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1 Introduction

Theoretical inference in statistics is primarily based on the assumption of independent and identi-

cally distributed random samples drawn from a population. However, it is not necessary that we

always have access to samples that are truly random in nature. In these cases the standard infer-

ence results fail. Consider an example of a digital image where contiguous pixels are correlated.

The correlation exists because sensors take a significant energy from these contiguous pixels, and

sensors cover a land region much larger than the size of a pixel. For example, if a pixel represents

wheat in an agricultural field, then its neighboring pixels also represent wheat with high probability

(Richards et al., 1999). A classification method based on the training samples of these neighboring

pixels must take into account this correlation, and equicorrelation could be a reasonable assumption.

The rational of this article is to generalize the traditional classification rules by incorporating the

existing correlation or dependency of the neighboring training samples.

Considerable progress has been made in relaxing the assumption of independence of neighboring

training samples through the concept of equicorrelation (also known as intraclass correlation) in
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the univariate case. That is, instead of the assumption of random samples, the samples x1, . . . , xn

are assumed to be equicorrelated, i.e. the covariance matrix Σ of the vector x = (x1, . . . , xn)′ is

assumed to be Σ = (σ0 − σ1) In+σ1Jn,n, where In is the n×n identity matrix, 1ni is the ni−variate

vector of ones and Jn1,n2 = 1n11
′
n2

. Several authors (Shoukri and Ward, 1984; Viana, 1982, 1994;

Zerbe and Goldgar, 1980; Donner and Bull, 1983; Donner and Zou, 2002; Konishi and Gupta, 1989;

Khatri, Pukkila and Rao, 1989; Paul and Barnwal, 1990; Young and Bhandary, 1998; Bhandary and

Alam, 2000; Smith and Lewis, 1980; Barghava and Srivastava, 1973; Gupta and Nagar, 1987; Khan

and Bhatti, 1998) have used this univariate equicorrelation concept for many different purposes in

their studies. Nevertheless, the natural multivariate generalization of this equicorrelation concept

has not been explored as thoroughly as its univariate counterpart.

The observed unexpected misclassification probabilities while applying the Fisher (1936) linear

discriminant function to multivariate remote sensing data was explained by Basu and Odell (1974)

with the assumption of equicorrelated training vector samples. Unfortunately, Basu and Odell did

not give any logical solution to this problem. In other words, they did not study the appropriate

discriminant function for this problem. Recently, Leiva (2007) obtained a linear classification rule for

equicorrelated training vector dependence (defined in Section 2.1), and showed that this generalizes

the Fisher’s linear classification rule.

The present article builds up on Leiva (2007), and provides a quadratic extension of the tradi-

tional classification rules for the non-random samples based on equicorrelated training vectors by

using multivariate equicorrelation.

2 Basic concepts

2.1 Equally correlated vectors

Let xh be a nm−variate vector of measurements of n neighboring m−variate sample measurements

from a population (h = 1, . . . , N). We partition this vector xh as xh = (x′h,1, . . . ,x
′
h,n)′, where

xh,j = (xh,j,1, . . . , xh,j,m)′ for j = 1, . . . , n. Let x represent the nim−variate vector of measurements

corresponding to one individual in the ith population. We assume x has constant mean vector

structure, i.e. E [xh] = µx = 1n ⊗ µ with µ ∈ Rm, and partitioned covariance structure, i.e.

Γx = Cov [xh] =
(
Γxh,r,xh,s

)
= (Γh,rs) , where Γh,rs = Cov [xh,r,xh,s] for r, s = 1, . . . , n.

Definition 1 The partitioned vector xh or its component vectors xh,1, . . . ,xh,n are said to be

equicorrelated iff

Γx = In ⊗ (Γ0 − Γ1) + Jn,n ⊗ Γ1,

where Γ0 is a positive definite symmetric (m×m) matrix and Γ1 is a symmetric (m×m) matrix.

This matrix Γx is called equicorrelated covariance matrix, and the matrices Γ0 and Γ1 are called

equicorrelation parameters.
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The m×m block diagonals Γ0 represent the variance-covariance matrix of the m−variate response

variable at any given sample (pixel), whereas m×m block off diagonals Γ1 represent the covariance

matrix of the m response variables between any two neighboring samples (pixels). We assume Γ0

is constant for all samples, and Γ1 is same for all neighboring sample pairs.

