to their most appropriate category, 2) limiting projects to those that were at 

least two years old, and 3) limiting projects to those with a minimum of 100 bugs 

reported. 

The first criterion was used to resolve data duplication issues when a project was 

listed in the SourceForge.net database as belonging to two or more software categories. 

For this study, a project was only included in its highest ranked category. For example, if 

a project was listed as the 5th ranked project in the networking category and the 12th 

ranked project in the clustering category, it was only included in the networking category. 

In one instance, a project was ranked as the top project in two categories. When 
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independently examined by two researchers, each researcher selected the same category 

as being most appropriate for this project.  The project was therefore  included in the 

category selected by the researchers. Within the sample, there were 51 projects listed in 

two categories, and 5 projects listed in 3 categories. No projects were listed in more than 

3 categories. Removing the duplicate data reduced the potential sample size by 61 

projects to 586 projects. 

 The minimum project duration of two years was established to select projects 

appropriate for comparison with Huntley [21]. As expected, many of the top ranked 

projects did not meet this longevity requirement. This is not surprising given that projects 

often experience a flurry of activity and a resulting rise in rank early in the project 

lifecycle. Many of these projects will suffer a severe reduction in activity and ranking 

once the initial project setup activity has subsided. The large size of the potential sample 

pool was intended to allow for a substantial loss of projects when this setup activity was 

culled from the data set. Applying the two year criterion reduced the sample size from 

586 projects to 140 projects. It is important to note that although we set our minimum 

threshold for inclusion at 2 years or 104 weeks, all selected projects had at least 112 

weeks of data. This enabled us to use the same 108 week horizontal-axis scale as Huntley 

[21] did in graphs for comparison. 

Some projects had no usable event reports available despite their high ranking. We set 

a requirement of at least 100 reported bugs per project to address this issue and ensure 

that each project had sufficient bug data for analysis.  While it might seem unusual for 

projects with no usable event reports to be ranked highly, there is a specific feature of 

SourceForge.net that makes this possible. SourceForge.net allows the developer to turn 
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off the external event reporting features or redirect users to an alternative event reporting 

system such as Bugzilla. However, despite the ability to turn off event reporting or 

redirect users to other reporting systems, the majority of projects chose to use the 

SourceForge.net site for these purposes. This is partially influenced by SourceForge.net’s 

ranking system and its use of an activity statistic. Those projects using other sites for 

event reporting will generally have lower levels of activity. This is an intended 

consequence and SourceForge.net purposefully implements its ranking system to 

encourage developers to keep all project resources in one location. Applying the 

requirement for a minimum of 100 reported bugs reduced the sample by 22 projects to 

produce the final sample size of 118 projects. 

SourceForge.net provides developers with tools for tracking four primary types of 

events: 1) bugs, 2) support requests, 3) patches, and 4) feature requests. We included data 

on all of these event types in our data set. These events are often referred to collectively 

as bug reports [21]. For continuity’s sake, we will refer to all of these events collectively 

as bugs throughout the paper. Each bug can also be given a status such as open, closed, 

deleted, or pending. An important measure of organizational learning is a comparison of 

the ratio between reported bugs and closed bugs. After applying all project selection 

criteria our final pool of bugs across the 118 projects in the sample consisted of 91,745 

reported bugs and 73,253 closed or resolved bugs. The data was then aggregated to 

produce weekly averages for each project. The result was a data set capturing 16,175 

project-weeks of information across the 118 projects.  

We also collected information about the developers associated with a given project. 

For each project we counted the number of registered developers. We also looked at each 
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individual developer to ascertain whether they were registered developers of other 

projects. This data was used to test our hypotheses that the ratio of developers to bugs is 

negatively related to bug resolution time and that the average number of projects that a 

developer participates in is negatively related to bug resolution time. 