If Γ0 − Γ1 and Γ0 + (n − 1)Γ1 are non singular matrices, then Γx is invertible (Lemma 4.3,

Ritter and Gallegos, 2002; Leiva, 2007), and

Γ−1
x = In ⊗ (Γ0 − Γ1)−1 − Jn,n ⊗ (Γ0 − Γ1)−1 Γ1 (Γ0 + (n− 1)Γ1)−1

= In ⊗ (Γ0 − Γ1)−1 + Jn,n ⊗ 1
n

[
(Γ0 + (n− 1)Γ1)−1 − (Γ0 − Γ1)−1

]

= In ⊗A + Jn,n ⊗Bn. (1)

We notice that Γ−1
x has the same format as Γx. This result (1) generalizes the one given by Bartlett

(1951) for m = 1. The determinant of the matrix Γx is given by

|Γx| = |(Γ0 − Γ1)|n−1 |Γ0 + (n− 1)Γ1| . (2)

2.1.1 Maximum Likelihood estimates of the mean vector and the covariance matrix
for equicorrelated samples

Let x1, . . . ,xN be nm−variate vectors of N equally correlated random samples form N(µx,Γx) =

N (1n ⊗ µ, In ⊗ (Γ0 − Γ1) + Jn,n ⊗ Γ1). The following theorem gives the MLEs of µx and Γx.

Theorem 1 Under the above set-up the maximum likelihood estimate (MLE) of µx is

µ̂x = 1n ⊗ µ̂ = 1n ⊗ x,

where

x =
1
Nn

N∑

h=1

n∑

j=1

xh,j ,

and the maximum likelihood estimate of Γx is

Γ̂x= In ⊗
(
Γ̂0 − Γ̂1

)
+ Jn,n ⊗ Γ̂1,

where

Γ̂0 =
1
Nn

N∑

h=1

n∑

j=1

(xh,j − x) (xh,j − x)
′
,

and Γ̂1 =
1

Nn (n− 1)

N∑

h=1

n∑

j=1

n∑

j 6=i=1

(xh,j − x) (xh,i − x)
′
.
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2.2 Jointly equicorrelated vectors

In this section we introduce the concept of jointly equicorrelated vectors. Let x(i)
h be a nim−variate

vector of measurements of ni neighboring m−variate sample measurements from the ith population

(i = 1, 2, h = 1, . . . , N). We partition this vector x(i)
h as x(i)

h = (x(i)′
h,1, . . . ,x

(i)′
h,ni

)′, where x(i)
h,j =

(x(i)
h,j,1, . . . , x

(i)
h,j,m)

′
for j = 1, . . . , ni. Let x(i) represent the nim−variate vector of measurements

corresponding to one individual in the ith population. We assume that x(i) has constant mean

vector structure µx(i) = E
[
x

(i)
h

]
= 1ni⊗µ(i),µ(i)∈ <m, and partitioned covariance structure Γx(i) =

Cov
[
x

(i)
h

]
=
(

Γx(i)
h,r,x

(i)
h,s

)
=
(
Γ(i)
h,rs

)
, where Γ(i)

h,rs = Cov
[
x

(i)
h,r,x

(i)
h,s

]
for r, s = 1, . . . , ni.

Definition 2 Vectors x(1)
h =

(
x

(1)′
h,1 , . . . ,x

(1)′
h,n1

)′
and x(2)

h =
(
x

(2)′
h,1 , . . . ,x

(2)′
h,n2

)′
(or, equivalalently

vectors x(1)
h,1, . . . ,x

(1)
h,n1

and x(2)
h,1, . . . ,x

(2)
h,n2

) are said to be jointly equicorrelated iff x(i)
h , i = 1, 2, is

an equicorrelated vector with equicorrelation parameters Γ(i)
0 and Γ(i)

1 , and Cov
[
x

(1)
h,r,x

(2)
h,s

]
= Γ,

where Γ is a symmetric matrix. That is, vectors x(1)
h and x(2)

h are jointly equicorrelated if the

covariance matrix Γx of the partitioned (n1 + n2)m−variate vector xh = (x(1)′
h ,x

(2)′
h )′ is


 In1 ⊗

(
Γ(1)

0 − Γ(1)
1

)
+ Jn1,n1 ⊗ Γ(1)

1 Jn1,n2 ⊗ Γ

Jn2,n1 ⊗ Γ In2 ⊗
(
Γ(2)

0 − Γ(2)
1

)
+ Jn2,n2 ⊗ Γ(2)

1


 . (3)

This matrix Γx is called jointly equicorrelated covariance matrix, and the matrices Γ(1)
0 ,Γ(2)

0 ,Γ(1)
1 ,Γ(2)

1 ,

and Γ are called jointly equicorrelated parameters.

Now, for i = 1, 2 and k = 3− i, if

H(i)1 = Γ(i)
0 − Γ(i)

1 , (4)

H(i)2 = Γ(i)
0 + (ni − 1)Γ(i)

1 ,

= H(i)1 + niΓ
(i)
1 ,

and H(i,k) =
(
Γ(i)

0 + (ni − 1)Γ(i)
1

)
− ninkΓ

(
Γ(k)

0 + (nk − 1)Γ(k)
1

)−1
Γ,

= H(i)2 − ninkΓH−1
(k)2Γ,

are non singular matrices, then Γx is also non singular and its inverse is given by

Γ−1
x =

(
In1 ⊗A(1) + Jn1,n1 ⊗D(1) Jn1,n2 ⊗T
Jn2,n1 ⊗V In2 ⊗A(2) + Jn2,n2 ⊗D(2)

)
,

where

A(i) =
(
Γ(i)

0 − Γ(i)
1

)−1
= H−1

(i)1, (5)
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D(i) = −
(
Γ(i)

0 − Γ(i)
1

)−1
[
Γ(i)

1 − nkΓ
(
Γ(k)

0 + (nk − 1)Γ(k)
1

)−1
Γ
]

{(
Γ(i)

0 − Γ(i)
1

)
+ ni

[
Γ(i)

1 − nkΓ
(
Γ(k)

0 + (nk − 1)Γ(k)
1

)−1
Γ
]}−1

,

T = −
(
A(1) + n1B(1)

n1

)
Γ
(
A(2) + n2D(2)

)
,

and V = −
(
A(2) + n2B(2)

n2

)
Γ
(
A(1) + n1D(1)

)
,

with

B(i)
ni = −A(i)Γ(i)

1

(
Γ(i)

0 + (ni − 1)Γ(i)
1

)−1
,

=
1
ni

(
H−1

(i)2 −H−1
(i)1

)
.

Note that if Γ = 0, then T = 0, V = 0, and

D(i) = D(i)
ni = −

(
Γ(i)

0 − Γ(i)
1

)−1
· Γ(i)

1 ·
{

Γ(i)
0 + (ni − 1) Γ(i)

1

}−1
= B(i)

ni . (6)

Therefore,

D(i)
ni+1 = −

(
Γ(i)

0 − Γ(i)
1

)−1
Γ(i)

1

[
Γ(i)

0 + niΓ
(i)
1

]−1
. (7)

Thus, if Γ = 0, the inverse of Γx is given by

Γ−1
x =

(
Γ−1
x(1) 0

0 Γ−1
x(2)

)
=

(
Γ(1)−1
n1 0

0 Γ(2)−1
n2

)
,

=

(
In1 ⊗A(1) + Jn1,n1 ⊗D(1)

n1 0
0 In2 ⊗A(2) + Jn2,n2 ⊗D(2)

n2

)
,

and the determinant of Γx is given by

|Γx| =
∣∣∣In1 ⊗

(
Γ(1)

0 − Γ(1)
1

)
+ Jn1,n1 ⊗ Γ(1)

1

∣∣∣ ·
∣∣∣
[
In2 ⊗

(
Γ(2)

0 − Γ(2)
1

)
+ Jn2,n2 ⊗ Γ(2)

1

]

− (Jn2,n1 ⊗ Γ)
(
In1 ⊗A(1) + Jn1,n1 ⊗B(1)

)
(Jn1,n2 ⊗ Γ)

∣∣∣ ,

=
∣∣∣In1 ⊗

(
Γ(1)

0 − Γ(1)
1

)
+ Jn1,n1 ⊗ Γ(1)

1

∣∣∣ ·
∣∣∣In2 ⊗H(2)1 + Jn2,n2 ⊗∆(2)

1

∣∣∣ ,

where H(2)1 and A(2) are given in (4) and (5) respectively, and

∆(2)
1 = Γ(2)

1 − n1Γ
(
A(1) + n1B(1)

)
Γ.