5. Data analysis and discussions 

The distribution of projects and project-weeks across project categories are shown in 

Table 2. We ran an ordinary least squares regression based on the model in Equation (1) 

using SPSS 15.0. The Durbin-Watson statistic obtained from this regression was 1.528, 

which indicated there was a serial correlation problem with our data.  This makes sense 

because our data set consists of repeated measurements of projects over time. Based on 

our sample size of 16,175 and model with 18 regressors, the critical values of the upper 

and lower bounds are du = 1.967 and dl = 1.576 respectively [38].  To correct for this 

problem, we performed the Cochran-Orcutt procedure available in SPSS 15.0. 

INSERT TABLE 2 ABOUT HERE 

The model summary results and coefficient estimates, shown in Table 3, indicate that 

the model has a modest ability to predict average bug resolution times. This is not 

unexpected given the wide variability among open source development projects. 

However, the analysis is well suited for the intended purpose and provides valuable 

insight into the effects of the various hypothesized predictor variables as described 

below. 
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INSERT TABLE 3 ABOUT HERE 

5.1 Learning curve effect 

The literature suggests that the cumulative number of bugs resolved to date will have 

an effect on the current average bug resolution time [21]. The negative coefficient for 

CumBugsResolved (Table 3) indicates that average bug resolution time decreases as the 

cumulative number of bugs resolved increases, providing support for our hypothesis H1: 

As the number of bugs resolved to date increases, the average bug resolution time 

decreases. This indicates the presence of a learning curve effect.   

In addition to learning curve effect, we also investigated the presence of adaptive 

learning in the projects in our sample by examining the ratio of cumulative resolved bugs 

to cumulative reported bugs.  We plotted a graph of project effectiveness to show the 

effect of adaptive learning. The graph (Figure 1) indicates that there was an adaptive 

learning process, but the process varied based on the number of developers. In particular, 

projects with 1-2 developers learned faster but became less effective over time. Projects 

with >15 developers demonstrated the best efficiency over time, followed by projects 

with 3-7 developers. It is interesting to note that the variability of efficiency decreased 

substantially as the number of developers increased. 

INSERT FIGURE 1 ABOUT HERE 
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5.2 Effect of developer experience 

H2 states that teams with more experienced developers resolve bugs faster.  The 

negative coefficient for developer experience supports this hypothesis.  Average bug 

resolution time did decrease as developer experience increased. For this study, we 

measured experience as the number of projects in which a developer was registered. 

Based on this metric, the finding is consistent with previous research that suggests that 

teams comprised of more experienced developers were more effective [14].  We 

speculate that developers who worked on multiple projects learned new coding 

techniques and other “best practices” from those projects and conveyed that knowledge to 

other teams to which they belonged [23].  As a result, each team benefits from the 

developer’s involvement with other teams. 

5.3 Effect of bug assignment (task ownership)

H3 states there is an inverse relationship between increasing the percentage of bugs 

assigned to specific developers and average bug resolution time. The results support this 

hypothesis with a negative coefficient for CumPctBugsAssigned (Table 3). This finding is 

consistent with previous research that indicated task assignment or ownership is a 

mitigating factor in reducing project risk [13]. The specific project risk in this case is that 

without task ownership project developers might simply avoid resolving bugs that had 

not been assigned to them. 

5.4 Effect of project category 

It was hypothesized that different project categories have different bug resolution 

times (H4).  To study this effect, we divided the projects into the 13 primary categories 

used to classify projects on SourceForge.net. We coded the project categories using 
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binary dummy variables [26]. The analysis compared projects in the Clustering category 

(which is the reference category) to the other 12 categories. The positive coefficients for 

project category (Table 3) show that most project types had significantly higher bug 

resolution times than the reference category. Only SysAdmin projects had a moderately 

lower average bug resolution time than Clustering projects. The average bug resolution 

time for Hardware projects was not significantly different from that of Clustering 

projects. The other 10 project categories have coefficients that are different in value and 

statistically significant.  This indicates that each of these project categories had a different 

average bug resolution times, supporting our hypothesis H4.   