That is, |Γx| is a product of two determinants obtained by formula (2).
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2.2.1 Maximum Likelihood estimates of the mean vector and the covariance matrix
for jointly equicorrelated samples

Let x1, . . . ,xN be a (n1 +n2)m−variate vector of random sample of size N from N(µx,Γx) , with

µx =
(
1
′
n1
⊗ µ(1)′ ,1

′
n2
⊗ µ(2)′

)′
and with Γx given by (3). The following theorem gives the MLEs

of µx and Γx.

Theorem 2 Under the above set-up the MLE of µx is

µ̂x =
(
1
′
n1
⊗ x(1)′,1

′
n2
⊗ x(2)′

)′
,

where

x(i) =
1

Nni

N∑

h=1

ni∑

j=1

x
(i)
h,j .

The MLE of Γx is

Γ̂x =

(
C1 Jn1,n2 ⊗ Γ̂
Jn2,n1 ⊗ Γ̂ C2

)
,

where

Ci = Ini ⊗
(
Γ̂(i)

0 − Γ̂(i)
1

)
+ Jnini ⊗ Γ̂(i)

1 , i = 1, 2, (8)

with

Γ̂(i)
0 =

1
Nni

N∑

h=1

ni∑

v=1

(
x

(i)
h,v − x(i)

)(
x

(i)
h,v − x(i)

)′
, (9)

Γ̂(i)
1 =

1
Nni (ni − 1)

N∑

h=1

ni∑

v=1

ni∑

v 6=w=1

(
x

(i)
h,w − x(i)

)(
x

(i)
h,v − x(i)

)′
, (10)

and

Γ̂ =
1

Nn1n2

N∑

h=1

n2∑

r=1

n1∑

j=1

(
x

(1)
h,j − x(1)

)(
x

(2)
h,r − x(2)

)′
.

When Γ = 0, the MLE of Γx reduces to

Γ̂x =
(

C1 0
0 C2

)
, (11)

where Ci, i = 1, 2, is given by (8), with Γ̂(i)
0 and Γ̂(i)

1 given by (9) and (10) respectively.

Moreover, when Γ = 0 and the equicorrelated parameters of both populations are the same,

that is, Γ(1)
0 = Γ(2)

0
.= Γ0 and Γ(1)

1 = Γ(2)
1

.= Γ1, Γ̂x is also given by (11) Thus, it is not necessarily

true that Γ̂(1)
0 = Γ̂(2)

0 and Γ̂(1)
1 = Γ̂(2)

1 , and so the structure of Γ̂x is different from the structure of

Γx. To avoid this Leiva (2007) suggested to use the following:

Γ̂∗x =
(

C∗1 0
0 C∗2

)
,
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where

C∗i = Ini ⊗
(
Γ̂∗0 − Γ̂∗1

)
+ Jnini ⊗ Γ̂∗1, i = 1, 2,

and Γ̂∗0 and Γ̂∗1 are given by

Γ̂∗0 =
n1Γ̂

(1)
0 + n2Γ̂

(2)
0

n1 + n2
,

=
1

N (n1 + n2)

N∑

h=1

2∑

i=1

ni∑

v=1

(
x

(i)
h,v − x(i)

)(
x

(i)
h,v − x(i)

)′
,

and

Γ̂∗1 =
n1 (n1 − 1) Γ̂(1)

1 + n2 (n2 − 1) Γ̂(2)
1

n1 (n1 − 1) + n2 (n2 − 1)
,

=
1

N [n1 (n1 − 1) + n2 (n2 − 1)]

N∑

h=1

2∑

i=1

ni∑

v=1

ni∑

v 6=w=1

(
x

(i)
h,w − x(i)

)(
x

(i)
h,v − x(i)

)′
.

3 Discriminant analysis with equally correlated vectors

Let x(i)
1 , . . . ,x

(i)
ni be m−variate vector training samples of sizes ni from population Πi, i = 1, 2,

where x(i)
j = (x(i)

j,1, . . . , x
(i)
j,m)′ for j = 1, . . . , ni. We define the mni−variate vector x(i) as x(i) =

(x(i)′
1 , . . . ,x

(i)′
ni )′. The objective is to classify a new individual with measurement vector x0 =

(x0,1, . . . , x0,m)′ to one of the populations, using the training samples x(1) and x(2). The basic as-

sumption in the traditional discriminant analysis is that the vectors x(1)
1 , . . . ,x

(1)
n1 ,x0,x

(2)
1 , . . . ,x

(2)
n2

are all independent. However, as discussed in the introduction, this assumption may not be ap-

propriate in many cases, as certain type of dependency may possibly exist among these vectors.

The main difficulty in these cases is, how to incorporate the dependency in the formulation of the

discrimination problem. Even though in this paper we only consider that these vectors have the

special kind of dependency, such as jointly equicorrelation, this heuristic idea can also be used with

any other type of dependencies that are present in the data.

3.1 Classification with jointly equicorrelated training vectors.

In this section we derive the Bayesian decision rule to classify a vector of measurements xo into

one of the populations Π1 and Π2 using the two sets of training samples x(1) = (x(1)′
1 , . . . ,x

(1)′
ni )

′

and x(2) = (x(2)′
1 , . . . ,x

(2)′
ni )

′
from the two populations Π1 and Π2 respectively. We assume that

x(1),x0,x
(2) are jointly equicorrelated, where the vector xo has the same parameters as the training

vectors of the population it belongs. We also assume that the covariance matrix Γ between the

vectors of two populations is 0, i.e. we assume that the two sets of samples from the two populations

are uncorrelated. More precisely, let x = (x(1)′
1 , . . . ,x

(1)′
n1 ,x

′
0,x

(2)′
1 , . . . ,x

(2)′
n2 )

′
= (x(1)′ ,x′0,x

(2)′)′ be

the (n1 + 1 + n2)m−variate vector with mean µx and covariance matrix Γx. If the vector x0 belongs

7



to population Π1 then

µx =
(
1′n1+1 ⊗ µ(1)′ ,1′n2

⊗ µ(2)′
)′ .= µx(1),

and

Γx =




Γ(1)
n1 1n1 ⊗ Γ(1)

1 0
1′n1
⊗ Γ(1)

1 Γ(1)
0 0

0 0 Γ(2)
n2


 .= Γx(1).

And, if the vector x0 belongs to population Π2 then

µx =
(
1′n1
⊗ µ(1)′ ,1′n2+1 ⊗ µ(2)′

)′ .= µx(2),

and

Γx =




Γ(1)
n1 0 0
0 Γ(2)

0 1′n2
⊗ Γ(2)

1

0 1n2 ⊗ Γ(2)
1 Γ(2)

n2


 .= Γx(2).

Therefore, assuming normality,

x ∼




N
(
µx(1),Γx(1)

)
if x0 ∈ Π1

N
(
µx(2),Γx(2)

)
if x0 ∈ Π2

.

3.1.1 Known parameters

We assume Γx(1) 6= Γx(2). Thus, under the assumptions of equal prior probabilities and misclassi-

fication costs for both populations, the (theoretical) Bayesian classification rule is given by

x0 ∈ Π1 ⇐⇒ x ∼ N
(
µx(1),Γx(1)

)
,

⇐⇒ q (x) .= −1
2
x′
(
Γ−1
x(1) − Γ−1

x(2)

)
x+

(
µ′x(1)Γ

−1
x(1) − µx(2)Γ

−1
x(2)

)
x ≥ k,

where the threshold k is given by

k =
1
2

ln

(∣∣Γx(1)

∣∣
∣∣Γx(2)

∣∣

)
+

1
2

(
µ′x(1)Γ

−1
x(1)µx(1) − µx(2)Γ

−1
x(2)µx(2)

)
.

Now, since Γx(1) and Γx(2) have the forms

Γx(1) =

[
Γ(1)
n1+1 0
0 Γ(2)

n2

]
,

and

Γx(2) =

[
Γ(1)
n1 0
0 Γ(2)

n2+1

]
,

we have
∣∣Γx(1)

∣∣ =
∣∣∣Γ(1)

n1+1

∣∣∣ ·
∣∣∣Γ(2)

n2

∣∣∣ ,

=
∣∣∣Γ(1)

0 − Γ(1)
1

∣∣∣
n1
∣∣∣Γ(2)

0 − Γ(2)
1

∣∣∣
n2−1

·
∣∣∣Γ(1)

0 + n1Γ
(1)
1

∣∣∣ ·
∣∣∣Γ(2)

0 + (n2 − 1)Γ(2)
1

∣∣∣ ,
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and

∣∣Γx(2)

∣∣ =
∣∣∣Γ(1)

n1

∣∣∣ ·
∣∣∣Γ(2)

n2+1

∣∣∣ ,

=
∣∣∣Γ(1)

0 − Γ(1)
1

∣∣∣
n1−1 ∣∣∣Γ(2)

0 − Γ(2)
1

∣∣∣
n2 ·

∣∣∣Γ(1)
0 + (n1 − 1)Γ(1)

1

∣∣∣ ·
∣∣∣Γ(2)

0 + n2Γ
(2)
1

∣∣∣ .