5.5 Effect of number of developers or team size 

 We also hypothesized that bug resolution time varies among project team size (H5).  

To test the impact of project size (number of developers), we divided the projects into 

four categories consisting of 1-2, 3-7, 8-15, and >15 developers. We used dummy 

variables to represent these developer categories in the model [26]. The results indicate 

that all developer categories had lower resolution times than the reference category of 1-2 

developers. The coefficients indicate a curvilinear pattern with projects utilizing 3-7 

developers showing improvement over those with 1-2 developers and projects with 8-15 

developers having the lowest average bug resolution time. The average resolution time 

then increased for projects with greater than 15 developers. The likely causes for this 

curvilinear pattern in the average bug resolution time include communication complexity, 

organizational complexity, management effectiveness and project complexity as the size 

of the project changes. 
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6. Conclusions 

In a knowledge-based economy, organizational learning is one of the most critical 

aspects that an organization needs to acquire and develop to achieve outstanding and 

sustained performance.  As the trend towards virtual organizations continues to increase 

with advances in the Internet and telecommunication technologies, virtual organizational 

learning has become more and more important as well.  However, although much has 

been published regarding virtual organizations, there is a lack of empirical research that 

shed light on the existence of learning that this type of organization can experience.  Our 

study contributes to the body of literature by providing empirical evidence of virtual 

organizational learning in a large number of open source software (OSS) development 

projects. 

Our results suggest that both adaptive learning and organizational learning curves 

were observed in the OSS projects.  We also found that OSS development project 

performance was influenced by the number of developers on the project team, the amount 

of experience that those developers possessed, project category, and the percentage of 

bugs assigned to a specific person. In addition, the results indicate that although smaller 

teams learned faster, they suffered from greater variability in efficiency.  Projects with a 

large numbers of developers (>15) demonstrated the best efficiency over time.    

Our research has several limitations.  The sampling technique used for this effort may 

not be ideal for a more in-depth analysis of the factors identified as affecting OSS team 

performance.  Researchers should explore other selection criteria such as matched 

samples that may be more suited for studying specific factors. For example, a researcher 

interested in studying team size may benefit by selecting sample data that is matched in 

20 



terms of project category characteristics such as complexity and time pressure. The 

sample can also be controlled for developer experience and percentage of bugs assigned.  

Additionally, the experience measure used in this study is a static value based on team 

membership at the time of data collection.  A more detailed analysis that tracks team 

membership by week may provide greater insight into the effect of developer experience.  

Another approach that may prove useful when measuring developer experience is to 

identify core developers and those who are merely code contributors.  This technique 

may allow researchers to better understand optimal core team size and its effect on 

performance.  Finally, developer experience measures may benefit from the inclusion of 

items such as formal education or years of programming experience. 

While our research suggests that project performance does vary based on project type, 

our research design does not allow us to explicitly test the impact of complexity, 

timeliness concerns or other variables that the literature suggests as underlying causes of 

performance differences.  One approach to overcoming this limitation may be to survey 

project team members to determine the relative complexity and time pressures associated 

with specific projects.  Another suggested tactic is to triangulate the results of multiple 

methods or metrics that may be associated with systematic differences in performance 

among project types.  Examples of suitable methods for studying this phenomenon 

include secondary data analysis, survey research, and observation.  Metrics that may hold 

insight into performance include bug resolution time, lines of code, and number of code 

modules. 

The results of this study suggest a number of avenues for additional inquiry.  First, 

additional research is needed to further determine optimal team size for both the core 
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team and ancillary code developers.  This research might also explore the tendency of 

projects to subdivide into functional units as they grow beyond a certain point.  If support 

for a subdivision phenomenon is found, researchers should attempt to identify the 

underlying causes of such subdivision. While the literature strongly suggests 

communication complexity as the primary determinant of optimal team size, there may 

be other factors that have yet to be identified.  Researchers should also seek to identify 

the range of team sizes where subdivision normally occurs. 