Therefore, ∣∣Γx(1)

∣∣
∣∣Γx(2)

∣∣ =

∣∣∣Γ(1)
0 − Γ(1)

1

∣∣∣ ·
∣∣∣Γ(1)

0 + n1Γ
(1)
1

∣∣∣ ·
∣∣∣Γ(2)

0 + (n2 − 1)Γ(2)
1

∣∣∣
∣∣∣Γ(2)

0 − Γ(2)
1

∣∣∣ ·
∣∣∣Γ(1)

0 + (n1 − 1)Γ(1)
1

∣∣∣ ·
∣∣∣Γ(2)

0 + n2Γ
(2)
1

∣∣∣
.

It is also clear that

Γ−1
x(1) =

[
Γ(1)−1
n1+1 0
0 Γ(2)−1

n2

]
,

and

Γ−1
x(2) =

[
Γ(1)−1
n1 0
0 Γ(2)−1

n2+1

]
,

and these can be written as

Γ−1
x(1) =




In1 ⊗A(1) + Jn1 ⊗D(1)
n1+1 1n1 ⊗D(1)

n1+1 0
1′n1
⊗D(1)

n1+1 A(1) + D(1)
n1+1 0

0 0 In2 ⊗A(2) + Jn2 ⊗D(2)
n2


 ,

and

Γ−1
x(2) =




In1 ⊗A(1) + Jn1 ⊗D(1)
n1 0 0

0 A(2) + D(2)
n2+1 1′n2

⊗D(2)
n2+1

0 1n2 ⊗D(2)
n2+1 In2 ⊗A(2) + Jn2 ⊗D(2)

n2+1


 .

where A(i), i = 1, 2, are given in (5), and D(i)
ni , D(i)

ni+1 are given in (6). Now, writing x =

(x(1)′
1 , . . . ,x

(1)′
n1 ,x

′
0,x

(2)′
1 , . . . ,x

(2)′
n2 )′, we have

q (x) .= −1
2
x′
(
Γ−1
x(1) − Γ−1

x(2)

)
x+

(
µ′x(1)Γ

−1
x(1) − µ′x(2)Γ

−1
x(2)

)
x

= −1
2
n2

1x
(1)′
(
D(1)
n1+1 −D(1)

n1

)
x(1) +

1
2
n2

2x
(2)′
(
D(2)
n2+1 −D(2)

n2

)
x(2)

+n2
1µ

(1)′
(
D(1)
n1+1 −D(1)

n1

)
x(1) − n2

2µ
(2)′
(
D(2)
n2+1 −D(2)

n2

)
x(2)

+n1µ
(1)′
1 D(1)

n1+1x
(1) − n2µ

(2)′D(2)
n2+1x

(2)

−1
2
x′0
((

A(1) + D(1)
n1+1

)
−
(
A(2) + D(2)

n2+1

))
x0

+n1

(
µ(1)′ − x(1)′

)
D(1)
n1+1x0 − n2

(
µ(2)′ − x(2)′

)
D(2)
n2+1x0

+µ(1)′A(1)x0 − µ(2)′A(2)x0 + µ(1)′D(1)
n1+1x0 − µ(2)′D(2)

n2+1x0,

9



and k =
1
2

ln

(∣∣Γx(1)

∣∣
∣∣Γx(2)

∣∣

)
+

1
2

(
µ′x(1)Γ

−1
x(1)µx(1) − µx(2)Γ

−1
x(2)µx(2)

)

=
1
2

ln



∣∣∣Γ(1)

0 − Γ(1)
1

∣∣∣ ·
∣∣∣Γ(1)

0 + n1Γ
(1)
1

∣∣∣ ·
∣∣∣Γ(2)

0 + (n2 − 1)Γ(2)
1

∣∣∣
∣∣∣Γ(2)

0 − Γ(2)
1

∣∣∣ ·
∣∣∣Γ(1)

0 + (n1 − 1)Γ(1)
1

∣∣∣ ·
∣∣∣Γ(2)

0 + n2Γ
(2)
1

∣∣∣




+
1
2
µ(1)′

(
n2

1D
(1)
n1+1 + 2n1D

(1)
n1+1 − n2

1D
(1)
n1

+
(
A(1) + D(1)

n1+1

))
µ(1)

−1
2
µ(2)′

(
n2

2D
(2)
n2+1 + 2n2D

(2)
n2+1 − n2

2D
(2)
n2

+
(
A(2) + D(2)

n2+1

))
µ(2).

Finally, in the inequality q (x) ≥ k, we can have only those terms involving x0 on the left hand side

and obtain the inequality t (x) ≥ c, where

t (x) = −1
2
x′0
(
A(1) −A(2)

)
x0 − 1

2
x′0
(
D(1)
n1+1 − D(2)

n2+1

)
x0

−n1x
(1)′ D(1)

n1+1x0 + n2x
(2)′ D(2)

n2+1x0 + µ(1)′A(1)x0

−µ(2)′A(2)x0 + (n1 + 1)µ(1)′ D(1)
n1+1x0 − (n2 + 1)µ(2)′ D(2)

n2+1x0,

and c =
1
2

ln



∣∣∣Γ(1)

0 − Γ(1)
1

∣∣∣ ·
∣∣∣Γ(1)

0 + n1Γ
(1)
1

∣∣∣ ·
∣∣∣Γ(2)

0 + (n2 − 1)Γ(2)
1

∣∣∣
∣∣∣Γ(2)

0 − Γ(2)
1

∣∣∣ ·
∣∣∣Γ(1)

0 + (n1 − 1)Γ(1)
1

∣∣∣ ·
∣∣∣Γ(2)

0 + n2Γ
(2)
1

∣∣∣




+
1
2
µ(1)′

(
n2

1D
(1)
n1+1 + 2n1D

(1)
n1+1 − n2

1D
(1)
n1

+
(
A(1) + D(1)

n1+1

))
µ(1)

−1
2
µ(2)′

(
n2

2D
(2)
n2+1 + 2n2D

(2)
n2+1 − n2

2D
(2)
n2

+
(
A(2) + D(2)

n2+1

))
µ(2)

+
1
2
n2

1x
(1)′
(
D(1)
n1+1 −D(1)

n1

)
x(1) − 1

2
n2

2x
(2)′
(
D(2)
n2+1 −D(2)

n2

)
x(2)

−n2
1µ

(1)′
(
D(1)
n1+1 −D(1)

n1

)
x(1) + n2

2µ
(2)′
(
D(2)
n2+1 −D(2)

n2

)
x(2)

−n1µ
(1)′D(1)

n1+1x
(1) + n2µ

(2)′D(2)
n2+1x

(2).

Therefore, when the parameters are known, the (theoretical) Bayesian decision rule to classify a

new vector x0 is

x0 ∈ Π1 ⇐⇒ q (x) ≥ k ⇐⇒ t (x)≥c. (12)

Note that x(1) and x(2) appear in the classification rule along with µ(1) and µ(2) when all the

parameters are known.

Also note that when Γ(i)
1 = 0, for i = 1, 2, i.e. when there are no correlations between the

neighboring samples for both the populations, then A(i) = Γ(i)−1
0 , and D(i)

ni = 0 = D(i)
ni+1. As a

result the theoretical classification rule no more depends on x(1) and x(2), and t (x) = t (x0) reduces

to

t (x0) = −1
2
x′0
(
Γ(1)−1

0 − Γ(2)−1
0

)
x0 +

(
µ(1)′Γ(1)−1

0 − µ(2)′Γ(2)−1
0

)′
x0,

and the threshold c reduces to

c =
1
2

ln



∣∣∣Γ(1)

0

∣∣∣
∣∣∣Γ(2)

0

∣∣∣


+

1
2

(
µ(1)′Γ(1)−1

0 µ(1) − µ(2)′Γ(2)−1
0 µ(2)

)
.
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Therefore, we see that the classification rule (12) reduces to the traditional (theoretical) quadratic

classification rule under the uncorrelated random samples assumption. In particular when the

equicorrelation parameters are same for both the populations, i.e when

Γ(1)
0 = Γ(2)

0
.= Γ0,

and Γ(1)
1 = Γ(2)

1
.= Γ1,

and when Γ1 = 0, the classification classification rule (12) becomes Fisher’s linear classification

rule, that is,

t (x0) = (µ1 − µ2)′ Γ−1
0 x0,

and c =
1
2

(µ1 − µ2)′ Γ−1
0 (µ1 + µ2) .