Future research may also contribute to the body of knowledge on OSS performance 

by identifying other factors that affect bug resolution time.  This is particularly important 

in light of the modest prediction ability of the current model.  Although there is a great 

deal of variance expected among individual projects, other systematic factors may exist.  

Along with identifying other factors that affect bug resolution time, researchers should 

also seek to identify other salient measures of OSS project effectiveness.  Exploration of 

efficiency and effectiveness measures should include both qualitative and quantitative 

items of importance to each project stakeholder. 
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Table 1. Descriptive Statistics 

Variable N Range Min Max Mean Std. 
Dev. 

1546.06 
MeanResolutionTimeWeek t (DV) 16175 1 0.00 1546.061 29.882 92.399 
CumBugsResolved 16175 6148 0.00 6148 474.67 878.772 
DeveloperExperience 16175 6.67 1.00 7.67 2.458 1.280 
CumPctBugsAssigned 16175 1.00 0.00 1.00 .558 .291 
ProjectCategory

 Enterprise 16175 1 0 1 .06 .240 
Desktop 16175 1 0 1 .07 .250 

     SysAdmin 16175 1 0 1 .11 .311 
Financial 16175 1 0 1 .01 .111 
Development 16175 1 0 1 .31 .461 

     Games 16175 1 0 1 .08 .266 
      Security 16175 1 0 1 .08 .275 
     Multimedia 16175 1 0 1 .02 .122 

Database 16175 1 0 1 .07 .259 
Hardware 16175 1 0 1 .05 .217 

     Networking 16175 1 0 1 .09 .288 
VoIP 16175 1 0 1 .01 .109 

DeveloperCategory
     3-7 Developers 16175 1 0 1 .26 .441 
     8-15 Developers 16175 1 0 1 .31 .464 
     > 15 Developers 16175 1 0 1 .33 .470 

27




Table 2. Distributions of Projects and Project-Weeks 
Project Category  Number of Projects Project-Weeks 

Clustering 6 730 
Networking 8 1481 
Multimedia 4 244 
Hardware 7 800 
VoIP 3 194 
SysAdmin 12 1751 
Games 9 1244 
Security 9 1333 
Development 32 4943 
Database 9 1171 
Enterprise 8 994 
Desktop 9 1088 
Financial 3 202 

Project Size Projects in Category 
1-2 Developers 13 
3-7 Developers 36 
8-15 Developers 36 
> 15 Developers 33 
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Table 3. Model Summary Results and Coefficient Estimates 

Unstandardized Coefficients 
Significanceβ Std. Error 

(Constant) .307 .184 0.095* 
CumBugsResolved -0.080 0.008 0.000*** 
DeveloperExperience -0.659 0.075 0.000*** 
CumPctBugsAssigned -0.063 0.006 0.000*** 
Ρ (Rho) 0.249 0.008 0.000*** 

ProjectCategory
     SysAdmin -0.280 0.166 0.092* 

Hardware -0.088 0.192 0.646 
     Security .592 0.173 0.001*** 

Enterprise 0.665 0.180 0.000*** 
Desktop 1.061 0.179 0.000*** 

Financial 1.109 0.292 0.000*** 
Development 1.233 0.145 0.000*** 
Database 1.869 0.174 0.000*** 

     Networking 2.121 0.167 0.000*** 
     Games 2.203 0.172 0.000*** 
    Multimedia 2.405 0.282 0.000*** 

VoIP 5.774 0.320 0.000*** 
DeveloperCategory
     3-7 Developers -1.410 0.120 0.000*** 
     8-15 Developers -1.709 0.115 0.000*** 
     > 15 Developers -1.484 0.119 0.000*** 
Model Summary

 R2 0.101 
Adjusted R2 0.100 
Model Std. Error 3.428 

df Regression 18 
     df Residual 16154 
     df Total 16174 

     Significance 0.000*** 
Note: Significance level = *p < 0.10; ** p < 0.05; *** p < 0.01. 
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Figure 1. Debugging Effectiveness of OSS Projects 
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