3.1.2 Unknown parameters

In this case also we assume Γx(1) 6= Γx(2). We also assume that all the parameters are unknown.

To obtain the sample classification rule we replace A(i), D(i)
ni+1 and D(i)

ni by their MLEs Â(i), D̂(i)
ni+1

and D̂
(i)
ni in the expressions of t (x) and c. The estimates Â(i), D̂(i)

ni+1 and D̂
(i)
ni are obtained from

(5), (6) and (7) by replacing the parameters µ(i), Γ(i)
0 ,Γ(i)

1 by their ML estimates

µ̂(i) = x(i) =
1
ni

ni∑

j=1

x
(i)
j for i = 1, 2,

Γ̂(i)
0 =

1
ni

ni∑

v=1

(
x(i)
v − x(i)

)(
x(i)
v − x(i)

)′
,

and Γ̂(i)
1 =

1
ni (ni − 1)

ni∑

v=1

ni∑

v 6=w=1

(
x(i)
w − x(i)

)(
x(i)
v − x(i)

)′
,

respectively. Then, the sample Bayesian decision rule to classify a new measurement vector x0 when

parameters are unknown is given by

x0 ∈ Π1 ⇐⇒ q̂ (x) ≥ k̂ ⇐⇒ t̂ (x)≥ĉ,

where

t̂ (x0) = x(1)′
(
Â(1) + D̂(1)

n1+1

)
x0 − x(2)′

(
Â(2) + D̂(2)

n2+1

)
x0

−1
2
x′0
((

Â(1) + D̂(1)
n1+1

)
−
(
Â(2) + D̂(2)

n2+1

))
x0,

and ĉ =
1
2

ln



∣∣∣Γ̂(1)

0 − Γ̂(1)
1

∣∣∣ ·
∣∣∣Γ̂(1)

0 + n1Γ̂
(1)
1

∣∣∣ ·
∣∣∣Γ̂(2)

0 + (n2 − 1)Γ̂(2)
1

∣∣∣
∣∣∣Γ̂(2)

0 − Γ̂(2)
1

∣∣∣ ·
∣∣∣Γ̂(1)

0 + (n1 − 1)Γ̂(1)
1

∣∣∣ ·
∣∣∣Γ̂(2)

0 + n2Γ̂
(2)
1

∣∣∣




+
1
2
x(1)′

(
Â(1) + D̂(1)

n1+1

)
x(1) − 1

2
x(2)′

(
Â(2) + D̂(2)

n2+1

)
x(2).
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When the vectors x(1)
1 , . . . ,x

(1)
n1 ,x0,x

(2)
1 , . . . ,x

(2)
n2 are uncorrelated, that is, when Γ(i)

1 = 0, the

corresponding sample classification rule reduces to

t̂ (x0) =
[
x(1)′Γ̂(1)−1

0 − x(2)′Γ̂(2)−1
0

]
x0 − 1

2
x′0
(
Γ̂(1)−1

0 − Γ̂(2)−1
0

)
x0,

and ĉ =
1
2

ln



∣∣∣Γ̂(1)

0

∣∣∣
∣∣∣Γ̂(2)

0

∣∣∣


+

1
2
x(1)′Γ̂(1)−1

0 x(1) − 1
2
x(2)′Γ̂(2)−1

0 x(2).

And, this is the traditional sample quadratic classification rule when all the samples are uncorrelated

in both the populations.

4 Conclusions

This study presents a new approach for the generalization of the traditional classification rules. The

new classification rule can be used when the assumption of uncorrelated training samples is violated.

The generalization of the classification rule for more than two populations is straightforward. The

extension of the proposed classification rule when Γ 6= 0 is under progress, and we will report

it in a future correspondence. The heuristic idea of incorporating joint equicorrelation among

the neighboring sample vectors can easily be applied to many other types of dependence such as

classification of time series.
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